分形简介
- 格式:pptx
- 大小:781.39 KB
- 文档页数:24
混沌理论之分形交易系统的基本原理分形也叫碎形,英文叫Fractal---交易的起始!一、分形原理分形是利用简单的多空原理而形成。
当市场上涨的时候,买方追高价的意愿很高,形成价格不断上升,随着价格不断上升买方意愿也将逐渐减少,最后价格终于回跌。
然后市场进入一些新的资讯(混沌)影响了交易者的意愿,此时市场处于低价值区,买卖双方都同意目前的价格区,但对于价格却有不同的看法,当买方意愿再度大于卖方意愿时价格就会上涨,如果这个买方的动能足以超越向上分形时,我们将在向上分形上一档积极进场。
下跌时原理亦同。
二、分形结构分形是由至少五根连续的K线所组成。
向上的分形中间的K线一定有最高价,左右两边的K 线分别低于中间K线的高点;向下的分形中间的K线一定有最低价,左右两边的K线分别高于中间K线的低点;你可以现在举起手,观察自己五根手指的结构,就是典型的向上分形。
这是最典型的也是最基本的分形结构;若中间的K线同时高于和低于左右两边的K线,那么它即是一个向上的分形又是一个向下的分形。
需要注意的是如果当天的K线最高点或最低点与前面一根K线的高点或低点相同时,需要等待后一根K线进行确认。
分形是证券混沌操作法的入场系统,也是鳄鱼苏醒时的第一个入场信号。
一个分形产生后,随后的价格如果有能力突破分形的高点或低点,我们便开始进场。
在证券混沌操作法中,一个有效的分形信号,必须高于或低于颚鱼线的牙齿。
当有效的分形被突破后,只要价格仍然在鳄鱼线唇吻的上方或下方,我们便只在下一个分形被突破时进行顺势交易。
分辨向上分形时我们只在乎高点的位置,观察向下分形时则只在乎低点的位置。
在找寻分形时必须注意几点:1.如果某一天的K线最高价与前一天K线的最高价相同,那么该天的K线将不列入五根手指头之内,此时就需等待第六根K线的确认。
2.向上与向下分形可由一根K线来完成,因为它都符合上下分形的结构原理。
3.向上与向下分形可共享周边的K线。
三、分形的用法分形可以透露许多市场行为结构的演变讯息,当市场在高高低低之间波动时,我们可以藉由了解分形的行为而改善我们的交易绩效。
分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。
分形的基本特征是具有标度不变性。
其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。
研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。
说到分形(fractal),先来看看分形的定义。
分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。
分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。
分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。
但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。
而一直到八十年代,对于分形的研究才真正被大家所关注。
分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。
它是数学的一个分支。
我之前说过很多次,数学就是美。
而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。
而更由于它美的直观性,被很多艺术家索青睐。
分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。
而在生物界,分形的例子也比比皆是。
近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。
分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。
分形理论在材料中的应用1 分形理论简介Fractal 一词,源于拉丁文Fractus。
原译为“不规则的”或“破碎的”,但通常把它译为“分形”。
近年来,分形一直是国内外有关学者们的研究热点,它的应用性研究逐渐被渗透至物理、数学、化学、生物、医药、地震、冶金,甚至哲学、音乐与绘画等各个领域。
1. 1 分形理论的提出众所周知,普通的几何对象具有整数维数。
例如:点为零维,线为一维,面为二维,立方体为三维。
然而,自然界中真实的线、面并不总是光滑的,许多物体的形状也是极不规则的,例如连绵起伏的山脉轮廓线、曲折蜿蜒的江河川流、变幻无常的浮云,以及令人眼花缭乱的繁星等等。
同样,这种现象在材料科学中也很普遍,如:高分子的凝聚体结构、材料固体裂纹、电化学沉积等等,这些都是难于用欧氏几何学加以描述的。
对于诸如具有此类几何结构的体系,如何进行定量表征呢? 随着人类对客观世界认识的逐步深入,以及科学技术的不断进步,象传统数学那样把不规则的物体形状加以规则化,然后进行处理的做法已不能再令人满意了。
于是,在七十年代中期,分数维几何学应运而生[1 ] 。
整数与分数维集合的几何测度理论,早在本世纪初已由纯数学家们发展起来。
