02-一次函数的图像及性质-教师版
- 格式:docx
- 大小:1.33 MB
- 文档页数:22
1.函数的概念:在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 2.函数的三种表示方法:(1)列表法:把自变量x 的一系列值和函数y 的对应值列成表格来表示函数的方法. (2)解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. (3)图象法:用图象直观、形象地表示一个函数的方法. 3.函数自变量的取值范围的确定:函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: (1)整式:自变量的取值范围是任意实数.(2)分式:自变量的取值范围是使分母不为零的任意实数. (3)根式:当根指数为偶数时,被开方数为非负数. (4)零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类. 4.函数图像:(1)函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象.一次函数图像及性质知识回顾(2)函数图象的画法:①列表; ②描点; ③连线. (3)函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的解析式,如果满足函数解析式,这个点就在函数的图象上,否则就不在这个函数的图象上.一、一次函数的概念一般地,形如(,是常数,)的函数,叫做一次函数.(1)一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.(2)当,时,是正比例函数,正比例函数是一次函数的特例,一次函数包括正比例函数.二、一次函数的图象(1)一次函数(,,为常数)的图象是一条直线.(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取,两点; ②如果这个函数是一般的一次函数(),通常取,,即直线与两坐标轴的交点.(3)由函数图象的意义知,满足函数关系式的点在其对应的图象上,这个图象就是一条直线,反之,直线上的点的坐标满足,也就是说,直线与是一一对应的,所以通常把一次函数的图象叫做直线:,有时直接称为直线. 三、一次函数的性质1.一次函数图象的位置y kx b =+k b 0k ≠y kx b =+0b =0k ≠y kx =y kx b =+0k ≠k b ()00,()1k ,0b ≠()0b ,0b k ⎛⎫- ⎪⎝⎭,y kx b =+()x y ,l l ()x y ,y kx b =+l y kx b =+y kx b =+l y kx b =+y kx b =+知识讲解一次 函数,符号0b =图象性质 随的增大而增大 随的增大而减小在一次函数中:(1)当时,其图象一定经过一、三象限;当时,其图象一定经过二、四象限. (2)当时,图象与轴交点在轴上方,所以其图象一定经过一、二象限;当时,图象与轴交点在轴下方,所以其图象一定经过三、四象限. 当0b =时,图象过原点.反之,由一次函数的图象的位置也可以确定其系数、的符号.2.一次函数图象的增减性 在一次函数中:(1)当时,一次函数的图象从左到右上升,随的增大而增大; (2)当时,一次函数的图象从左到右下降,随的增大而减小.【例1】在下列等式中,y 是x 的函数的有( )223201x y x y -=-=,,||||y x y x x y ===,,.A .1个B .2个C .3个D .4个【答案】C .【例2】图中,表示y 是x 的函数图象是( )()0k kx b k =+≠k b 0k >0k <0b >0b <0b =0b >0b <Ox yyx OOx yyx OOx yyxOy x y x y kx b =+0k >0k <0b >y x 0b <y x y kx b =+k b y kx b =+0k >y kx b =+y x 0k <y kx b =+y x 同步练习【答案】C .【例3】已知346=0x y +-,用含x 的代数式表示y 为______;用含y 的代数式表示x 为______.【答案】3342y x =-+;423x y =-+.【例4】某商店进一批货,每件6元,售出时,每件加利润0.8元,如售出x 件,应收货款y 元,那么y与x 的函数关系式是______________,自变量x 的取值范围是______________.【答案】 6.8y x = x 取正整数.【变式练习】电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次 通话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式是________________ .【答案】0.2028y x =+.【例5】已知函数223y x =+,当11x =-时,相对应的函数值1y =______;当52-=x 时,相对应的函数值2y =______; 当3x m =时,相对应的函数值3y =______.反过来,当11y =时,自变量x =______.【答案】5;13;223m +;2±.【例6】已知,6xy =根据表中 自变量x 的值,写出相对应的函数值. x … 4-3-2-1-21-0 21 1234… y …【答案】略.【例7】求出下列函数中自变量x 的取值范围.(1)52+-=x x y (2)324-=x xy (3)32+=x y(4)12-=x x y (5)321x y -= (6)23++=x x y(7)10+=x x y (8)|2|23-+=x x y (9)x x y 2332-+-=【答案】(1)全体实数; (2)32x ≠ ; (3)32x -…; (4)12x >; (5)全体实数;(6)3x -…且2x ≠-; (7)0x ≠且1x ≠-; (8)23x -…且2x ≠; (9)32x =【例8】写出等腰三角形中一底角的度数y 与顶角的度数x 之间的函数关系.【答案】1902y x =︒-︒.【变式练习】已知:等腰三角形的周长为50cm ,若设底边长为xcm ,腰长为ycm ,求y 与x 的函数解析式及自变量x 的取值范围.【答案】502xy -=;025x <<.【变式练习】用40m 长的绳子围成矩形ABCD ,设AB xm =,矩形ABCD 的面积为2Sm ,(1)求S 与x 的函数解析式及x 的取值范围;(2)写出下面表中与x 相对应的S 的值: x (8)99.51010.51112…S…(3)猜一猜,当x 为何值时,S 的值最大?