(完整版)高等数学复习资料大全.doc
- 格式:doc
- 大小:1.11 MB
- 文档页数:16
全国教师教育网络联盟专科起点升本科高等数学复习资料目录第一章函数 (1)一、内容提要 (1)二、典型例题 (2)第二章极限与连续 (5)一、内容提要 (5)二、典型例题 (7)第三章导数与微分 (12)一、内容提要 (12)二、典型例题 (14)第四章导数的应用 (18)一、内容提要 (18)二、典型例题 (20)第五章不定积分 (25)一、内容提要 (25)二、典型例题 (26)第六章定积分及其应用 (30)一、内容提要 (30)二、典型例题 (31)第七章多元函数微积分 (34)一、内容提要 (34)二、典型例题 (37)第一章函数一、内容提要1、函数(1)定义:设有两个变量x与y。
当变量x在给定的某一变域中任意取定一值时,另一变量y就按某一确定的法则有一个确定值与x的这个值相对应,那末变量y称为变量x的函数,记作y=f(x)。
(2)定义中两要素:定义域与对应法则。
定义域:自变量x的取值范围。
对应法则:自变量x与因变量y的对应规则。
(3)注意两点:①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。
②在不同区间上用不同数学表达式来表示的函数称为分段函数。
分段函数是一个函数而不是几个函数。
2、反函数(1)定义:设已知y是x的函数y=f(x),如果将y当作自变量,x当函数,则由关系式y=f(x)所确定的函数x=ϕ(y)就叫做函数f(x)的反函数,由于通常总把自变量记作x,函数记作y,因此习惯上称y=ϕ(x)为函数f(x)的反函数,记作f -1(x),而f(x)叫做直接函数。
(2)附注:反函数的定义域与直接函数的值域相同。
3隐函数定义:凡能够由方程F(x,y)=0确定的函数关系,称为隐函数。
4、函数的简单性质有界性,奇偶性,单调性与周期性。
5、复合函数(1)定义:设y是u的函数y=f(u),而u又是x的函数u=ϕ(x),而且当x在某一区间I 取值时相应的u值可使y有定义,则称y是x的一个定义于区间I上的复合函数,记作y=f[ϕ(x)]。
高等数学复习第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学(本科少学时类型)第一章函数与极限第一节函数O函数基础(高中函数部分相关知识)(★★★)O邻域(去心邻域)(★)第二节数列的极限O数列极限的证明(★)【题型示例】已知数列X n,证明limXX n a【证明示例】N语言1•由X n a化简得n g ,N g2.即对0,N g 。
当彳n N时,始终有不等式X n a 成立,••• lim x aX第三节函数的极限O X X0时函数极限的证明(★)【题型示例】已知函数 f x,证明lim fX X0x A【证明示例】语言1•由f x A化简得0XXg ,g2.即对0,g当0XX。
时, 始终有不等式 f x A成立,• lim f x Ax XO X时函数极限的证明(★)【题型示例】已知函数f x,证明lim f X AX【证明示例】X语言1•由 f X A 化简得x gX g2.即对0,X g当X X时,始终有不等式 f x A 成立,• lim f x AX第四节无穷小与无穷大O无穷小与无穷大的本质(★)函数f x无穷小lim f x 0函数f x无穷大lim f xO无穷小与无穷大的相关定理与推论(★★)(定理三)假设f x为有界函数,g x为无穷小,则lim f x g x 0(定理四)在自变量的某个变化过程中,若 f x 为无穷大,则f 1 X为无穷小;反之,若f X为无穷小,且f x 0,则f 1x为无穷大【题型示例】计算:lim f x g x (或x )X X01 .••• f x < M •函数f x在x x0的任一去心邻域U x0,内是有界的;(••• f x < M,•函数f x在x D上有界;)2. lim g x0即函数g X是x X0时的无穷小;X X0(lim g x0即函数g X是X 时的无穷小;)3 .由定理可知lim f x g x 0X X0(lim f x g X0)X第五节极限运算法则O极限的四则运算法则(★★)(定理一)加减法则(定理二)乘除法则关于多项式p x、q x商式的极限运算m m 1p X 设:a°x a1x a mq x b°x n n1b nn m则有lim卫X a0n mX q X t b0n mf X0(特别地,当彳lim(不定型)时,通常分子X X0g x0分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值lim-x 3x 3x29【求解示例】解:1因为x 3,从而可得x 3,所以原式x 3X3 1 1 lim 2lim -limx 3x 9x 3x 3x 3x 3x 3 6x 3其中x 3为函数f X —的可去间断点x29倘若运用罗比达法则求解(详见第三章第二节):x3 °解:lim 2limx 3 X29 L X 3x 3x2 9limx3 2xO 连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数 f x 是定义域上的连续函数, 那么,lim x x o f lim x x X 。
《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。
2、函数极限的性质:(1)唯一性:若极限存在,则唯一。
(2)局部有界性:在极限附近的函数值有界。
