双曲线知识点总结
- 格式:docx
- 大小:56.31 KB
- 文档页数:4
双曲线的基本知识点双曲线的基本知识点有哪些双曲线的基本知识点如下:1.双曲线定义:在平面内,设$F_{1}、F_{2}$是双曲线$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$($a,b$是实数且$a>0,b>0$)的焦点,若$F_{1}F_{2}=2c$,则称$F_{1}F_{2}$为双曲线的焦距。
2.定义法证明:(1)设$P$点是双曲线$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$($a,b$是实数且$a>0,b>0$)的左支上的一点,$F_{1}$是双曲线的左焦点,若$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$,则$PF_{1}-PF_{2}=2a$ 双曲线的基本知识点整理双曲线的基本知识点整理如下:1.双曲线定义:平面内与两定点的距离之差的绝对值等于常数的点的轨迹叫做双曲线。
双曲线知识点总结中职一、概念与性质1. 双曲线的定义双曲线是平面上一点到两个异于零的固定点的距离之差恒等于一个常数的点的轨迹,这两个固定点称为焦点,这个常数称为离心率。
2. 双曲线的性质(1)双曲线有两个焦点和两条相交的渐近线。
(2)双曲线分为两支,分别是向外开口和向内开口的。
(3)双曲线的离心率大于1。
(4)双曲线的对称轴是连接两个焦点的直线。
(5)双曲线的两个分支之间的距离随着到两个焦点的距离的增加而增加。
二、标准方程1. 双曲线的标准方程(1)椭圆的标准方程为:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 或 $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$(2)双曲线的标准方程为: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 或 $\frac{x^2}{b^2} - \frac{y^2}{a^2} = -1$2. 根据焦点和离心率确定双曲线(1)确定焦点和离心率,可以确定双曲线的形状。
(2)根据焦点和离心率的不同取值,双曲线有向内开口和向外开口之分。
三、相关定理1. 双曲线的渐近线双曲线的渐近线是通过双曲线的两个焦点,并且与双曲线的两支分别相切的两条直线。
双曲线的渐近线的斜率分别为$\pm\frac{b}{a}$。
2. 双曲线的对称性双曲线关于$x$轴、$y$轴和原点对称。
双曲线的参数方程为:$\left\{\begin{array}{l}x = a \cosh t\\y = b \sinh t\end{array}\right.$或$\left\{\begin{array}{l}x = a \sinh t\\y = b \cosh t\end{array}\right.$四、相关公式1. 双曲函数的定义双曲函数是一组超越函数,包括双曲正弦函数、双曲余弦函数、双曲正切函数等。
双曲函数和三角函数有许多相似的性质和公式。
双曲线知识点总结abc一、双曲线的定义双曲线是平面上的一种曲线,它有两个独立的渐近线,这两条渐近线之间的曲线是称为双曲线。
通常我们用两个焦点F1和F2以及一个正实数c来定义一个双曲线。
具体来说,双曲线是满足以下条件的点P的轨迹:PF1 - PF2 = c。
双曲线可以分为两种类型:椭圆双曲线和双曲双曲线。
椭圆双曲线有两个焦点和一个实数c,而双曲双曲线有两个焦点和一个虚数c。
接下来我们将分别介绍这两种双曲线的性质。
二、双曲线的性质1. 对称性:双曲线是关于其中心对称的。
2. 渐进线性:双曲线有两条渐近线,它们在双曲线的两个分支上分别作为渐进线。
3. 椭圆双曲线的焦点:椭圆双曲线有两个焦点,它们的距离等于2c。
4. 双曲双曲线的焦点:双曲双曲线也有两个焦点,只不过它们是虚数的。
5. 原点与直线的位置关系:双曲线的两条分支可以穿过x轴和y轴,也可以都在其中一个轴的同一侧。
6. 双曲线的方程:双曲线的一般方程是(x/a)^2 - (y/b)^2 = 1,其中a和b分别是横轴和纵轴的长度。
三、双曲线的图形特征双曲线的图形特征与其方程相关。
通过调整方程中参数的值,我们可以得到不同形状的双曲线。
例如,当a>b时,双曲线的中心位于x轴上;当a<b时,双曲线的中心位于y轴上。
双曲线的图形特征还包括焦点、渐近线、顶点等。
焦点是双曲线的固有属性,它们对于双曲线的形状起着决定性作用。
渐近线是双曲线的近似线,它们与双曲线的曲线有一个相同的极限。
顶点是双曲线的两个分支的交点,它是双曲线的特征点。
四、双曲线的应用双曲线在数学、物理、工程和经济等领域都有着广泛的应用。
在数学领域,双曲线是一种重要的曲线,它可以用来研究曲线的性质和方程。
在物理领域,双曲线可以描述一些物理现象,例如声波的传播,光线的折射等。
在工程领域,双曲线可以用来设计一些工程结构,例如天桥的弧度等。
在经济领域,双曲线可以用来描述一些经济现象,例如消费的增长速度等。