(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?并算出相应的面积.【答案】(1)()20S x x =-;(2)略;(3)当10x =时,S 的值最大为100;(4)应围成圆,半径4020=2πr π=,面积2220400πr =π100ππS ⎛⎫=⋅=> ⎪⎝⎭.【例9】2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S (千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )【答案】B .【变式练习】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行使情况的图像大致是( )【答案】C .【变式练习】如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,O O O O ttt tSSSSDCBADCBAO O O O yyyyx xxx同步课程˙一次函数图像及性质蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为( )【答案】C .【例10】边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),则S 与t 的大致图象为( )【答案】A .【变式练习】如图,在矩形ABCD 中,2AB =,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )O O O O ttt tSSSSDCBABAO DCBAOOOOtttt SSSSDCBA DCBA3311123131yyyyxxxxO O O O【答案】B .【例11】如果 A B 、两人在一次百米赛跑中,路程S (米)与赛跑的时间t (秒)的关系如图所示,则下列说法中正确的是 ( )A .A 比B 先出发 B .A B 、两人的速度相同 C .A 先到达终点 D .B 比A 跑的路程多【答案】C .【变式练习】甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距离A 地18km 的B 地,他们离出发地的距离S (km )和行驶时间t (h )之间的函数关系的图象如图所示.根据图中提供的信息,符合图象描述的说法是( )A .甲在行驶的过程中休息了一会B .乙在行驶的过程中没有追上甲C .乙比甲先到了B 地D .甲的行驶速度比乙的行驶速度大【答案】D .【变式练习】某校八年级同学到距学校千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,、分别表示步行和骑车的同学前往目的地所走的路程(千米)与所用时间(分钟)之间的函数图象,则以下判断错误的是( )A .骑车的同学比步行的同学晚出发分钟tSO BA61l 2l y x 60545030y (千米)x (分钟)l2l1O 30 乙甲2.520.5OtSB .步行的速度是千米/时C .骑车同学从出发到追上步行同学用了分钟D .骑车的同学和步行的同学同时达到目的地【答案】D .【例12】下列函数中,哪些是一次函数?哪些是正比例函数?(1) (2) (3) (4) (5) (6) 【答案】(2)是正比例函数,(1)(2)(4)(5)是一次函数.【变式练习】下列函数中,是正比例函数的是( )A .2y x =B .x y 21=C .2y x =D .21y x =-【答案】A .【例13】若23y x b =+-是正比例函数,则的值是( )A .0B .23-C .23 D . 【答案】C【变式练习】已知,当m 取何值时,y 是x 的正比例函数?【解析】∵正比例函数,所以 ∴且∴当时,是的正比例函数.【答案】当时,是的正比例函数.【变式练习】已知函数(为常数)是正比例函数,则_________.【解析】由题意可知,,故. 又∵,,则.62015x y +=-5xy =-21y x =--35x y =--()()212y x x x =---21x y -=b 32-2(1)1y m x m =-+-(0)y kx k =≠21010m m ⎧-=⎨-≠⎩1m =±1m ≠1m =-y x 1m =-y x 1(2)k y k x-=-k k =11k -=2k =±20k -≠2k ≠2k =-【答案】.【例14】函数2y x =-的图象一定经过下列四个点中的( )A .点()12,B .点()21-,C .点1(1)2-, D .点1(1)2-, 【答案】C .【变式练习】已知正比例函数(,为常数),经过点(24),,以下哪个点不在该正比例函数图图象上( )A .点(24)--,B .点(00),C .点(12),D .点(12)-, 【答案】D .【例15】一次函数y x =-的图象平分( )A .第一、三象限B .第一、二象限C .第二、三象限D .第二、四象限【答案】D .【例16】若直线y kx =经过点()53A -,,则k =______.如果这条直线上点A 的横坐标A x =13-,那么它的纵坐标A y =______.【答案】35-,15.【例17】已知与x 成正比例,当时,,求与x 之间的函数关系式,并判断它是不是正比例函数.【解析】依题意,设,整理得:,将代入上式,得:1=32k + ∴13k =-,∴【答案】,它不是正比例函数,是一次函数.【变式练习】已知z m y =+,m 是常数,y 是x 的正比例函数,当2x =时,1z =;当3x =时,1z =-,求z 与x 的函数关系.2k =-y kx =0k ≠k 2y -3x =1y =y 2y kx -=2y kx =+31x y ==,123y x =-+123y x =-+【解析】依题意,设y kx =,z m y =+,整理得:z m kx =+,将21x z ==,和31x z ==-,代入上式,得:25k m =-=,,即25z x =-+. 【答案】25z x =-+.【变式练习】已知与(m n ,为常数)成比例,试判断y 与x 成什么函数关系? 【解析】依题意,设(0k ≠)整理得:【答案】y 是x 一次函数.【例18】下面哪个正比例函数的图象经过一、三象限( )A .B .C .D . 【答案】D .【变式练习】如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .B .C .D . 【答案】B .