(3)局部保号性:在极限附近,函数值的符号保持不变。
(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。
3、极限的四则运算:设、存在,则、也存在,且、、、。
4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。
5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。
(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。
6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。
二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。
2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。
3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。
4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。
5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。
三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。
2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。
高等数学(向量代数—>无穷级数)知识点向量与空间几何向量:向量表示((a^b));向量运算(向量积);向量的方向和投影空间方程:曲面方程(旋转曲面和垂直柱面);直线方程(参数方程和投影方程)平面方程:点法式(法向量)、一般式、截距式;平面夹角和距离直线方程:一般式、对称式(方向向量)、参数式;直线夹角;平面交线(法向量积)切平面和切线:切线与法平面;切平面与法线多元函数微分学多元函数极限:趋近方式,等阶代换偏微分和全微分:高阶微分(连续则可等);复合函数求导(Jacobi行列式);多元函数极值:偏导数判定;拉格朗日乘数法(条件极值)重积分二重积分:直角坐标和极坐标;对称性;换元法三重积分:直角坐标、柱坐标和球坐标;对称性重积分的应用:曲面面积;质心;转动惯量;引力曲线与曲面积分曲线积分:弧长积分;坐标曲线积分(参数方程);格林公式面积积分:对面积积分;坐标面积积分;高斯公式无穷级数级数收敛:通项极限正项级数:调和级数;比较法和比较极限法;根值法;极限法;绝对收敛和条件收敛幂级数:收敛半径和收敛域;和函数;麦克劳林级数(二次展开)Fourier级数:傅里叶系数(高次三角函数积分);奇偶延拓;正弦和余弦级数;一般周期的傅里叶级数矢量分析与场论(空间场基础)方向导数与梯度方向导数:向量参数式;偏导数;方向余弦梯度(grad):方向导数的最值;梯度方向;物理意义(热导方向与电场方向)格林公式:曲线积分—>二重积分;曲线方向与曲面方向全微分原函数:场的还原;折线积分通量与散度高斯公式:闭合曲面—>三重积分;曲面外侧定向;曲面补齐;向量表达(通量)散度(div):通量的体积元微分;物理意义(有源场(电场)) 环流量与旋度斯托克斯公式:闭合曲线—>曲面积分;向量积定向;行列式表达;向量表达;物理意义(环通量)旋度(rot):行列式斯托克斯公式;物理意义(有旋场(磁场))向量代数定义 定义与运算的几何表达 在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++=,,x x y y z z a prj a a prj a a prj a ===模向量a 的模记作aa 222x y z a a a =++和差c a b =+c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量0a ≠,则a ae a=a e 222(,,)=++x y z x y z a a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,coscos y x z a a a aaaαβγ===,cos ,coscos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =⋅,θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=⋅b a叉乘(向量积)b ac ⨯=θsin b a c =θ为向量a 与b 的夹角向量c 与a ,b 都垂直 zyxz y xb b b a a a k j ib a =⨯ 定理与公式垂直 0a b a b ⊥⇔⋅= 0x x y y z z a b a b a b a b ⊥⇔++=平行 //0a b a b ⇔⨯=//y zx x y za a a ab b b b ⇔== 交角余弦两向量夹角余弦ba ba ⋅=θcos222222cos x x y y z zx y z x y za b a b a b a a a b b b θ++=++⋅++投影向量a 在非零向量b 上的投影cos()b a bprj a a a b b∧⋅==222x x y y z zb x y za b a b a b prj a b b b ++=++空间曲面∑:0),,(=z y x