CDMA基站基于北斗GPS双模授时的试验(厦门介绍)
- 格式:ppt
- 大小:2.21 MB
- 文档页数:15
CDMA系统一.概述CDMA (Code Division Multiple Access)称作码分多址。
在CDMA通信系统中,不同用户传输信息所用的信号不是靠频率不同或时隙不同来区分的,而是用各不相同的编码序列来区分的。
或说是靠信号的不同形来区分的。
从频域或时域观察,多个CDMA信号是互相重叠的。
码分多址是以扩频技术为妹础,所谓扩频是把信息的频谱扩展到宽带中进行传输的技术。
CDMA信号的产生包括调制和扩频两个步骤,可以先用待传送的信息比特刈•载波进行调制,再用伪随机系列(PN)扩展信号的频谱,也可以先用伪随机系列为待传送的信息比特相乘, 把信息的频谱扩展后,再对载波进行调制。
这两种方式是等效的。
适用于CDMA系统的扩频技术是直接序列扩频(DS),这巾CDMA系统称作直接序列扩频CDMA 系统(DS-CDMA)o在直接序列扩频CDMA系统中,所有用户(或称信道)工作在相同的中心频率上,用户信息信号与高速率的伪随机码序列(PN序列或称码字)相乘得到宽带信号。
不同的川户使用不同PN序列。
这些PN序列相互正交,利用PN序列来区分不同的用户,如图0—1所示。
得到的宽带信号再去调制载波信号的某个参量。
▲玛字图0—1 DS—CDMA示意图接收端要从收到的扩频信号中恢复出它携带的信息,必须经过解扩和解调两个步骤。
解扩就是接收端以与发送端相同的PN序列与接收到的扩频信号相乘,恢复出原频带信号;解扩后的信号再经过常规的解调,即可恢复出其中传送的信息。
二.DS-CDMA移动通信原理图0-2为DS-CDMA移动通信系统原理框图。
系统中采用包含N个正交的PN序列CI, C2,…,6作为地址码,分别与信码dl,d2,…,dn相乘或模2加实现扩频调制。
信码速率fb (单位:b/s,比特/秒)、丿謹月Tb=l/fb;地址码速率fp (单位:c/s,子码/秒或码片/秒)、翩Tp=l/fp, 地址码序列每周期包含p个子码元,序列周期T = pT p.通常设置(0-1)(0-2)式中,K为正整数。
北斗授时系列产品解决方案一、引言北斗授时系统是基于北斗卫星导航系统的时间服务,通过北斗卫星信号传输时间信息,为用户提供高精度、高可靠的时间服务。
本文将详细介绍北斗授时系列产品的解决方案,包括产品概述、技术原理、应用场景和优势。
二、产品概述1. 北斗授时模块北斗授时模块是一种集成了北斗卫星接收器和授时芯片的小型设备。
它通过接收北斗卫星信号并解算时间信息,为用户提供准确的时间服务。
该模块具有高灵敏度、低功耗和稳定性强的特点,可广泛应用于智能电表、物联网设备等领域。
2. 北斗授时终端北斗授时终端是一种集成了北斗授时模块和显示屏的设备。
它可以通过显示屏直观地显示当前时间,并支持与其他设备的通信,实现时间同步功能。
该终端适用于各种场景,如办公室、学校、医院等,为用户提供精准的时间服务。
三、技术原理北斗授时系统基于北斗卫星导航系统,利用北斗卫星信号传输时间信息。
具体实现过程如下:1. 北斗卫星信号接收:北斗授时模块通过天线接收北斗卫星信号,并将信号传输给授时芯片。
2. 信号解算:授时芯片对接收到的北斗卫星信号进行解算,计算出当前的时间信息。
3. 时间同步:北斗授时终端通过与授时模块的通信,获取准确的时间信息,并实现时间同步功能。
四、应用场景北斗授时系列产品在以下场景中具有广泛的应用:1. 智能电表:北斗授时模块可以集成到智能电表中,为电表提供准确的时间信息,实现电费计量和电力调度等功能。
2. 物联网设备:北斗授时终端可以与物联网设备进行通信,为设备提供精准的时间同步,确保设备之间的数据同步和协同工作。
3. 金融系统:北斗授时系统可以应用于金融系统中,为交易系统提供准确的时间戳,确保交易的顺利进行。