【例19】已知一次函数(为常数)的图象经过一、二、三象限,求取值范围 . 【解析】由题意可知,解得.【答案】.【变式练习】已知一次函数的图象如图所示,则的取值范围是__________.【解析】根据题意可得:,解得.【答案】.【例20】如果直线不经过第四象限,那么 (填“”、“”、“”). 【答案】.y m +x n +y m k x n +=+()y kx kn m =+-()23y x =-()3.14πy x =-π22y x ⎛⎫=- ⎪⎝⎭()526y x =-y kx b =+y 00k b >>,00k b ><,00k b <>,00k b <<,(3)(2)y k x k =-+-k k 3020k k ->⎧⎨->⎩23k <<23k <<(5)1y a x a =-+-a 5010a a ->⎧⎨->⎩15a <<15a <<y ax b =+ab 0≥≤=≥yxO【变式练习】若一次函数2(1)12ky k x =-+-的图象不经过第一象限,则k 的取值范围是_______. 【解析】依题可知,()21-0102k k <⎧⎪⎨-⎪⎩…解不等式组得出的取值范围12k <….【答案】12k <….【例21】一次函数21y x =--的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A .【变式练习】若,,则经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【解析】根据题意可得,【答案】D .【变式练习】直线1y kx b =+过第一、二、四象限,则直线2y bx k =-不经过第____象限. 【答案】四.【例22】关于x 的一次函数21y kx k =++的图像可能正确的是( )【答案】C .【例23】函数y ax b =+和y bx a =+在同一坐标系中的可能是( )k 0ab >0bc <a ay x b c=-+0a b -<0ac <DCBAy yyyxxxx【答案】D .【变式练习】如图所示,直线l 1:y ax b =+和l 2:-y bx a =在同一坐标系中的图象大致是( )【答案】C .【例24】下列表示一次函数与正比例函数图象中,一 定不正确的是( )A BC D 【答案】A .【例25】已知函数y kx b =+的函数图像如左图,则2y kx b =+的图像可能是( )【答案】CDCBAO O OO y yyyxxxxy mx n =-y mnx =(m n 、为常数,0mn ≠且)OxyOxyOxyOxy11-1-1-1-1O O O DCBA1111yxO yyyyxxxx同步课程˙一次函数图像及性质【例26】已知一次函数,若随的减小而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】A .【例27】已知点都在直线上,则大小关系是( ) A . B .C .D .不能比较【解析】考察一次函数的性质,的,则随的增大而减小【答案】A .【变式练习】已知一次函数的图象过点()03,与()21,,则这个一次函数随的增大而 . 【答案】减小.【例28】已知一次函数()122y m x m =-+-,函数随的增大而减小,且其图像不经过第一象限,则m 的取值范围是___________.【答案】122m <….【例29】下列说法正确的是( )A .若一次函数()212y m x m =-++的图象与y 轴交点纵坐标是3,则1m =±B .若点()()111222P x y P x y ,、,在直线y kx b =+()0k <上,且12x x >,那么12y y > C .若直线y kx b =+经过点()()11A m B m -,,,,当1m <-时,该直线不经过第二象限 D .直线y kx k =+必经过点()10-,【答案】D .【例30】一次函数321+-=x y 的图象与y 轴的交点坐标是______,与x 轴的交点坐标是______. 一般的,一次函数y kx b =+与y 轴的交点坐标是______,与x 轴的交点坐标是______.【答案】03(,);60(,);0b (,); bk -(,0).【变式练习】一次函数21)2y m x m =-++(的图像与y 轴的交点坐标是3,则m 的值是_______. y kx k =+y x ()()1242y y -,,,122y x =-+12y y ,12y y >12y y =12y y <122y x =-+0k <y x y x y x【答案】1-.【例31】已知一次函数y ax b =+的图像经过点()01,,它与坐标轴围成的图形是等腰直角三角形,则a的值为_________.【答案】1±.【例32】函数2y x =的图象与y 轴交于______,而函数23y x =-的图象与y 轴交于______点.因此,函数23y x =-的图象可以看作由直线2y x =向______平移______个单位长度而得到. 当0b >时,直线y kx b =+可由直线y kx =向________平移______而得到; 当0b <时,直线y kx b =+可由直线y kx =向________平移______而得到.【答案】()00,;()03-,;下;3;上;b ;下;b .【变式练习】(1)将直线向右平移2个单位所得的直线的解析式是______________.(2)直线向右平移3个单位,再向下平移2个单位,求所得到的直线的解析式.【答案】(1);(2)【习题1】正比例函数y kx =的图象是经过原点的一条( )A .射线B .双曲线C .线段D .直线【答案】D .【习题2】函数在________条件下,是的一次函数;在_________条件下,与成正比例函数.【答案】时该函数为一次函数;且时该函数为正比例函数.【习题3】已知是一次函数,求它的解析式.【解析】 根据题意可得:,解得,所求一次函数为.【答案】.2y x =22y x =+2(2)24y x x =-=-2(3)2226y x x =-+-=-()2211m y m xmn -=-+y x y x 1m =-1m =-0n =1(2)2m y m xm -=-++1120m m ⎧-=⎪⎨-=/⎪⎩2m =-4y x =-4y x =-课后练习【习题4】已知函数)2()12(232+--=-n x m y m .(1)当m n 、为何值时,其图象是过原点的直线; (2)当m n 、为何值时,其图象是过()04,点的直线;(3)当m n 、为何值时,其图象是一条直线且y 随x 的增大而减小.【答案】(1)12m n =±=-, (2)16m n =±=-, (3)1m n =-,为任何值.