双曲线1.定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数 1212||||||2,(2||2)MF MF a a F F c -=<=的点的轨迹称为双曲线.。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上图形定义1212||||||2,(2||2)MF MF a a F F c -=<=标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)1c e e a ==>渐近线方程b y x a=±a y x b=±特点 x,y 的系数一正一负,那个的分母为正数焦点就在那条轴上2.实轴和虚轴等长的双曲线称为等轴双曲线.1.椭圆22219x y m +=与双曲线2213x y m -=有相同的焦点,则实数m 的值为( )A .2B .2-C .3-D .42. 双曲线221916x y -=的离心率为( ) A .35 B .45 C .53D .543.双曲线22149x y -=的渐近线方程是( ) A .321x y ±= B .231x y ±= C .230x y ±=D .320x y ±=4.已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53BC .54D 5.若双曲线22221x ya b-=的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )AB .5CD .26.已知点,F A 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左焦点、右顶点,点(0,)B b 满足FB AB ⊥,则双曲线的离心率为( )A B 1 C . D 1 7. 过设双曲线2222:1(0,0)x y C a b a b-=>>的右顶点作x 轴的垂线,与C 的一条渐近线交于点A ,若以C 的右焦点为圆心,半径为4的圆经过,A O 两点(O 为原点),则双曲线的方程是( )A .221412x y -= B .22179x y -= C .22188x y -= D .221124x y -= 8.若双曲线22221x y a b -=的一条渐近线方程为03xy +=,则此双曲线的离心率为_______.9.已知以原点O 为中心,0)F 为右焦点的双曲线C 的离心率e =. (1)求双曲线C 的标准方程及其渐近线方程;。
一、双曲线的定义1、第一定义:21212F F a PF PF <=-(a >0))。
注意:(1)距离之差的绝对值。
(2)2a <|F 1F 2|当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在。
当a=0时,轨迹为两定点连线中垂线。
2、第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)二、双曲线的标准方程(222a b c +=,其中|1F 2F |=2c ,焦点位置看谁的系数为正数)焦点在x 轴上:12222=-b y a x (a >0,b >0);焦点在y 轴上:12222=-b x a y (a >0,b >0)焦点不确定时:)0(,122<=+mn ny mx ;与椭圆共焦点的双曲线系方程为:与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x ()22b k a <<-) 与双曲线12222=-b y a x 共渐进线(x a by ±=)的双曲线系方程是)(,2222o by a x ≠=-λλ三、特殊双曲线: 等轴双曲线:(实虚轴相等,即a=b )1、形式:λ=-22y x (0λ≠); 2、离心率2=e ; 3、两渐近线互相垂直,为y=x ±;; 4、等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项。
共轭双曲线:(以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线) 1、有共同的渐近线;2、共轭双曲线的四个焦点共圆; 3、离心率倒数的平方和等于1。
四、几何性质:范围、对称性、顶点、离心率、渐近线 五、相关性质:1、点与双曲线的位置关系:2、中点弦的存在性3、以PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)4\若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的切线方程是00221x x y y a b -=.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.5、双曲线22221x y a b -=(a >0,b >o )的焦点角形的面积为2tan212PF F b S ∠=6、以焦点弦PQ 为直径的圆必与对应准线相交.7、点P 处的切线PT 平分△PF 1F 2在点P 处的内角.8、设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce a αγβ==±- 9、已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -1,F 1、F 2是162x -202y =1的焦点,其上一点P 到F 1的距离等于9则P 到焦点F 2的距离. 172.双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则 △PF 2Q 的周长是 .3.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是22y -42x=14.已知21,F F 是双曲线的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为35.