F法向量000000000((,,),(,,),(,,))x y z n F x y z F x y z F x y z = 切平“面”方程:000000000000(,,)()(,,)()(,,)()0x x x F x y z x x F x y z y y F x y z z z -+-+-=法“线“方程:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- ),(y x f z = 0000((,),(,),1)x y n f x y f x y =--或0000((,),(,),1)x y n f x y f x y =-切平“面”方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x法“线“方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x 重积分 积分类型计算方法典型例题二重积分()σd ,⎰⎰=Dy x f I平面薄片的质量质量=面密度⨯面积(1) 利用直角坐标系X —型⎰⎰⎰⎰=Dbax x dy y x f dx dxdy y x f )()(21),(),(φφY —型⎰⎰⎰⎰=dcy y Ddx y x f dy dxdy y x f )()(21),(),(ϕϕP141—例1、例3(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单(含22()x y α+,α为实数)21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤0θπ≤≤2πθπ≤≤P147—例5(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)P141—例2应用该性质更方便所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
《高等数学复习》教程第一讲 函数、连续与极限一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法(7)洛必达法则与Taylor 级数法(8)其他(微积分性质,数列与级数的性质) 1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。
高考数学复习资料目录1代数31.1集合 (3)1.2函数与方程 (3)1.3方程与不等式 (4)2数列与级数52.1数列 (5)2.2等差数列 (5)2.3等比数列 (5)3平面解析几何53.1直线方程 (5)3.2圆的方程 (6)3.3椭圆的方程 (6)4立体几何64.1空间几何体 (6)4.2空间向量 (6)5概率与统计75.1概率 (7)5.2统计 (7)6解析几何76.1直线与圆 (7)6.2椭圆 (7)6.3双曲线 (8)7不等式8 8复数88.1复数的定义 (8)8.2复数的运算 (8)8.3复数的模 (8)9线性代数89.1行列式 (8)9.2矩阵 (9)10微积分910.1微分 (9)10.2积分 (9)1代数1.1集合定义:集合是一些确定的、互异的对象的全体。
常见集合的表示方法:•列举法:A={1,2,3}•描述法:B={x|x是大于0的偶数}集合的基本运算:•并集:A∪B={x|x∈A或x∈B}•交集:A∩B={x|x∈A且x∈B}•补集:A c={x|x∉A}UA B1.2函数与方程定义:设A和B是两个非空集合,如果按照某种对应关系f,使对集合A中的任何一个元素x,在集合B中有唯一确定的元素y和它对应,那么称f为从集合A到集合B的一个函数,记作y=f(x),其中x称为自变量,y称为因变量。
常见函数:•一次函数:f(x)=ax+b,a≠0•二次函数:f(x)=ax2+bx+c,a≠0•指数函数:f(x)=a x,a>0,a≠1•对数函数:f(x)=log a x,a>0,a≠1•幂函数:f(x)=x a•三角函数:sin x,cos x,tan x 等函数的性质:•单调性:函数在某区间上是单调递增或单调递减的。
•奇偶性:奇函数f (−x )=−f (x ),偶函数f (−x )=f (x )。
•周期性:存在一个非零常数T ,使得对任意x 有f (x +T )=f (x )。
高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。
(完整版)大学全册高等数学知识点(全)高等数学是一门非常重要的学科,它是数学中最具有挑战性和深度的一门课程。
它的内容包括微积分、线性代数、微分方程和复变函数等专题,这些都是现代科学和技术的核心。
在本文中,我们将会详细介绍高等数学的知识点,以供学习和参考。
微积分微积分被称为数学的两个支柱之一,它是数学的一门核心课程。
微积分最早是由牛顿和莱布尼茨创立的,作为数学中求导和积分的基本工具,微积分与其他领域如物理、工程学和经济学等紧密相关。
微分学和积分学是微积分中最重要的两个分支。
微分学涉及单变量函数的导数和导数的应用,具体包括切线和曲线的斜率、极值和曲线的凹凸性等概念。
积分学则涉及单变量函数的定积分和不定积分,并且与微分学有紧密的联系,例如牛顿-莱布尼茨公式。
多元微积分也是微积分中的一个重要分支。
它包括了多元函数的求导和偏导数,以及多重积分的概念和应用。
多元积分常用于描述物理量在空间中的分布和相互作用关系,如在物理力学、统计学、流体力学和电磁学等领域中。