【习题5】(1)如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,(2)已知一次函数的图象经过(,)和(,)两点,且,,则( )A .B .,C .,D .(3)已知一次函数,若随的减小而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限(4)如图,一次函数的图象大致是( )【答案】(1)B ;(2)A ;(3)A ;(4)B .【习题6】如图所示,在同一直角坐标系中,一次函数,,,的图像分别是,,,;那么,,,的大小关系是_________________.y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <y kx b =+1x 1y 2x 2y 12x x <12y y <0k >0k <0b >0k <0b <0k <y kx k =+y x 1y ax a=+DC B A OO O O yyyyxxxx 1y k x =2y k x =3y k x =4y k x =1l 2l 3l 4l 1k 2k 3k 4k【解析】.我们探究可以发现:越大,越接近于轴;越小,越接近于轴.在各个象限的增大境况如图所示.【答案】.【习题7】将32y x =-先向左平移3个单位,在向上平移2个单位得到函数解析式为 ;将2433y x =-+先向下平移1个单位,在向右平移2个单位得到的函数解析式为 .【答案】39y x =+;2533y x =-+.【习题8】点()()P a b Q c d ,、,在一次函数5y x =+的函数图像上,则()()a c d b c d ---的值为______.【答案】依题可知,55a b c d +=+=,,()()()()()=5525a c d b c d c d a b ---=---⨯-=.O yxl 4l 3l 2l 1O yxl 4l 3l 2l 12143k k k k <<<k y k x k 2143k k k k <<<。
1、 一元一次方程与一次函数(1) 对于一次函数m ,由它的函数值0y =就得到关于x 的一元一次方程0kx b +=,解这个方程得bx k=-,于是可以知道一次函数m 的图像与x 轴的交点坐标为(0)b k -,; (2) 若已知一次函数m 的图像与x 轴的交点坐标,也可以知道这个交点的横坐标bx k =-,其就是一元一次方程0kx b +=的根.2、 一元一次不等式与一次函数(1) 由一次函数y kx b =+的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式0kx b +>(或0kx b +<)的解集.(2) 在一次函数m 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式0kx b +>(或0kx b +<)的解集.一次函数知识结构知识精讲模块一:一次函数与不等式yx6Oyx-2O 没【例1】 已知一次函数经过(20)A ,和(13)B -,,在直角坐标系中画出函数图像且求在这个一次函数图像上且位于x 轴上方所有点的横坐标的取值范围. 【难度】★【答案】图像如图,2x >. 【解析】图像如图,2x >.【总结】本题考察了一次函数与一元一次不等式的关系.【例2】 已知(0)y kx b k =+≠的函数图像如图所示:(1)求在这个函数图像上且位于x 轴上方所有点的横坐标的取值范围;(2)求不等式0kx b +≤的解集. 【难度】★【答案】(1)6x <; (2)6x ≥. 【解析】(1)由图像可得:6x <; (2)由图像可得:6x ≥.【总结】本题考察了一次函数与一元一次不等式的关系.【例3】 已知(0)y kx b k =+≠的函数图像如图所示:(1)求在这个函数图像上且位于y 轴左侧所有点的横坐标的取值范围; (2)求在这个函数图像上且位于y 轴右侧所有点的纵坐标的取值范围; (3)求2016y x b =-+在y 轴上的截距. 【难度】★【答案】(1)0x <;(2)2y >-;(3)2-. 【解析】(1)由图像可得:0x <; (2)由图像可得:0x >; (3)由图像可得:2b =-∴2016y x b =-+在y 轴上的截距是2-.【总结】本题考察了一次函数与不等式的关系,注意分析清楚题目中所要求的结果.例题解析【例4】已知一次函数解析式是132y x=-.(1)当x取何值时,2y=?(2)当x取何值时,2y>?(3)当x取何值时,2y<?(4)当x取何值时,02y<<?【难度】★★【答案】(1)10x=;(2)10x>;(3)10x<;(4)610x<<.【解析】(1)令1322x-=,解得:10x=;(2)令1322x->,解得:10x>;(3)令1322x-<,解得:10x<;(4)令10322x<-<,解得:610x<<.【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解.【例5】已知函数()31f x x=-+.(1)当x取何值时,()2f x=-?(2)当x取何值时,4()2f x>>-?(3)在平面直角坐标系中,在直线()31f x x=-+上且位于x轴下方所有点,它们的横坐标的取值范围是什么?【难度】★★【答案】(1)1x=;(2)11x-<<;(3)13 x>.【解析】(1)令312x-+=-,解得:1x=;(2)令4312x>-+>-,解得:11x-<<;(3)令310x-+<,解得:13 x>.【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解.【例6】已知方程20(0)ax a-=>的解为4x=,(1)求出函数2y ax=-与x轴的交点坐标;(2)解不等式20ax-≥.【难度】★★【答案】(1)(4,0);(2)4x≥.【解析】由一次函数与方程不等式的关系得:(1)2y ax =- 与x 轴的交点坐标为:(4,0); (2)20ax -≥的解集为:4x ≥.【总结】本题考察了一次函数与方程不等式的关系,本题也可由一次函数的图像或者是函数的性质求得最终结果.【例7】 已知一次函数y ax b =+与y mx n =+交于点(34),,根据其图像回答下列问题:(1)求解不等式组:44ax b mx n +>⎧⎨+≤⎩;(2)求解方程组:y b axmx y n -=⎧⎨=-⎩;(3)求解不等式:ax b mx n +≤+.【难度】★★★【答案】(1)3x >;(2)34x y =⎧⎨=⎩; (3)3x ≤.