过点A (0,2)可以作_4__条直线与双曲线x 2-42y =1有且只有一个公共点6.过点P (4,4)且与双曲线x 216-y 29=1只有一个交点的直线有3条7.若116922=-y x 上点P 满足64||||21=•PF PF (321π=∠PF F 或),求31621=∆PF F S 8.动点与两定点连线斜率之积为正常数时,动点的轨迹为?9.若)0,5(),0,5(C B -是三角形ABC 的顶点,且A C B sin 53sin sin =-,求顶点A 的轨迹 10.圆M 与圆2)4(:221=++y x C 外切,与圆2)4(:222=+-y x C 内切,求M 轨迹11.已知双曲线的渐近线方程是2x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 12.求与8222=+y x 有公共焦点的双曲线,使它们交点为顶点的四边形面积最大为 2813求与64422=+y x 有公共焦点,且渐近线为03=-y x 的双曲线为1123622=-y x 14.12222=-b y a x 左支一点P 到左准线l 距离为d ,若d, |||,|21PF PF 成等比,求e 范围15.C :12222=-by a x 右顶点为A ,x 轴上一点Q (2a,0),若C 上一点P 使0=•PQ AP ,求e 范围16. 渐近线方程为43y x =,则该双曲线的离心率e 为53或5416. 已知双曲线的右顶点为E ,双曲线的左准线与该双曲线的两渐近线的交点分别为A 、B 两点,若∠AEB=60°,则该双曲线的离心率e=217. 设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为218.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M 、N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解析: (1)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).双曲线C 的方程为x 23-y 2=1.(2)联立⎩⎪⎨⎪⎧y =kx +m x 23-y 2=1整理得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0Δ=12(m 2+1-3k 2)>0,可得m 2>3k 2-1且k 2≠13①设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0).则x 1+x 2=6km 1-3k 2,x 0=x 1+x 22=3km 1-3k 2,y 0=kx 0+m =m1-3k 2. 由题意,AB ⊥MN ,∵k AB =m1-3k 2+13km 1-3k 2=-1k (k ≠0,m ≠0). 整理得3k 2=4m +1 ②将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-14. ∴m 的取值范围是⎝⎛⎭⎫-14,0∪(4,+∞). 19.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3((1)求双曲线C 的方程;1322=-y x (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围. )1,33()33,1(⋃-- 19直线l :1+=kx y 与双曲线C :1222=-y x 的右支交于不同的两点A 、B 。
双曲线经典知识点总结双曲线是解析几何中的一种重要曲线,是一对非重叠又对称的曲线组成,它有着丰富的性质和应用。
在数学、物理和工程等领域都有广泛的应用。
本文将通过对双曲线的定义、性质、参数方程、极坐标方程以及相关的应用等方面进行详细的总结和解释。
一、双曲线的定义和基本性质1. 双曲线的定义双曲线定义是平面直角坐标系中满足以下方程的点的轨迹:\[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\]其中a和b是正实数且a≠b。
当a>b时,曲线称为右双曲线;当a<b时,曲线称为左双曲线。
2. 双曲线的基本性质(1)对称性:关于x轴、y轴和原点对称。
(2)渐近线:右双曲线的渐近线为y=±\frac{b}{a}x,左双曲线的渐近线为y=±\frac{a}{b}x。
(3)焦点和准线:右双曲线的焦点为F_{1}、F_{2}(c,0),准线方程为x=c;左双曲线的焦点为F_{1}、F_{2}(0,c),准线方程为y=c。
(4)离心率:离心率ε定义为,ε=\frac{\sqrt{a^2+b^2}}{a}。
二、双曲线的参数方程和极坐标方程1. 双曲线的参数方程(1)右双曲线的参数方程:\[\begin{cases}x=a\text{sec}t \\y=b\tan t\end{cases}\]其中t为参数。
(2)左双曲线的参数方程:\[\begin{cases}x=a\text{csc}t \\y=b\cot t\end{cases}\]其中t为参数。
2. 双曲线的极坐标方程(1)右双曲线的极坐标方程:\[r=\frac{b}{\sin\theta}\](2)左双曲线的极坐标方程:\[r=\frac{a}{\cos\theta}\]三、双曲线的相关应用1. 数学方面双曲线广泛应用于解析几何、微积分、微分方程等数学领域。
在微积分中,双曲线的导数和积分形式复杂,常作为综合练习的一部分。