4. 航空航天领域:北斗授时系统可以应用于航空航天领域,为飞行器提供精确的时间服务,确保飞行器的导航和通信系统正常运行。
五、产品优势北斗授时系列产品具有以下优势:1. 高精度:北斗授时系统通过北斗卫星信号传输时间信息,具有高精度的特点,可以满足各种应用场景的时间需求。
基于低轨卫星互联网的双模通信终端技术目录一、摘要 (2)二、内容概括 (2)三、双模通信终端技术原理 (3)1. 低轨卫星互联网技术 (5)2. 双模通信终端技术概念 (6)四、低轨卫星互联网技术 (7)1. 低轨卫星互联网发展现状 (9)2. 低轨卫星互联网的优势与挑战 (10)五、双模通信终端技术 (11)1. 双模通信终端技术原理 (12)2. 双模通信终端技术分类 (14)六、基于低轨卫星互联网的双模通信终端设计 (15)1. 硬件设计 (16)a. 天线设计 (17)b. 信号处理模块 (18)c. 电源管理模块 (20)2. 软件设计 (21)a. 系统软件 (21)b. 应用软件 (23)c. 数据传输协议 (24)七、基于低轨卫星互联网的双模通信终端实现 (26)1. 系统硬件选型与集成 (27)2. 系统软件开发与调试 (28)3. 系统测试与验证 (28)八、结论与展望 (30)1. 双模通信终端技术的优势与应用前景 (30)2. 未来发展趋势与研究方向 (32)一、摘要本文档重点探讨了基于低轨卫星互联网的双模通信终端技术,低轨卫星互联网以其高速度、广覆盖、低延迟的特点在现代通信领域起到了不可替代的作用。
双模通信终端技术作为实现陆基与卫星网络无缝连接的关键,整合地面通信网络与传统卫星通信网络的优势,显著提高了通信系统的灵活性和可靠性。
本文主要介绍了双模通信终端技术的概念、设计原理、技术难点以及实现方式,同时探讨了其在现代通信领域的应用前景,特别是在偏远地区通信、应急通信以及全球互联网连接等方面的潜在价值。
本文旨在为相关领域的研究人员和技术开发者提供理论基础和实践指导,推动基于低轨卫星互联网的双模通信终端技术的进一步发展。
二、内容概括本文档主要围绕“基于低轨卫星互联网的双模通信终端技术”涵盖了该技术的背景、发展现状以及未来可能的应用前景。
在背景方面,随着全球互联网的快速普及和扩展,网络覆盖范围和通信质量的需求持续提升。
北斗卫星导航系统空间信号授时设计分析摘要北斗卫星导航系统是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。
北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。
随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。
关键词:卫星导航系统;精准授时;卫星定位;北斗系统目录摘要 (1)第1章绪论 (1)1.1 课题研究背景 (1)1.2 理论概述 (1)第2章北斗系统 (2)2.1北斗一号 (2)2.2北斗二号 (2)第3章授时分析 (3)3.1基本概念 (3)3.2授时原理 (3)3.3北斗授时 (5)第4章误差分析 (6)第5章总结 (6)参考文献 (8)第1章绪论1.1 课题研究背景中国北斗卫星导航系统(英文名称:BeiDou Navigation Satellite System,简称BDS)是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。
北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。
2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空。
北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。
北斗授时系统原理北斗授时系统是中国自主研发的全球卫星导航系统,它的授时功能是北斗系统的基本功能之一。