【解析】由一次函数与方程不等式的关系得:(1)由4ax b +>可得:3x >;由4mx n +≤可得:3x ≥; ∴3x >;(2)y b axmx y n -=⎧⎨=-⎩的解即为两条直线交点坐标,即:34x y =⎧⎨=⎩;(3)ax b mx n +≤+解集为y ax b =+在y mx n =+上方时x 的范围,即3x ≤. 【总结】本题考察了一次函数与方程及不等式的关系,主要是根据图像进行求解.【例8】 当-1≤x ≤2时,函数6y ax =+满足10y <,求出常数a 的取值范围. 【难度】★★★ 【答案】42a -<<.【解析】当0a >时,max 2610y a =+<,解得:2a <; 当0a <时,min 610y a =-+<,解得:4a >-; 当0a =时,66y ax =+=,满足10y <; ∴42a -<<.【总结】本题考察了一次函数的性质,注意解题时要分类讨论.1、 一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质: 当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降.2、 一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限. 把上述条件反过来叙述,也是正确的.(这部分知识概念也可以按照下面表格进行讲解和整理)0b >0b <0b =0k >经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大0k <经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小知识精讲模块二:一次函数的性质【例9】 已知函数:①2y x =-+;② 132y x =+;③ 53y x =;④ 32xy -=;⑤11(1)45y x x =--.在这些函数中,函数值y 随自变量x 的值增大而减小的函数有_______________. 【难度】★ 【答案】①④.【解析】由一次函数的性质,当0k <时,y 随x 的增大而减小,故选①④. 【总结】本题考察了一次函数的性质.【例10】 已知一次函数(32)1y m x m =-++,函数值y 随自变量x 的值增大,而减小.(1)求m 的取值范围; (2)其函数图像经过那些象限?【难度】★ 【答案】(1)32m >; (2)经过一、二、四象限. 【解析】(1)由已知得:320m -<,解得:32m >; (2)此时10m +>,一次函数经过一、二、四象限. 【总结】本题考察了一次函数的性质及图像所过的象限.【例11】 已知点(1)A a -,和(4)B b ,在函数13y x m =-+的图像上,试比较a 与b 的大小. 【难度】★ 【答案】a b >.【解析】由已知得:103k =-<,所以y 随x 的增大而减小,∴a b >.【总结】本题考察了一次函数的性质,也可用特殊值法比较大小.【例12】 完成下列填空:(1) 直线25y x =--是________(填“上升”或“下降”)的,并且与y 轴的______半轴相交,因此这条直线经过第________象限,截距为_______;(2) 直线7(2)y x =-是________(填“上升”或“下降”)的,并且与y 轴的______半轴相交,因此这条直线经过第________象限,截距为_______.例题解析【难度】★【答案】(1)下降,负,二、三、四,-5; (2)上升,负,一、三、四,-14. 【解析】略.【总结】本题考察了一次函数的性质,要熟记不同的情况.【例13】 直线2(1)1y m x m =+++与y 轴的交点坐标是(03),,且直线经过第一、二、四象限,则该直线与x 轴的交点为__________. 【难度】★★【答案】30),.【解析】由已知得:21310m m ⎧+=⎨+<⎩, 解得:m = ∴(1)3y x =+.令0y =,解得:3x =,∴与x 轴的交点坐标是:30),. 【总结】本题考察了一次函数的性质及交点坐标;【例14】 直线2(1)3y m x =--上有两点11()A x y ,和点22()B x y ,,且12x x >,12y y <,则常数m 的取值范围是_______________. 【难度】★★ 【答案】11m -<<.【解析】由已知得:y 随x 的增大而减小, 则210m -<, 解得:11m -<<.【总结】本题考察了一次函数的性质,注意对于一元二次不等式的求解方法.【例15】 已知一次函数y kx b =+的图像是与直线23y x =-平行的直线.(1) 随着自变量x 的值的增大,函数值y 增大还是减小? (2) 直线4y kx =-经过哪几个象限? (3) 直线y kx b =+经过哪几个象限? 【难度】★★【答案】(1)y 随着x 的增大而减小; (2)二、三、四象限; (3)①当0b <时,经过二、三、四象限; ②当0b =时,经过二、四象限; ③当0b >时,经过一、二、四象限.【解析】(1)由已知得:203k =-<,故y 随着x 的增大而减小;(2)∵00k b <<,,经过二、三、四象限; (3)①当0b <时,经过二、三、四象限; ②当0b =时,经过二、四象限; ③当0b >时,经过一、二、四象限. 【总结】本题考察了一次函数的图像及性质的运用.【例16】 已知直线(21)3y m x m =-+,分别根据下列条件求m 的值或m 的取值范围:(1) 这条直线经过原点; (2) 这条直线经过一二四象限; (3) 这条直线不经过第三象限; (4) 这条直线与2 1.5y x =-+平行. 【难度】★★【答案】(1)0m =; (2)102m <<; (3)102m ≤≤; (4)12m =-. 【解析】(1)由已知得:30m =,解得:0m =; (2)由已知得:21030m m -<⎧⎨>⎩,解得:102m <<;(3)由已知得:21030m m -≤⎧⎨≤⎩,解得:102m ≤≤;(4)由已知得:212m -=-,解得:12m =-.【总结】主要考察了一次函数的性质的运用,本题中要特别注意题干中说的是直线,因此包含了常值函数在里面,从而第(3)小问中k 可以为零.【例17】 函数y ax b =+与y bx a =+的图象在同一坐标系内的大致位置正确的是( ).AB CD【难度】★★ 【答案】B【解析】本题型可以将每个选项中两条直线的k 、b 范围写出来,不矛盾即为正确选项, 故选B .【总结】本题考察了一次函数的图像与函数解析式中k 、b 的关系.