高考双曲线知识点总结一、双曲线的定义和性质1. 双曲线的定义双曲线是平面上的一类曲线,其定义为到两个定点的距离之差的绝对值等于常数的点的集合。
2. 双曲线的性质(1)双曲线的标准方程双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(横轴为实轴)或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(纵轴为实轴)。
其中,a和b分别为横轴和纵轴半轴的长度。
(2)双曲线的对称性双曲线关于x轴、y轴、原点对称。
(3)渐近线双曲线有两条渐近线,分别是x轴和y轴。
(4)焦点和直焦距双曲线的焦点定义为到两个定点的距离之差的绝对值等于常数的点的集合。
焦点之间的距离称为直焦距。
(5)双曲线的渐近线双曲线有两条渐近线,分别是x轴和y轴。
双曲线与它的渐近线有如下关系:a)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$时,它的渐近线是x=±a,当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=-1$时,它的渐近线是y=±b;b)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}<1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}<1$时,它的渐近线是y=ax或x=ay;c)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}>0$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}>0$时,它的渐近线是没有。
(6)四条特殊的双曲线内离心双曲线,外离心双曲线,右开弧双曲线,左开弧双曲线。
二、双曲线的图像与方程1. 双曲线的图像(1)当$a>b$时,双曲线的图像为两支开口朝左右的曲线,焦点在横轴上。
双曲线的基本知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!双曲线的基本知识点双曲线的基本知识点大全一般的,双曲线(希腊语“Υπερβολία”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
初中双曲线知识点
双曲线是初中数学中的一个重要概念,以下是一些关于双曲线的知识点:
1. 定义:双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
也可以定义为平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的点的轨迹。
定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。
2. 性质:双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。
双曲线有两条过中心的渐近线,其交点位于双曲线的对称中心。
双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂,对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。
3. 方程:在平面直角坐标系中,如果二元二次方程
F(x,y)=Ax^2+Bxy+Cy^2+Dx+Ey+F=0满足一定条件,则其图像为双曲线。
以上是关于双曲线的一些基本知识点,包括其定义、性质和方程。
掌握这些知识点有助于更好地理解和应用双曲线的概念。
双曲线知识点指导教师:郑军一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
双曲线知识点总结
一.双曲线的定义及其性质
1. 定义:平面上到两定点F 1(-c,0) ,F 2(c,0)的距离之差等于定值2a(a<c)点的集合。
2. 求轨迹的方法:
(1)设点的坐标 ;(2)找条件 ;(3)代入点的坐标,列等式;(4)化简;(5)检验。
3. 双曲线的标准方程及其性质 (1)双曲线的方程
标准方程:122
22=-b
y a x (若x 的系数为正,则焦点x 在轴上;若x 的系
数为负,则焦点在y 轴上)
共焦点双曲线的方程: 122
2
2=--+m b y m a x ; 共离心率双曲线的方程: 12
2
22=-mb y ma x 共渐近线的双曲线的方程:λ=-22
22b
y a x
(2)性质: ①c 2=b 2+a 2;
②e=a c =2
222221⎪⎭
⎫ ⎝⎛+=+=a b a b a a c
或e=a
c =
a c
22=a
R R R PF PF F F sin sin )sin(sin 2sin 2sin 22121-+=-=-ββααβθ
③当PF 2⊥x 轴时,|PF 2|=a
b 2
④若点P (x 0,y 0)在双曲线122
22=-b
y a x 上,则过点P 与双曲线相切的直
线方程为
12020=-b
y
y a x x ; ⑤若点P (x 0,y 0)双曲线上任一点,以PF 1为直径的圆一定与x 2+y 2=a 2相切。
二.双曲线的焦点三角形
(1)若|PF 1|=m , |PF 2|=n , ∠F 1PF 2= Θ ;
mn=θcos 122-b ),[2
+∞∈b ;θθcos 1cos 2-=
b n m ),[2+∞-∈b ;S∆PF 1F 2=2
tan 2θb .