北斗授时系统的原理是利用卫星导航定位和钟差传播原理,通过北斗卫星提供的授时信号进行时间同步。
北斗授时系统利用了北斗卫星的导航定位信号,该信号由各个卫星以无线电波的形式广播到空中,并通过接收器接收到地面接收机。
接收机将接收到的导航定位信号进行处理,计算出接收机与卫星之间的距离差,并结合卫星的位置信息,通过三角定位原理计算出接收机的位置坐标。
在北斗授时系统中,授时信号是通过卫星导航信号广播到接收器的。
卫星上搭载高精度原子钟,它的稳定性和准确性能够满足时间同步的需求。
卫星将原子钟的时间信息以与导航定位信号相分离的方式进行广播。
接收器接收到授时信号后,将其与接收到的导航定位信号进行对比,计算出信号传播的时间差,从而得到接收机当前的时间。
授时信号的传播过程受到大气等环境因素的影响,因此需要进行误差校正。
北斗授时系统中,采用了差分授时的方法进行误差校正。
差分授时是以参考站的时间为准,通过与参考站的比对来校正接收机的时间。
参考站位于已知位置,并且配备有高精度的原子钟,可以提供准确的时间信息。
接收器与参考站进行通信,将接收到的授时信号与参考站的时间进行比对,计算出二者之间的时间差,并通过校正算法对接收器的时间进行校正。
通过北斗授时系统,可以实现广域的时间同步功能。
北斗卫星以多颗星座布局在不同的轨道上,覆盖范围广阔,可以提供全球性的北斗导航服务。
授时信号的广播范围与导航信号保持一致,因此可以实现全球范围内的时间同步。
北斗授时系统具有高精度、高稳定性的特点,可以满足各种领域的时间同步需求。
总之,北斗授时系统是利用北斗卫星导航定位信号和授时信号进行时间同步的系统。
它通过卫星导航定位信号计算接收机的位置,利用授时信号与参考站的时间进行差分校正,实现时间同步功能。
北斗授时系统具有全球覆盖范围和高精度的特点,可以应用于多个领域,满足各种时间同步需求。
北斗卫星导航系统常识简介一、北斗卫星导航系统现状中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。
是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。
北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。
北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。
北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。
一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。
中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。
2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。
北斗导航系统是覆盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。
北斗卫星系统已经对东南亚实现全覆盖。
该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。
特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。
北斗产业应用前景广阔,预计到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到40%以上。