【例18】 点(1,m ),(2,n )在函数2(963)3(3)y a a x a a =-+-+-≠的图象上,则m 、n 的大小关系是____________. 【难度】★★★ 【答案】m n >.【解析】转化得:2[(31)2]3y a x a =---+-, ∵2(31)20a ---<, ∴y 随x 的增大而减小, ∴m n >.【总结】本题考察了一次函数的性质,注意对比例系数进行配方,从而判定正负性.【例19】 无论p 为何值,除0以外,直线2y px p =+一定经过__________象限. 【难度】★★★ 【答案】二、三.【解析】(1)当0p >时,直线经过一、二、四象限; (2)当0p <时,直线经过二、三、四象限; 故直线一定经过二、三、象限; 【总结】本题考察了一次函数的象限特点.【例20】 不论k 为何值,解析式(21)(3)(11)0k x k y k --+--=表示的函数的图象必过定点,求此定点的坐标. 【难度】★★★ 【答案】(23),.【解析】转化得:(21)3110x y k x y ----+= ∵不论k 为何值,图象必过定点, ∴2103110x y x y --=⎧⎨--+=⎩, 解得:23x y =⎧⎨=⎩,∴定点坐标为:(23),.【总结】本题考察了函数恒过定点的问题,此题型只要令可取任意值的字母系数为零 即可解决.1、一次函数y kx b =+(,k b 为常数,0k ≠)中k 、b 的意义: k (称为斜率)表示直线y kx b =+(0k ≠)的倾斜程度;b (称为截距)表示直线y kx b =+(0k ≠)与y 轴交点是(0,)b ,也表示直线在y 轴上的截距.2、同一平面内,不重合的两直线1(0)a ≠与2(0)a ≠的位置关系: 当1212a a b b =≠,时,两直线平行.当12a a ≠时,两直线相交,交点为方程组1122y a x b y a x b =+⎧⎨=+⎩的解.当12b b =时,两直线交于y 轴上同一点.【例21】 已知一次函数y =kx +b ,y 随x 的增大而增大,且kb <0,指出一次函数的图像经过的象限. 【难度】★★ 【答案】一、三、四;【解析】由已知得:0k >,又kb <0, ∴b <0. ∴一次函数图像经过一、三、四象限.【总结】本题考察了一次函数图像经过的象限的特点.【例22】 若直线1l :23y x =-与直线2l :3y x =-+相交于点P ,(1)求P 点坐标;(2)求1l ,2l 与x 轴所围成的三角形的面积; (3)求1l ,2l 与y 轴所围成的三角形的面积; (4)求1l ,2l 与坐标轴所围成的四边形的面积. 【难度】★★【答案】(1)P (2,1);(2)34; (3)6; (4)274. 【解析】(1)联立:233y x y x =-⎧⎨=-+⎩, 解得:21x y =⎧⎨=⎩, ∴交点坐标为P (2,1);11b x a y +=22b x a y +=例题解析知识精讲模块三:一次函数的性质的总结与运用(2)易得233y x y x =-=-+与分别与x 轴交于(302,)、(3,0), ∴1331224S =⨯⨯=;(3)易得233y x y x =-=-+与分别与y 轴交于(03-,)、(0,3), ∴16262S =⨯⨯=;(4)由题意可知,所求的四边形为图中红色边的四边形,∴1313276322224S =⨯⨯+⨯⨯=.【总结】本题考察了一次函数围成图形的面积,规则图形用公式法,不规则图形用割补法;【例23】 已知:如图,直线PA 是一次函数(0)y x n n =+>的图象,直线PB 是一次函数2(0)y x m m =-+>的图象,其中点Q 是直线PA 与y 轴的交点.(1)用m ,n 来分别表示点P ,A ,B ,Q 的坐标;(2)四边形PQOB 的面积是56,AB =2,试求P 点的坐标,并写出直线PA 与PB 的解析式. 【难度】★★【答案】(1)(0)Q n ,,(0)A n -,,(0)2m B ,,2()33m n m nP -+,; (2)14()33P ,, :1PA y x =+, :22PB y x =-+.【解析】(1)易得:(0)Q n ,,(0)A n -,,(0)2mB ,; 联立:2y x n y x m =+⎧⎨=-+⎩, 解得:323m n x m n y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴2()33m n m n P -+,;(2)由已知得:212152232622m n n m n +⎧⨯⨯-=⎪⎪⎨⎪+=⎪⎩, 解得:21m n =⎧⎨=⎩,∴14()33P ,, :1PA y x =+, :22PB y x =-+.【总结】本题考察了一次函数与几何的综合,综合性较强,解题时注意认真分析. 【例24】 已知一次函数f (x )=ax +2a +1,当11x -≤≤时,f (x )的值有正有负,求a 的取值范围. 【难度】★★★【答案】113a -<<-.【解析】由已知得:(1)(1)0f f -⋅<,∴(1)(31)0a a ++<,解得:113a -<<-.【总结】本题考察了一次函数的性质及根据取值范围得到两个函数值的正负,从而求出不等式的解集.【例25】 已知m 为正整数,直线5214x m y -++=和233my x =-+的交点在第四象限,求这两条直线与x 轴围成的三角形的面积. 【难度】★★★【答案】1140S =.【解析】联立5214233x m y m y x -++⎧=⎪⎪⎨⎪=-+⎪⎩, 解得:2307207m x m y +⎧=>⎪⎪⎨-⎪=<⎪⎩,∵交点在第四象限, ∴可解得:322m -<<, 又∵m 为正整数, ∴1m =.∴534x y -+=和213x y -+=两直线交点坐标为:(5177-,) 两直线与x 轴交点坐标为:(305,),(102,), ∴13111()2527140S =⨯-⨯=.【总结】本题考察了一次函数交点坐标及围成三角形面积的求法.【习题1】已知,直线2(1)2y k x k =-++在y 轴上的截距为4,且y 随x 的增大而增大,则k =_____________.【难度】★ 【答案】2.【解析】∵224k +=,∴22k =, ∴2k =±, ∵10k ->, ∴2k =. 【习题2】若点P (,)a b -在第二象限内,则直线y ax b =-不经过________. 【难度】★随堂检测【答案】第二象限.【解析】由题意可得:00a b>>,,则直线经过一、三、四象限,故不经过第二象限.【总结】本题考察了一次函数图像性质.【习题3】若0bc<,0ab>,则一次函数a cy xb b=--的图像经过第_________象限.【难度】★★【答案】第一、二、四象限.