线性代数线性代数是一种数学分支,涉及线性方程组的解法,向量、矩阵和线性变换的概念及其应用。
线性代数在现代科学和技术中十分普遍,如应用在数学、物理、计算机科学、统计学、工程学等领域。
线性方程组求解是线性代数中的基础概念之一。
矩阵和行列式则是线性方程组求解的核心工具,它们用于表达系数、求解和判断方程组的解。
向量和矩阵在应用中常被用于表示和处理各种数据,如图像、音频、文本等。
除了矩阵和行列式,还有很重要的概念是对称矩阵、特征值和特征向量。
它们与线性变换及其特征相关联,在应用中常被用于描述各种对象的特征或性质。
微分方程微分方程是数学的一个重要分支,它涉及多元函数的微分和积分,具体解释为量的变化随时间或空间的变化规律。
微分方程在物理、生物、经济、工程学等领域中有广泛的应用。
微分方程可分为常微分方程和偏微分方程。
常微分方程只涉及单一自变量的函数和导数,可以分为一阶和二阶微分方程等不同的类型。
大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质2.极限3.连续函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A. 极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与 Taylor 级数法(8)其他(微积分性质,数列与级数的性质)1. lim arctan x x lim arctan x x1( 等价小量与洛必达)x 0ln(1 2x 3 )x 02x 36sin 6x xf ( x) 0,求 lim 6 f ( x)2.已知 lim x 3 x 2x 0x 0lim sin 6x xf ( x)lim 6 cos6xf ( x) xy' 解: x 0x 3 x 03x 2lim 36sin 6x2 y' xy ''216cos 6x3y' ' xy' ''6xlim6xx 0216 3 y' ' (0)0 y' ' (0) 726lim 6 f (x)lim y'lim y' ' 72 36 (洛必达 )xx 2 x 02 xx 0222x 2x3. lim ( )x1(重要极限 )x 1x1a xb x 3) x4.已知 a 、 b 为正常数, 求 lim (2x( a xb x 33[ln( a x解:令 t) x, ln tb x ) ln 2]2 xlim ln tlim3 ( a xln a b xln b)3ln( ab)x 0x0 axb x2 (变量替换 )t (ab )3/ 215. lim (cos x) ln(1 x 2 )x 011解:令 t(cos x) ln(1 x 2 ) ,ln tln(cos x)ln(1 x 2 )lim ln tlimtan x 1 t e 1 / 2 ( 变量替换 )xx2x2x20 f (t)dt6.设 f ' (x) 连续, f (0)0, f ' (0)0 ,求 lim1xxx 2f (t )dt(洛必达与微积分性质 )7.已知 f (x)ln(cos x) x 2 , x 0 a, x0 在 x=0 连续,求 a解:令lim ln(cos ) / 21/ 2(连续性的概念 )a x 0xx三、补充习题(作业)1. lime x 1 x 3 (洛必达 )1 xcos xx2. lim ctgx ( 11) ( 洛必达或 Taylor )xsin x xx2x e t dt3. lim21(洛必达与微积分性质 )e x x 01第二讲 导数、微分及其应用一、理论要求1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解 Roll 、 Lagrange 、 Cauchy 、 Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A. 导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导x arctan tdy1. y y(x)由 2 y ty 2 e t 5 决定,求 dx2. yy(x)由 ln( x2y)x 3y sin x 决定,求dy|x 0 1dx解:两边微分得 x=0 时 y' y cos xy ,将 x=0 代入等式得 y=13. y y(x)由2 xy x y 决定,则 dy |x 0 (ln 21) dxB. 曲线切法线问题4.求对数螺线e 在( , )( e / 2 , / 2) 处切线的直角坐标方程。
x e cos/ 2 (0,e/ 2), y'| / 21解:e sin ,( x, y) |yye / 2x5.f(x) 为周期为 5 的连续函数,它在 x=1 可导,在 x=0 的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。
求 f(x) 在( 6, f(6) )处的切线方程。
解:需求 f (6), f ' (6)或 f (1), f ' (1) ,等式取 x->0 的极限有: f(1)=0lim f (1 sin x) 3 f (1 sin x)x 0sin xsin x tf (1 t) f (1) 3 f (1 t ) f (1) ]lim[t 0t t4 f '(1) 8 f '(1) 2 y 2(x 6)C.导数应用问题6.已知 y f ( x)对一切 x 满足 xf '' ( x) 2x[ f ' (x)]21 e x ,若 f ' (x 0 ) 0(x 0 0) ,求 (x 0 , y 0 ) 点的性质。