北斗卫星导航RTK 定位技术在铁路通信铁塔北斗卫星导航RTK 定位技术在铁路通信铁塔作者:***来源:《科技资讯》2023年第24期摘要:通过自带基准站并利用北斗实时动态载波相位差分定位技术(Real-Time Kinematic,RTK)对铁路通信铁塔发生的水平位移、铁塔垂直度、塔基沉降进行连续不断测量和监控,解决以往铁塔监测系统误报、漏报率高、设备故障率高以及安装难度高、安装要求苛刻等施工难题,通过野外环境实验数据表明其精度满足中国铁路总公司发布的《铁路通信铁塔监测系统》(Q/CR 851—2021)標准要求。
关键词:北斗卫星 RTK 定位技术双差分铁塔监测系统中图分类号: U285 文献标识码: A 文章编号: 1672-3791(2023)24-0036-04铁塔作为铁路工程的一个重要组成部分,是承载铁路无线通信的组成部分,是保障铁路运输安全的重要基础设施。
目前铁路通信铁塔数量多、分布广,且铁塔高度较高(一般可达50 m),离铁路线路距离较近(一般不超过10 m),如遇到地质变化、恶劣天气、老化氧化、人为破坏等情况时,会给铁塔带来严重的安全隐患,甚至造成铁塔倾斜、倒塌,导致通信网络中断或者影响机车正常通行[1]。
目前铁路既有线的铁塔维护机制主要有两个方向:一是传统的定期巡检、人为观测;二是依赖自动化铁塔监测系统。
前者需要大量人力、物力,且无法及时、准确获取监测数据,后者通过在铁塔上安装若干倾角、沉降传感器来对铁塔自身姿态及环境信息进行采集,能实时获取数据消除的安全隐患,但监测精度无法达到铁路标准,且安装环境较为苛刻。
为提高监测精度和可靠性,本文基于北斗卫星RTK 定位技术,对铁路通信铁塔监测系统进行设计研究。
1 北斗卫星导航系统北斗卫星导航系统,是我国自主研发的全球卫星导航定位系统。
它由一系列卫星、地面监测站和用户终端组成,是能够为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要时空基础设施,是继美国的GPS 和俄罗斯的GLONASS 之后第三个建成并投入使用的卫星导航系统[2]。
北斗授时系列产品解决方案一、背景介绍北斗导航卫星系统是中国自主研发的全球卫星导航定位系统,具有全天候、全天时、全球覆盖的特点。
北斗系统不仅可以提供精确定位和导航服务,还可以提供高精度的时间信号,即北斗授时。
北斗授时在许多领域有广泛的应用,如金融、通信、电力、交通等。
为了满足市场需求,我们提供了一系列的北斗授时产品解决方案,以匡助客户实现高精度的时间同步。
二、解决方案介绍1.北斗授时接收器北斗授时接收器是我们提供的核心产品之一。
该接收器能够接收北斗卫星发射的时间信号,并将其转化为标准的时间格式输出。
接收器具有高灵敏度、高稳定性和高精度的特点,能够在各种复杂的环境中正常工作。
同时,接收器还支持多种接口,如RS232、RS485、Ethernet等,方便与其他设备进行数据交互。
2.北斗授时服务器北斗授时服务器是将北斗授时接收器与网络技术相结合的产品。
该服务器能够接收多个北斗授时接收器的时间信号,并通过网络将时间信号分发给其他设备。
服务器具有高性能的处理能力和稳定的数据传输能力,能够满足大规模的时间同步需求。
同时,服务器还支持多种时间同步协议,如NTP、PTP等,以适应不同的应用场景。
3.北斗授时终端北斗授时终端是我们提供的一种便携式设备,用于实现个人或者小范围内的时间同步。
终端具有小巧轻便的特点,携带方便。
用户只需将终端与北斗卫星建立连接,即可获取高精度的时间信号。
终端还支持蓝牙和Wi-Fi等无线通信方式,方便与其他设备进行数据交互。
4.北斗授时应用软件为了更好地满足客户的需求,我们还提供了一套北斗授时应用软件。
该软件能够实时监测北斗授时产品的工作状态,并提供相应的管理和配置功能。
用户可以通过软件对北斗授时产品进行灵便的控制和调整,以满足不同场景下的时间同步需求。
三、解决方案优势1.高精度:北斗授时产品具有高精度的特点,能够满足各种精确时间同步的需求。
2.稳定性:北斗授时产品采用先进的技术和材料,具有高稳定性,能够在各种复杂环境下正常工作。