【解析】由题意可得一次函数图像经过一、二、四象限.【总结】本题考察了一次函数的图像的性质.【习题4】已知点A(2)a-,、B(3)b-,在直线(5)2y k x=++上,且a b≥,则k的取值范围是__________.【难度】★★【答案】5k≥-.【解析】∵a b≥,∴y随x的增大而增大,∴50k+≥,∴5k≥-.【总结】本题考察了一次函数的图像的性质及增减性的综合运用.【习题5】根据图中所画的直线1y kx k=--,则一次函数213ky kx k-=+在y轴上的截距为__________,与坐标轴围成的三角形面积为__________.【难度】★★【答案】.【解析】∵211k-=,∴k=由图可知,0k<,∴k=∴213ky kx k-=+=--∴此一次函数在y轴上的截距为【总结】本题考察了一次函数的概念和图像,注意认真分析题目中的条件.【习题6】(1)一次函数(63)24y m x n=-+-不经过第三象限,则m、n的范围是________;(2)直线(63)24y m x n=-+-不经过第三象限,则m、n的范围是_________.【难度】★★【答案】(1)2m >,2n ≥; (2)2m ≥,2n ≥.【解析】(1)∵一次函数图像不经过第三象限,∴630m -<,240n -≥, ∴2m >,2n ≥;(2)∵直线不经过第三象限, ∴630m -≤,240n -≥, ∴2m ≥,2n ≥.【总结】本题考察了函数图像的性质与函数解析式的系数的关系.【习题7】已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:(1)00k b >>,;(2)00k b ><,;(3)00k b <>,;(4)00k b <<,.其中正确的是_________. 【难度】★★ 【答案】(2)、(3).【解析】画图可知(2)、(3)正确.【总结】本题考察了一次函数的图像与函数解析式系数的关系.【习题8】直线111:l y k x a =+,222:l y k x b =+的交点坐标是(1,2),则使1y <2y 的x 取值范围是__________【难度】★★ 【答案】1x <.【解析】由图易得1y <2y 的x 取值范围是1x <. 【总结】本题考察了学生观察、识图的能力.【习题9】若一次函数(0)y kx b k =+≠的自变量x 的取值范围是26x -≤≤,相应的函数值的范围是119x -≤≤,求此函数的解析式,以及其经过哪些象限?【难度】★★★【答案】562y x =-,函数图像经过一、三、四象限;或542y x =-+,函数图像经过一、二、四象限;【解析】由题意易得函数经过点(-2,-11)和(6,9)或者过(-2,9)和(6,-11),∴11296k b k b -=-+⎧⎨=+⎩或 92116k b k b =-+⎧⎨-=+⎩, 解得: 526k b ⎧=⎪⎨⎪=-⎩ 或 524k b ⎧=-⎪⎨⎪=⎩,∴函数的解析式为:562y x =-,函数图像经过一、三、四象限;或542y x =-+,函数 图像经过一、二、四象限.【习题10】已知方程1(0)ax b a -=<的解为x =(1)求出函数1y ax b =--与x 轴的交点坐标; (2)解不等式10ax b --≥;(3)试求函数1y ax b=--与一次函数2(y x =-的交点坐标.【难度】★★★【答案】(10); (2)x ≤; (30). 【解析】观察图像可知.【总结】本题考察了学生对函数的识图能力和与方程的联系.【习题11】如图,直线L :122y x =-+与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (04),,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动. (1)求A 、B 两点的坐标;(2)求△COM 的面积S 与点M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标. 【难度】★★★【答案】(1)A (4,0), B (0,2);(2)S =8-2t (04t ≤<),S =2t -8 (4t >); (3)t =2时,M (2,0); t =6时,M (-2,0). 【解析】(1)易得A (4,0), B (0,2);(2)114422S OM OC t =⋅=-⋅;当04t ≤≤时,82S t =-, 当4t >时,28S t =-;(3)当04t ≤<时,t =2时,M (2,0); 当4t >时, t =6时,M (-2,0). 【总结】本题考察了函数的综合应用.【习题12】一个一次函数图象与直线514y x =-平行,与x 轴、y 轴的交点分别为A 、B , 并且过点(125)--,,则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有哪些?【难度】★★★【答案】(3,-20),(7,-15),(11,-10),(15,-5),(19,0);【解析】设54y x b=+,代入点(125)--,得:5254b-+=-,解得:954b=-,∴该一次函数的解析式为:5954xy-=,转化,得:49541955yx y+==+,∴当y 为5的倍数时,x为整数,∴满足条件的点有:(3,-20),(7,-15),(11,-10),(15,-5),(19,0).【总结】本题考察了一次函数的图像和性质以及对整数点坐标的理解.【习题13】已知:不论k取什么实数,关于x的函数236kx a x bky+-=-(a、b是常数)始终经过点(11),,试求a、b的值.【难度】★★★【答案】724ab⎧=⎪⎨⎪=-⎩.【解析】把(1,1)代入,得:211 36k a bk+--=,化简得:(4)(27)0b k a++-=,∵函数236kx a x bky+-=-(a、b是常数)始终经过点(11),,∴40270ba+=⎧⎨-=⎩,解得:724ab⎧=⎪⎨⎪=-⎩.【总结】本题考察了一次函数恒过点的问题,主要是将问题转化为方程的解为任意实数的问题.课后作业【作业1】已知一次函数y kx b =+的图像交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式___________. 【难度】★【答案】1y x =-+等,不唯一. 【解析】只需要00k b <>,即可. 【总结】本题考察了一次函数的性质.【作业2】(1)已知m 是整数,且一次函数(4)2y m x m =+++的图像不经过第二象限,则m 为__________;(2)一次函数(2)43y a x a =-+-的图像与y 轴的交点在x 轴的下方,则a 的取值范围是__________. 