解:令 xx 0 代入, f ' '(x 0 ) e x10, x 0e x 0 x 0,故为极小值点。
0, x 07. yx 3(x1) 2 ,求单调区间与极值、凹凸区间与拐点、渐进线。
解:定义域 x( ,1)(1,)y' 0驻点 x 及 x 3y'' 0 拐点x ; x :铅垂; yx:斜0 1 28.求函数 y ( x 1)e/ 2 arctan x的单调性与极值、渐进线。
解:y' x 2 x e / 2 arctan x驻点 x 0与 x1,1 x 2渐: y e ( x 2)与 y x 2D. 幂级数展开问题9.dxsin( x t )2 dtsin x 2dx 0sin(x t)2( x t)21(x t) 6 ( 1)n ( x t ) 2(2n 1)3! (2n 1)!sin(x t ) 2 dt 1 ( x t ) 3 1 7 ( 1) n 1(x t) 4n 1(x t )(4n 1)(2n 1)!3 3!7x1 x 31 x 7( 1)nx 4n 1sin(x t) 23 3!7 (4n 1)(2n 1)!d x2dt x 2 1 x 6 ( 1)n x2( 2n 1)sin x 2dxsin(xt )(2n1)!3!或: x tud2 (du)dx 2 du sin x 2sin udx 0 sin udx x10.求 f ( x) x 2 ln(1 x)在 x 0处的 n 阶导数 f (n )( 0)解: x 2 ln(1x)x 2 (x x 2x 3( 1) n 1x n 2o( x n 2 )23n2=x 3x 4 x 5 ( 1) n1x nn)23n 2 o( xf (n ) (0) ( 1)n1n!n 2E.不等式的证明设x(0,1),11.求证( 1 x) ln 2 (1 x) x 2, 1111 1ln 2ln(1 x)x2证: 1)令 ( x )(1x ) ln 2 (1 ) x 2 , g (0) 0g xg' ( x), g ' '( x), g' ' '( x) 2 ln(1 x)g ' '(0)(1 x) 20, g' (0)x (0,1)时 g ' '( x)单调下降, g' ' ( x) 0, g '( x)单调下降 g' ( x)0, g( x)单调下降, g( x) 0;得证。
2)令 h( x)11, x(0,1), h' ( x) 0,单调下降,得证。
ln(1x)xF.中值定理问题1,1] 具有三阶连续导数,且 f ( 1) 0, f (1)1,12.设函数 f (x)在[f ' (0) 0 ,求证:在( -1, 1)上存在一点 ,使 f ' '' ( )3证: f ( x)f (0) f '(0) x1 f ''(0) x21f ''' ( )x 32!3!其中(0, x), x [ 1,1]0 f ( 1) f (0)1f '' (0)1f ' ' '( 1)将 x=1, x=-1 代入有261f ' '( 0) 11 f (1)f (0)f ' ' ' ( 2 )2 6两式相减: f '' '( 1)f ' '' ( 2)6[ 1, 2 ], f ''' ( )1f '' '( 2 )]3[ f '''( 1 )213. e ab 2 2b ln 2a4a)e ,求证: ln2 (bf (b) f (a)e 证:Lagrange :f '()b a令 f ( x)ln2x,ln 2b ln 2 a 2 lnb a令 (t )ln t, '(t ) 1 ln t( )(e 2 ) ln2tt 2e 2ln 2b ln 2a4 a)(关键:构造函数)2 (be三、补充习题(作业)1. f ( x)ln 1 x ,求y'' (0)31 x2 2x e t sin 2t 在 (0,1)处切线为 y 2x 12.曲线e t cos2t y3.y x ln( e1)( x 0)的渐进线方程为 y x 1xe4.证明 x>0 时 ( x 2 1) ln x( x 1) 2证:令 g( x)( x 21) ln x( x 1) 2, g ' ( x), g' ' (x), g' ' ' (x)2( x 2 1)x3g (1) g' (1) 0, g' ' (1) 2 0x (0,1), g'' ' 0, g'' 2g'' 0 x (0,1), g' 0 0x(1, ), g'' ' 0, g '' 2x (1, ), g' g第三讲 不定积分与定积分一、理论要求1.不定积分掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部)2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值二、题型与解法A.积分计算B.积分性质1.dx dxarcsinx 2Cx(4 x) 4 ( x 2)2 22. e2 x (tan x 1)2 dx e2x sec2 xdx 2 e2 x tan xdx e2 x tan x C3.设f (ln x)ln(1 x),求 f (x)dxx解:f (x)dxln(1 e x )dxe xe x ln(1 e x ) (1e xx ) dx x (1 ex) ln(1 e x ) C1 e4.arctanxdx1lim b1 x)dx11 2arctanx |11(2ln 2 x x b x 1 x 4 25. f (x) 连续,(x) 1 f ( xt ) dt 且limf ( x) A ,求( x) 并讨论'( x)0 xx 0在 x 0 的连续性。