最强中国北斗芯每三百万年差一秒铷钟授时应用在哪?现代社会的许多方面都对高精度授时提出了应用需求,如电网运行、移动通信、高速数字通信、金融计算机网络安全,数字化广播电视网—电信网—计算机网络三网融合、航空航天、卫星发射及监控、军用通信网络、预警雷达网、多兵种武器协同作战、智能化交通、地质、测绘、导航、气象、科学计量、减震救灾和国家安全等。
我们先了解下北斗授时北斗卫星授时可以提供全天候、全球性、高效快速、高精度的标准时间信息,而且噪音干扰等极小。
但面对GPS授时技术,设备占领我国90%以上的卫星授时用户市场,我国自主研发的北斗卫星导航系统及授时应用担负着重大使命。
北斗系统时钟通过星载高精度原子钟和UTC时间同步,地面用户北斗接收机接收到来自卫星的时钟信号后,即可完成高精度时间的传递,满足日常生活中的各种时间需求。
其具体的授时方式,一般有单站法(几个卫星对一个UTC)、单星共视法(一个卫星对多个UTC)、多星共视法等(多个卫星对多个UTC)。
单站法授时简单,设备需求量少,授时精度为50纳秒,多用于对精度要求不高的场景。
单星共视法和差分信号差不多,能够抵消多项共模传输误差,可以达到20纳秒的精度。
多星共视法类似于单星共视法,也可以抵消多项共模误差,定时精度为5纳秒。
目前,应用于通信、电力、金融行业的高精度授时主要采用第三种方式,实现区域、铁道站点高精度的时间同步。
电信网同步与移动通信无线通信系统属于基站同步系统,基站建无线信道的帧同步及基站切换、漫游都需要精确的时间控制。
当基站时钟精度误差超过限定的纳秒级,会导致基站间用户切换失败,出现打电话掉线、通话质量下降、串线等。
当基站时钟精度在规定时间内没有恢复,基站会退出服务导致基站内的用户服务中断,手机掉线,这就是我们为什么部分地区一上午都没有网络,而移动公司说“升级”的原因。
可见,一个可靠和高精度的时钟源对移动通信来说,非常重要。
目前,大部分的通信采用GPS 作为基站同步时钟,但是由于受美国限制,存在自主性差、安全性低的问题,同时由于系统没有备份,可能导致GPS工作异常时,通信质量受到影响,为保证满足自主5G无线通信系统对时间同步的要求与国际安全需要,现在的4G\5G中加入北斗授时技术来解决GPS在不可用的情况下网络通信系统授时同步问题。
基于GPS和北斗双模同步的高精度频率源对时的设计摘要:近年来,社会进步迅速,我国的科学技术的发展也有了改善。
电力系统事故分析需要对系统故障前后的电压与电流数据、保护装置和断路器动作顺序及某一时刻波形进行分析,这些事故能否准确及时分析,取决于是否有统一、精度高的时间同步信号。
随着电力系统可靠性要求越来越高,GPS 授时系统抗干扰能力、安全性、授时连续性及可靠性低的问题不断凸显出来。
自 2003 年 5 月,我国将第三颗“北斗一号”成功送入太空,标志着我国成为第三个拥有完善卫星导航定位系统的国家。
目前,我国正建设“北斗二代”系统,该系统由静止轨道上 5 颗卫星和非静止轨道上 30 颗卫星组成,可满足我国各个行业发展需要。
关键词:GPS;北斗双模同步;高精度频率源对时;设计引言预计 2020 年全球将进入 5G 时代,在 5G 时代人们可以享受千倍提速的网络、通信等服务,这些便利的服务要求时钟系统具有极高的准确性和稳定性,对时钟精度要求甚至达到纳秒级别,并且各个系统都要求达到严格的时间同步。
卫星授时是目前主流的时间同步技术,其中美国的全球卫星导航系统(GPS)技术最为成熟,凭借覆盖面广、精度高等特点成为了卫星授时的首选。
但是GPS 归美国政府所有,由美国军方开发和控制,存在着故意降低精度的可能,甚至在战争等不确定因素下可能导致中国等其他地区不能使用 GPS 服务,对国内各种 GPS应用造成了潜在隐患。
1各功能模块设计BDS/GPS 双模授时系统采用模块化设计,由以下几个部分组成:1)标准信号接收单元。
该单元通过对外部输入的多路径标准信号(空间时间信号和有限传输时间信号)进行信号质量判别及进度测试,对信号优先级进行排序或通过人为操作控制,为系统提供标准时间信号和信息。