证明如下:
①(2c)2=m 2+n 2-2mncosΘ=(m -n)2-2mn(1-cosΘ)=4a 2+2mn(1-cosΘ)
⇒
mn=θcos 122
-b
②S∆PF 1F 2=21mnsinΘ=
2
tan 2sin 22cos
2
sin
2cos 1sin 2212
222
θθθ
θ
θθ
b b b ==
-
三.双曲线的中点弦
(1)AB 是不平行于对称轴的弦,P 是AB 的中点,则K AB K OP =b 2/a 2 (2)若A 、B 关于原点O 对称,P 是椭圆上异于A 、B 的任一点,则K PA K PB =b 2/a 2
(3)A 、B 为渐近线上的两点,P 是AB 的中点则K AB K OP =b 2/a 2 (4)A 、B 为渐近线上关于原点O 对称的两点,P 为渐近线上任一点,则K PA K PB =b 2/a 2。
四.双曲线的其他结论
1. 双曲线中,点P 处的切线PT 平分∆PF 1F 2在点P 处的内角。
2. 双曲线中,以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切。
(内切:P 在右支;外切:P 在左支)
3. 双曲线的焦半径公式:
当点P (x 0,y 0)在右支上时,|PF 1|=ex 0+a,|PF 2|=ex 0-a; 当点P (x 0,y 0)在左支上时,|PF 1|=ex 0+a,|PF 2|=ex 0-a; 4.
过双曲线焦点F 的直线与双曲线交于P 、Q 两点,A 双曲线实轴上的顶点,连接AP 、AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF 。
5. 过双曲线一个焦点F 的直线与双曲线交于P 、Q 两点,A 1、A 2双曲线实轴上的顶点,A 1P 、A 2Q 交于点M ,A 2P 、A 1Q 交于点N ,则MF ⊥NF 。
6.若P0(x 0,y 0)在双曲线内,则被P0所平分中点弦的方程
22
2
202020b y a x b y y a x x -=-
7.若P0(x 0,y 0)在双曲线内,则过P0的弦中点的轨迹方程是
20202222b y y a x x b y a x -=-
8.双曲线的两个顶点为A 1(-a,0) A 2(a,0),与y轴平行的直线交双曲线于
P 1P 2时,A 1P 1与A 2P 2的交点轨迹方程是122
2
2=+b y a x
9.过双曲线上任一点A (x 0,y 0)任意作两条倾斜角互䃼的直线交双曲
线于BC 两点,则K BC =02
02y a x b -
10.若P 为双曲线上右支(左支)上异于端点的任一点,F 1F 2双曲线
的焦点,∠PF 1F 2=a,∠PF 2F 1=β,则2cot
2tan β
a a
c a c =+- 11.P 为双曲线上任一点,F 1F 2为两焦点,A 为双曲线内一定点,|AF 2|-2a ≤|PA|+|PF 1|当且仅当A 、F 2、P 三点共线时且P 、F 2、A 在y 轴同侧时等号成立。
12.双曲线122
2
2=-b y a x 与直线Ax+By+C=0有公共点的充要条件是
A 2a 2-
B 2b 2 ≦
C 2
13.已知双曲线122
2
2=-b y a x ,(b>a>0),O 为坐标原点,PQ 为双曲线上两动点,且OP ⊥OQ ,则(1)22
221
1||1||1b a OQ OP -=+(2)|OP |2+|OQ |2的最大值为22224a b b a -(3)S∆OPQ 的最小值为2
222a b b a -。
14.过双曲线122
22=-b y a x 的右焦点F 2作直线交该双曲线右支于MN 两点,弦MN 的垂直平分线交x轴于P,则2||||2e
MN PF =
15.设A ,B 为双曲线长轴的两端点,P 为双曲线上的一点,∠PAB =a,∠PBA =β,∠BPA = Y,c,e 分别双曲线的半焦距和离心率,则有:
|PA|=|cos ||cos |22222Y c a a ab -; tanatan β =1-e 2
; S ∆PAB =γcot 2222
2a b b a +
16.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直。