但谈到分数维几何学的创始人,则首先当推法国数学家曼德尔布罗,他在总结了自然界中的非规整几何图形后[2 ] ,于1975 年第一次提出分形这个概念。
此后,分形在不同学科领域中被广泛地应用起来; 直至1982 年德尔布罗出版了他的专著《The Fractal Geomet ry of Nature》则表明分形理论已初步形成[3 ] 。
1. 2 自相似性分形结构的本质特征是自相似性或自仿射性。
自相似性是指:把考察的对象的一部分沿各个方向以相同比例放大后,其形态与整体相同或相似。
简单地说,就是局部是整体成比例缩小的性质。
形象地说,就是当用不同倍数的照相机拍摄研究对象时,无论放大倍数如何改变,看到的照片都是相似的(统计意义) ,而从相片上也无法断定所用相机的倍数,故又称标度不变性或全息性。
分形理论及其发展历程李后强汪富泉被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
它与动力系统的混沌理论交叉结合,相辅相成。
它承认世界的局部可能在一定条件下。
过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。
分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。
1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。
1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。
1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。
这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。
1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。
1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。
1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。
1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。
以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。
二1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。
它打败了欧几里得空间,踹飞了数学怪物,成为全世界的焦点分形几何自然界的几何学Long long ago,超模君为大家介绍Koch曲线(传送门)的时候提到了分形,结果小天很好奇这个所谓的分形究竟是什么。
为了不让小天老是纠缠这个问题,今天超模君就来介绍一下分形吧。
数千年以来,几何学的研究主要集中在欧几里得几何上。
正因如此,欧式几何一直是人类认识自然物体形状的有力工具,还是各种学科理论的基础。
甚至伽利略曾断言:“大自然的语言是数学,它的标志是三角形、圆和其他几何图形”。
但,真的是这样吗?事实并非如此,自然界中存在着各种不规则不光滑不连续的几何形体,譬如湍流的高漩涡、河流的支流、蜿蜒的海岸线,而这些形体是无法用欧式几何描述的。
既然“万能”的欧式几何不管用了,那么有没有处理这些不规则形体的好方法呢?显然是没有的。
因此在1个多世纪前,所谓的数学怪物出现了,而康托尔、魏尔斯特拉斯等数学家则成为了制造者。
1883年,康托尔(传送门)引入了如今广为人知的康托尔集,也称为三分集。
虽然康托尔集很容易构造,还是个测度为0的集,也就是它的函数图像面积为0,但它具备很多最典型的分形特征,因此康托尔始终无法解决。
目前分形几何的特征有:在任意小的尺度上都能有精细的结构;太不规则;(至少是大略或任意地)自相似,豪斯多夫维数会大於拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外);有著简单的递归定义。
Cantor集1895年,在大部分数学家认为除了少数特殊的点以外,连续的函数曲线在每一点上总会有斜率的情况下,魏尔斯特拉斯提出了第一个分形函数“魏尔斯特拉斯函数”,并凭借函数曲线特点“处处连续,处处不可微”证明了所谓的“病态”函数的存在性。
1906年,科赫在论文《关于一条连续而无切线,可由初等几何构作的曲线》中提到了一种像雪花的几何曲线,而这个雪花曲线就是de Rham曲线的特例科赫曲线(传送门)。
Koch曲线1914年,波兰数学家谢尔宾斯基利用等边三角形进行分形构造,提出了谢尔宾斯基三角形;两年后,利用正方形进行分形构造提出了谢尔宾斯基地毯。
分形理论概述分形理论是当今世界十分风靡和活跃的新理论、新学科。
分形的概念是美籍数学家曼德布罗特(B.B.Mandelbort)首先提出的。
1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。
我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。
在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。
