11数模转换与模数转换接口
- 格式:ppt
- 大小:1.52 MB
- 文档页数:126
模数(A/D)和数模(D/A)转换模数(A/D)和数模(D/A)转换11.1模数转换和数模转换概述11.1.1一个典型的计算机自动控制系统一个包含A/D和D/A转换器的计算机闭环自动控制系统如图11.1所示。
传感器μV,mV控制传感器放大滤波几伏放大滤波多路开关MU某采样保持S/H模拟A/D数字I/O转换接口计算机对象执行部件多路开关MU 某模拟D/A数字I/O转换接口图11.1典型的计算机自动控制系统在图11.1中,A/D转换器和D/A转换器是模拟量输入和模拟量输出通路中的核心部件。
在实际控制系统中,各种非电物理量需要由各种传感器把它们转换成模拟电流或电压信号后,才能加到A/D转换器转换成数字量。
一般来说,传感器的输出信号只有微伏或毫伏级,需要采用高输入阻抗的运算放大器将这些微弱的信号放大到一定的幅度,有时候还要进行信号滤波,去掉各种干扰和噪声,保留所需要的有用信号。
送入A/D转换器的信号大小与A/D转换器的输入范围不一致时,还需进行信号预处理。
在计算机控制系统中,若测量的模拟信号有几路或几十路,考虑到控制系统的成本,可采用多路开关对被测信号进行切换,使各种信号共用一个A/D转换器。
多路切换的方法有两种:一种是外加多路模拟开关,如多路输入一路输出的多路开关有:AD7501,AD7503,CD4097,CD4052等。
另一种是选用内部带多路转换开关的A/D转换器,如ADC0809等。
若模拟信号变化较快,为了保证模数转换的正确性,还需要使用采样保持器。
在输出通道,对那些需要用模拟信号驱动的执行机构,由计算机将经过运算决策后确定的控制量(数字量)送D/A转换器,转换成模拟量以驱动执行机构动作,完成控制过程。
第11章模数(A/D)和数模(D/A)转换28711.1.2模/数转换器(ADC)的主要性能参数1.分辨率它表明A/D对模拟信号的分辨能力,由它确定能被A/D辨别的最小模拟量变化。
一般来说,A/D转换器的位数越多,其分辨率则越高。
数模转换与模数转换数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
【关键字】精品第7章数-模转换与模-数转换第1讲数-模转换一、教学目的:1、数模转换的基本原理。
2、理解常见的数模转换电路。
3、掌握数模转换电路的主要性能指标。
二、主要内容:1、数模转换的定义及基本原理2、权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数3、DAC主要性能指标三、重点难点:权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数。
四、课时安排:2学时五、教学方式:课堂讲授六、教学过程设计复习并导入新课:新课讲解:[重点难点]权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数,逐次逼近型A/D转换器、双积分型A/D转换器的电路结构特点、工作原理及其主要技术参数。
[内容提要]本章介绍数字信号和模拟信号相互转换的基本原理和常见转换电路。
必要性与意义:自然界中,许多物理量是模拟量,电子系统中的输入、输出信号多数也是模拟信号。
而数字系统处理的数字信号却具有抗干扰能力强、易处理等优点;利用数字系统处理模拟信号的情况也越来越普遍。
由于数字系统只能对数字信号进行处理,因此要根据实际情况对模拟信号和数字信号进行相互转换。
随着计算机技术和数字信号处理技术的快速发展,在通信、自动控制等许多领域,常常需要将输入到电子系统的模拟信号转换成数字信号后,再由系统进行相应的处理,而数字系统输出的数字信号,还要再转换为模拟信号后,才能控制相关的执行机构。
这样,就需要在模拟信号与数字信号之间建立一个转换接口电路—模数转换器和数模转换器。
A/D转换定义:将模拟信号转换为数字信号的过程称为模数转换(Analog to Digital),或A/D转换。
能够完成这种转换的电路称为模数转换器(Analog Digital Converter),简称ADC。
D/A转换定义:将数字信号转换为模拟信号的过程称为数模转换(Digital to Analog),或D/A转换。
第12章 数模(D/A)转换与模数(A/D)转换接口§12.1 D/A转换器接口D/A(Digit to Analog)和A/D(Analog to Digit)转换是计算机与外部世界联系的重要接口。
在一个实际的系统中,有两种基本的量——模拟量和数字量。
外界的模拟量要输入给计算机,首先要经过A/D转换,才能由计算机进行运算、加工处理等。
若计算机的控制对象是模拟量,也必须先把计算机输出的数字量经过D/A转换,才能控制模拟量。
D/A和A/D转换的具体电路已经在数字电路课程中讲述。
本章主要介绍如何把D/A 和A/D转换的芯片与CPU进行接口以及用CPU控制这些转换的软件编程如何实现。
12.1.1 CPU与8位D/A芯片的接口D/A转换通常是由输入的二进制数的各位控制一些开关,通过电阻网路,在运算放大器的输入端产生与二进制数各位的权成比例的电流,经过运算放大器相加和转换而成为与二进制数成比例的模拟电压。
若CPU的输出数据要通过D/A转换变为模拟量输出,当然要把CPU数据总线的输出连到D/A的数字输入上。
但是,由于CPU要进行各种信息的加工处理,它的数据总线上的数据是不断地改变的,它输出给D/A的数据只在输出指令的几个微秒中出现在数据总线上。
所以,必须要有一个锁存器,把CPU输出给D/A转换的数据锁存起来,直至输送新的数据为止。
一个最简单的D/A芯片与CPU的接口电路如图12-1所示。
其中,以锁存器74100作为CPU与D/A转换之间的接口。
CPU把74100作为一个输出端口,用地址27H来识别,则CPU输给D/A的数据要用一条I/O写(即输出)指令来实现。
图12-1的电路可应用于许多场合,例如:(1) 驱动一个侍服电机;(2) 控制一个电压—频率转换器(用于锁相环路);(3) 控制一个可编程的电源;(4) 驱动一个模拟电表。
12.1.2 8位CPU与12位(高于8位的)D/A转换器的接口1.一种12位D/A转换芯片这里介绍一种12位D/A转换片子DAC1210。