2)时间信号产生单元。
该单元是系统核心部件,由频率驯服组件和时间信号产生组件组成。
频率驯服组件通过标准信号和本地频率源信号进行频率比的测量,以获得频率误差;时间信号产生组件是将已驯服的内部频率源和标准接收单元时间信息合成产生本地各种时间信号和信息,如IRIG - B、NTP、1PPS、1PPM、1PPH 等。
北斗卫星对时原理
北斗卫星对时原理是指利用北斗卫星系统的时钟精度与稳定性,通过接收北斗卫星信号并计算信号传输时间差,进而确定接收地点与卫星之间的距离,从而实现对时操作。
北斗卫星系统的原理是基于GPS卫星系统的,通过众多卫星的协同,能够提供高精度的时间与空间定位服务。
其中,北斗卫星系统的主导星座是IGSO和MEO两个星座,它们分别绕地球轨道运行,它们与地球表面的接收站之间的距离会不断发生变化。
在接收到北斗卫星信号后,接收器会记录下信号的接收时间,并与卫星信号的发射时间进行对比,计算信号的传输时间差。
同时,接收器还会记录下接收卫星信号的位置信息,通过三角定位的原理,可以计算出接收站与卫星之间的距离。
最终,通过对时操作,可以实现对接收站的时间精度和稳定性的提升。
总之,北斗卫星对时原理是基于卫星信号传输时间差的计算,通过利用卫星系统的时钟精度与稳定性,可以实现对接收站的时间精度和稳定性的提升。
- 1 -。
CDMA移动通信系统成果简介CDMA技术是第三代移动通信关键技术,东南大学移动通信国家重点实验室自一九九三年开始从事CDMA移动通信系统理论及事实上现技术的研究,是国内最早从事CDMA技术研究的单位之一,先后承担国家八六三CDMA移动通信方面的重大科技攻关项目七项,领先在国内研制出具有自主知识产权的IS-95 CDMA 移动台、IS-95 CDMA实验基站,实现了实验样机与商用CDMA设备无线互联互通。
实验室还成功开发了cdma2000-1x移动台及基站实验系统。
目前,实验室CDMA课题组与东大通信技术有限责任公司共同开发研制cdma2000-1x移动台及基站专用芯片。
高速公路不停车自动收费系统成果简介该系统是东南大学毫米波国家重点实验室自主开发的高速公路自动收费系统,拥有完全独立自主的知识产权。
整个系统由车载收费卡、收费站收发信机、主控运算机设备等组成,有主、被动两种工作模式。
重点解决了收费卡低电压、低功耗工作:突发数据的发送和接收:车辆首尾相接串行通过时的识别,以及相邻车道之间的干扰等关键问题。
该系统不仅可应用于高速公路、专用公路、桥梁和隧道的收费站,进行过往车辆的收费外,还能用于公路交通流量统计,车辆信息治理,以及违章车辆的监控等。
本系统的突出优点有:1、采纳微波信道传输信息,能够全天侯工作(不受雨、雾、雪等阻碍);2、采纳专门编码技术和判决纠错手段,提高了抗干扰能力,降低了误码率;3、数据调制速率高,承诺通过车速高达120公里/小时;4、车载收费卡成本低廉,寿命长;5、采纳微波辐射定向操纵技术和突发传送体制,具有多车道操纵能力;6、系统扩充及兼容性能好。
能够依照需要在任意多个收费站之间联网。
新型通信用宽带印刷天线阵成果简介该新型集成化宽带印制天线阵列为8元圆形阵列,由一种新型宽带印制天线作为差不多阵列单元构成。
8个阵列单元排列在一圆柱金属反射面四周。
其中圆形阵列单元由4个新型宽带双偶极子型差不多天线单元形成一直线阵,并通过并合式功率分配网络馈电而成。
GPS、GAL I LEO、BDS、GLONA S S四大卫星定位系统得论述一、基本介绍>G P S数量:由24颗卫星组成。
轨道:髙度约20 2 0 0公里,分布在6条交点互隔6 0度得轨道而上。
精度:约为1 0米。
用途:军民两用。
进展:1 9 9 3年全部建成,正在实验第二代卫星系统,计划发射2 0颗。
>GLONASS数量:2 4颗卫星组成:精度:10米左右;用途:军民两用:进展:目前已有17颗卫星在轨运行,计划2 008年全部部署到位。