事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。
1975年,他创立了分形几何学(fractal geometry)。
在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractal theory)。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。
作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
分形理论的原则自相似原则和迭代生成原则是分形理论的重要原则。
它表征分形在通常的几何变换下具有不变性,即标度无关性。
由自相似性是从不同尺度的对称出发,也就意味着递归。
分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。
标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。
这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。
第三章分形和多重分形第三章 分形和多重分形分形和多重分形的概念正在越来越多地被应用到科学的各个领域中,它们在本质上描述了对象的复杂性和自相似性。
分形和多重分形是不依赖于尺度的自相似的一个自然结果。
单一的分形维数不能完全刻画信号的特征,已有例子表明许多视觉差别很大的图象却具有十分相似的分维。
实际上通过计算分形维数无法区分单一分形集和多重分形集。
为了获得对一个分形更详细的描述,需增加能刻画不同分形子集的参数,因此要引入多重分形理论。
在直观上可将多重分形形象地看作是由大量维数不同的单一分形交错叠加而成的。
从几何测度性质的角度,可将多重分形描述为一类具有如下性质的测度μ(或质量分布):对于足够小的正数r ,成立幂律特性αr x B u r ∝))((,并且不同的集对应于不同的a (其中)(x B r 表示某度量空间内以x 为中心,半径为r 的球),在此意义上,多重分形又称为多重分形测度,它揭示了一类形态的复杂性和某种奇异性。
表征多重分形的主要方法是使用多重分形谱)(a f 或广义维数q D 。
多重分形谱)(a f 在对多重分形进行精确的数学刻画的同时,通过)(a f 相对a 的曲线为多重分形提供了自然而形象的直观描述,其中a 确定了奇异性的强度,而)(a f 则描述了分布的稠密程度。
§3.1 分形的基本理论3.1.1 分形理论的基本概念㈠ 分形分形几何学是由Mandelbrot[4]首先提出并发展为系统理论,Mandelbrot 在研究英国海岸线的复杂边界时发现,在不同比例的地图上会测出不同的海岸线长度,这正是欧几里德几何无法解释的。
在研究中,他将测量长度与放大比例(尺度)分别取对数,所对应的二维坐标点存在一种线性关系,此线性关系可用一个定量参数-称分形维数来描述。
由此, Mandelbrot 进一步发展了分形几何理论,可以产生许多分形集图形和曲线,如Mandelbrot 集、Cantor 集、Koch 曲线、Sierpinski 地毯等,还可描述复杂对象的几何特性。
分形(一种别样的数学美丽)从海螺和螺旋星云到人类的肺脏结构,我们身边充满各种各样的混沌图案。
分形(一种几何形状,被以越来越小的比例反复折叠而产生不能被标准几何所定义的不标准的形状和表面)是由混沌方程组成,它包含通过放大会变的越来越复杂的自相似图案。
要是把一个分形图案分成几小部分,结果会得到一个尺寸缩小,但形状跟整个图案一模一样的复制品。
分形的数学之美,是利用相对简单的等式形成无限复杂的图案。
它通过多次重复分形生成等式,形成美丽的图案。
我们已经在我们的地球上搜集到一些这方的天然实例,下面就让我看一看。
1.罗马花椰菜:拥有黄金螺旋罗马花椰菜这种花椰菜的变种是最重要的分形蔬菜。
它的图案是斐波纳契数列,或称黄金螺旋型(一种对数螺旋,小花以花球中心为对称轴,螺旋排列)的天然代表。
2.世界最大盐沼——天空之镜盐沼坚硬的盐层上呈现非常一致的不规则图案过去一个世纪,上图里的旧金山海湾盐沼一直被用来进行工业盐生产。
下图显示的是位于玻利维亚南部的世界最大盐沼——天空之镜(Salar de Uyuni)。
坚硬的盐层上呈现非常一致的不规则图案,这是典型的分形。
3.菊石缝线菊石的外壳还生长成一个对数螺旋型大约6500万年前灭绝的菊石在大约6500万年前灭绝的菊石,是制作分成许多间隔的螺旋形外壳的海洋头足纲动物。
这些间隔之间的壳壁被称作缝线,它是分形复曲线。
美国著名古生物学家史蒂芬·杰伊·古尔德依据不同时期的菊石缝线的复杂性得出结论说,进化并没驱使它们变得更加复杂,我们人类显然是“一个例外”,是宇宙里独一无二的。
菊石的外壳还生长成一个对数螺旋型,很显然,自然界经常会出现这种图案,例如罗马花椰菜。
4.山脉山脉山脉是构造作用力和侵蚀作用的共同产物,构造作用力促使地壳隆起,侵蚀作用导致一些地壳下陷。
这些因素共同作用的产物,是一个分形。
上图显示的是喜马拉雅山脉,它是世界很多最高峰的所在地。
印度板块和欧亚板块在大约7000万年前相撞在一起,导致喜马拉雅山脉隆起,现在这座山脉的高度仍在不断增加。