【难度】★【答案】(1)3-; (2)34a <. 【解析】(1)由已知,得:4020m m +>⎧⎨+≤⎩, 解得:42m -<<-,∵m 是整数, ∴3m =-;(2)由已知,得:43020a a -<⎧⎨-≠⎩, 解得:34a <.【总结】本题考察了一次函数的性质,注意对图像不经过第几象限的准确理解.【作业3】已知直线2(0)y mx m m =+<.(1)当x 取何值时,0y =?(2)当x 取何值时,0y >? (3)当x 取何值时,0y <?(4)在m 的取值范围内,直线在平面直角坐标系始终经过哪些象限? 【难度】★★【答案】(1)2x =-; (2)2x <-; (3)2x >-; (4)二、三、四象限. 【解析】(1)令0y =,解得:2x =-; (2)令0y >,解得:2x <-; (3)令0y <,解得:2x >-; (4)易得:图像经过二、三、四象限. 【总结】本题考察了一次函数的图像及性质. 【作业4】已知(0)y kx b k =+≠的函数图像如图所示:(1)求在这个函数图像上且位于x (2)求解不等式0kx b +≥.【难度】★★【答案】(1)5x >-; (2)5x ≤-.【解析】(1)由图像可得:5x >-; (2)由图像可得:5x ≤-. 【总结】本题考察了一次函数与方程、不等式的关系.【作业5】函数y kx k =+与ky x=(0)k ≠在同一坐标系内的图象可能是( ).ABCD【难度】★★ 【答案】C .【解析】本题型可以将每个选项中两条直线的k,b 范围写出来,不矛盾即为正确选项,故选C .【总结】本题考察了一次函数与反比例函数的图像.【作业6】已知一次函数2(3)2y m x m =--+,函数值y 随自变量x 的值增大而减小.(1)求m 的取值范围; (2)其函数图像经过那些象限?【难度】★★【答案】(1)3m >; (2)二、三、四象限. 【解析】(1)由已知得:30m -<,解得:3m >;(2)由已知得:00k b <<,,图像经过二、三、四象限.【总结】本题考察了一次函数的图像及性质.【作业7】已知点(3)a A y ,和(3)b B y -,在函数2(3)y m x m =--+的图像上,试比较a y 与b y 的大小.【难度】★★ 【答案】a b y y <.【解析】由已知得:230k m =--<, ∴y 随x 的增大而减小, ∵33>-, ∴a b y y <. 【总结】本题考察了一次函数的性质的运用.【作业8】k 在为何值时,直线2154k x y +=+与直线23k x y =+的交点在第四象限? 【难度】★★【答案】322k -<<.【解析】联立:215423k x y k x y +=+⎧⎨=+⎩, 解得:23727k x k y +⎧=⎪⎪⎨-⎪=⎪⎩∵交点在第四象限, ∴2307207k k +⎧>⎪⎪⎨-⎪<⎪⎩, ∴322k -<<.【总结】本题考察了一次函数的交点坐标问题.【作业9】画出函数32y x =--的图像,利用图像求:(1)方程320x --=的根; (2)不等式320x --≥的解集; (3)当7y ≤时,求x 的取值范围;(4)当11x -≤≤时,求y 的取值范围; (5)求图像与坐标轴围成的三角形的面积; 【难度】★★【答案】(1)23x =-;(2)23x ≤-;(3)3x ≥-; (4)51y -≤≤;(5)23;【解析】(1)23x =-;(2)23x ≤-;(3)当7y =时,3x =-, ∴7y ≤时,3x ≥-;(4)当1x =-时,1y =; 当1x =时,5y =-; ∴当11x -≤≤时,51y -≤≤;(5)1222233S =⨯⨯=. 【总结】本题考察了一次函数与方程不等式的关系,主要是对函数图像的正确理解.【作业10】已知直线23y mx m m =-++分别根据下列条件求m 的值或m 的取值范围:(1)直线经过(13),;(2)直线经过原点;(3)直线与1y x =-平行; (4)直线在y 轴上的截距4;(5)直线经过一三四象限.【难度】★★【答案】(1)31m =-或;(2)30m =-或;(3)m =(4)41m =-或;(5)30m -<<. 【解析】(1)代入(1,3)得:233m m m -++=,解得:31m =-或;(2)代入(0,0)得:230m m +=,解得:30m =-或;(3)由已知得:m -=,解得:m = (4)由已知得:234m m +=,解得:41m =-或;(5)由已知得:2030m m m ->⎧⎨+<⎩解得:30m -<<. 【总结】本题考察了一次函数的性质,注意对直线过原点的正确理解.【作业11】若一次函数(0)y kx b k =+≠,当31x -≤≤时,对应的函数y 值为19y ≤≤,则一次函数的解析式为_____________.【难度】★★★【答案】27y x =+或23y x =-+.【解析】(1)当0k >时,函数经过(-3,1)和(1,9)时,代入两点得:319k b k b -+=⎧⎨+=⎩ 解得:27k b =⎧⎨=⎩, ∴一次函数的解析式为:27y x =+;(2)当0k <时,函数经过(1,1)和(-3,9)时,代入两点得:139k b k b +=⎧⎨-+=⎩解得:23k b =-⎧⎨=⎩图1图2图3∴一次函数的解析式为:23y x =-+,综上,一次函数的解析式为:27y x =+或23y x =-+.【总结】本题考察了一次函数的图像及性质,注意分类讨论.【作业12】已知2y x =-+与x 轴、y 轴分别交于点A 和点B ,另一直线(0)y kx b k =+≠经 过点(10)C ,,且把△AOB 分成两部分.(1)若把△AOB 被分成的两部分面积相等,求k 、b 的值; (2)若△AOB 被分成的两部分面积之比为1:5,求k 、b 的值.【难度】★★★【答案】(1)22k b =-=,; (2)1133k b =-=,或1122k b ==,. 【解析】(1)如图1,易得:点C 为OA 中点∴BC 分△AOB 被分成的两部分面积相等∴22y x =-+即22k b =-=,;(2)由已知,得:1163AOB S S ∆∆==, ∴13h =. 1º:如图2,直线经过(0,13) ∴1133y x =-+,11,33k b =-=; 2º:如图3,直线经过(5133,) ∴1122y x =-,11,22k b ==; 综上:1133k b =-=,或1122k b ==,. 【总结】本题考察了一次函数的综合运用,注意当涉及到 面积比时,由于没说清楚哪部分大哪部分小,因此要分类 讨论.。