>GALILEO数量:30颗中高度圆轨道卫星组成,2 7颗为工作卫星,3颗为候补:轨道:高度为2 4 1 26公里,位于3个倾角为56度得轨道平而内;精度:最高精度小于1米;用途:主要为民用;进展:2 0 05年12月28日首颗实验卫星已成功发射,预计20 08年前可开通泄位服务.>BDS数量:3颗卫星组成,2颗为工作卫星,1颗为备用卫星:用途:军民两用;进展:前两颗分别于2 0 0 0年与2003年发射成功。
二、系统组成❖空间部分>GPS : GPS得空间部分就是由24颗卫星组成(2 1颗工作卫星;3颗备用卫星),它位于距地表2 0 200km得上空,均匀分布在6个轨道面上(每个轨逍面4颗),轨道倾角为55°。
卫星得分布使得在全球任何地方、任何时间都可观测到4颗以上得卫星,并能在卫星中预存导航信息,GPS得卫星因为大气摩擦等问题;随着时间得推移,导航精度会逐渐降低>GLONASS:GLONASS系统采用中髙轨逍得24颗卫星星座,有2 1颗工作星与3颗备份星,均匀分布在3个圆形轨道平而上,每轨道面有8颗,轨道高度H = 1 900 0km, 运行周期T=llh 1 5min.倾角i=64、8 ° .>GALILEO:如下图所示,3 0颗中轨道卫星(MEO )组成Gal i leo得空间卫星星座。
卫星均匀地分布在高度约为2 3616km得3个轨道面上,每个轨道上有10颗,苴中包括一颗备用卫星,轨道倾角为56° ,卫星绕地球一周约14h22min,这样得布设可以满足全球无缝隙导航立位.卫星得设汁寿命为20年,每颗卫星都将搭载导航载荷与一台搜救转发器.卫星发射采用一箭多星得发射方式,每次发射可以把5颗或6颗卫星同时送入轨道。
全面GPS授时优化解决方案贾思远;孙伟【摘要】针对GPS系统目前存在的工程施工,以及可能出现的天线遮挡以及接收机缺陷等问题,提出了全面的GPS授时优化解决方案.【期刊名称】《电信工程技术与标准化》【年(卷),期】2010(023)009【总页数】4页(P16-19)【关键词】GPS授时优化;GPS/北斗光纤拉远;卫星授时失步告警;失步检测【作者】贾思远;孙伟【作者单位】中国移动通信集团公司,北京,100032;中国移动通信集团公司,北京,100032【正文语种】中文【中图分类】TN961 引言TD-SCDMA是要求严格同步的移动通信系统,目前TD-SCDMA系统采用美国全球定位系统GPS进行授时同步,但GPS授时系统存在一些需要考虑的问题,如施工不灵活、拉远受限以及安全性等问题。
针对这些问题,中国移动提出了基于时间同步的GPS替代方案,具有主流性的方案是基于有线网络时钟的1588v2以及我国自主研发的北斗卫星授时系统。
但由于1588v2还出于试验阶段,而且目前测试中发现一些需要改进的问题;以及北斗一代干扰问题突出的一些原因,GPS替代的两种主流方案还未大规模实施。
所以必须找到可以解决GPS施工、拉远受限以及安全问题目前切实有效的优化方案。
另一方面,由于目前GPS替代方案还未大规模实施,现网建设中存在由于射频馈线拉远受限等问题,导致很多卫星天线将就安装的场景,有可能导致卫星天线接收信号遮挡等问题,所以需要完备的卫星接收机和基站时钟运行和告警机制。
不仅可以保证卫星信号接收出现问题时基站工作不受影响,而且可以一定时间内以合理预警机制使得以最快速度发现并且解决问题。
2 全面的GPS授时优化解决方案针对GPS目前存在的问题,中国移动组织设备厂商首创了GPS/北斗光纤拉远解决方案,从根本上解决了传统GPS授时系统存在的一系列问题;而且提供了完备的GPS失步保持及告警机制,保证了TD-SCDMA系统授时功能更加完善可靠;另外,即使出现几率极低的接收机或者基站时钟缺陷,不能预警GPS失步问题,基站系统还完备了TD-SCDMA系统同步跑偏检测方案,可以及时准确检测出跑偏基站,防止出现上行干扰。