当前位置:文档之家› 北斗+GPS光纤拉远授时系统

北斗+GPS光纤拉远授时系统

北斗+GPS光纤拉远授时系统
北斗+GPS光纤拉远授时系统

GPS/北斗光纤拉远授时系统有效解决TD-SCDMA基站选址难题

中国移动建设运营的第三代移动通信TD-SCDMA-SCDMA网络是严格要求同步的

TD-SCDMAD系统,目前基站的时间同步由单一GPS授时系统实现。传统GPS授时系统,

由于拉远距离、工程施工和抗干扰能力等受限因素,限制了TD-SCDMA系统采用BBU+RRU 光纤拉远分布式基站的优势发挥,在TD-SCDMA站址选择日益困难的现状下,进一步加剧

基站选址的难度,已经成为TD-SCDMA站址选址的瓶颈。

在TD-SCDMA网络工程建设中,TD-SCDMA站址选择成为基站建设的重点问题,需主

要克服以下几点:首先,GPS天线与基站BBU侧的接收机通过射频馈线连接,射频馈线较

粗而且韧性差不易弯曲,其工程施工的难度限制了BBU与天面的拉远距离,极大地降低了BBU机房选址的灵活性;其次,射频馈线的信号衰减性限制了GPS射频信号的传输距离,拉远距离为百米之外就需要增加线路补偿放大器,加装放大器既增加了故障维护点又加大了施工难度,进一步加大新增站址的BBU机房选址灵活性;另外,GPS卫星系统属于美国军方,将使TD-SCDMA系统的正常运行受制于人,非常情况下,卫星系统一旦关闭或受干扰,TD-SCDMA系统将工作紊乱和瘫痪,整网安全存在很大隐患。

在TD-SCDMA网络建设过程中,GPS授时系统的替代解决方案一直是中国移动研究的

课题之一,大唐移动与中国移动持续加强创新合作,面对网络工程建设中的实际问题,推出了GPS/北斗双模一体化光纤拉远授时系统解决方案。该方案采用GPS/北斗双模一体化设计,相比传统GPS授时系统在拉远距离、工程实施、抗干扰能力、美化天面外观、安装维护便

捷性等方面有明显的优势,可实现TD-SCDMA系统天线和GPS/北斗天线的共抱杆安装,给GPS/北斗天线布放及基站选址提供了极大的灵活性,有效解决了网络建设中的基站选址难题,满足运营商快速建网的需求。

GPS/北斗光纤拉远授时系统解决工程施工难题

针对传统GPS单一授时系统普遍存在的传输距离受限、施工困难、易受干扰及安全隐

患的问题,为适应更广泛的布站场景,本方案采用GPS/北斗双模一体化设计,并且采用光

纤拉远的方法有效解决工程施工中传输距离受限和施工困难的难题。一体化GPS/北斗光纤

拉远授时系统方案,就是在天面部分将GPS/北斗天线与接收机进行一体化设计,接收机输

出的PPS与TOD信息通过光纤拉远的方法传输给基站机房内的BBU,BBU时钟恢复模块恢复PPS和TOD信息,并且传送到BBU需要同步的模块。基站设计不再需要考虑接收机的类型(GPS/北斗)、型号、厂家、尺寸等一系列问题,只需要基站和拉远接收机有相同的标

准接口和时间传输机制(如图1所示)。

图1 GPS/北斗光纤拉远拉远授时示意图

另外,为了解决TD-SCDMA网络共址建设中的干扰问题,该系统还采用频域滤波和空域滤波的方案,频域滤波采用在天线低噪放内部加装高选择性滤波器抑制带外干扰,而空域滤波则采用螺旋天线为基本技术的天线,有效抑制带内干扰。螺旋天线的特点是方向性好,增益高,频带宽,尤其是频带宽这点对GPS和北斗共用一组天线提供了条件,各种参数容易控制(如:波束宽度、增益、阻抗、轴比),器件的一致性好,便于生产调试等。图2

为普通GPS天线与螺旋GPS天线的波瓣对比图,螺旋天线对带内干扰有很强的抑制作用。

图2 普通GPS天线和圈数为4的螺旋天线波瓣对比图

系统方案优势突出

工程实施便利,解决了传输距离受限问题

传统GPS授时系统传输距离非常有限,在工程勘察设计中往往由于需要考虑天线与基站之间的距离,给基站选址及GPS天线布放选址都提出了很大的限制条件,一体化GPS/北斗光纤拉远授时系统采用光电混合缆进行传输,最少可以传输1公里,如采用就近取电的方

式可使光纤拉远至10公里,这从根本上解决了传统GPS因传输距离受限影响基站选址的难题。另外,GPS拉远光纤可与RRU拉远光纤同时铺设,给工程施工提供了极大的便利性,大大节约了施工时间和成本,尤其适合于高层建筑、地铁隧道以及大型场馆、机场等机房与GPS天线距离较远的覆盖场景。

抗干扰能力增强,增加了共址建设的可操作性

一体化GPS/北斗光纤拉远授时系统综合采用频域滤波和空域滤波的天线设计方案,可以极大地提高TD-SCDMA系统的授时精度以及抗干扰性能。试验表明,在GPS工作频点1575.42MHz附近,一体化授时系统接收机比传统GPS授时系统的抗干扰能力最大能提高28dB以上,可实现与TD-SCDMA天线的共抱杆安装,大大增加共址建设的比例。而我国自主研发的北斗卫星授时系统目前的工作频段为2492MHz,极易受到工作在2.4GHz频段的WIFI系统的干扰,经现网测试验证,一体化授时系统可有效抑制北斗系统接收机的带外及带内干扰,这给北斗授时系统替代GPS授时系统起到了极大的推动作用。

图3 使用一体化北斗授时系统的输出噪声频谱图

可以作为传统GPS授时系统的重要替代方案之一

传统GPS授时系统的替代方案一直以来都是中国移动TD-SCDMA系统改进的重点研究方向。当前可以采用的GPS替代方案主要包括我国自主研发的北斗卫星系统授时方案以及1588V2有线网络同步组网方案。两种GPS授时替代方案都可以解决目前TD-SCDMA授时系统存在的工程施工问题及基站选址问题,考虑到1588V2同步组网方案需要手动对时钟偏差进行非对称性补偿设置,这将大大增加后期的维护工作量,且现网未大规模实施验证,在商用进程上尚不确定。而一体化GPS/北斗光纤拉远授时系统是目前可以有效解决

TD-SCDMA基站选址及工程施工问题的切实可行方案,该方案可加大北斗替代GPS系统的推进力度,也可作为1588V2同步组网方案的授时时钟源或授时备份系统,将在TD-SCDMA 建网中发挥着重要的作用。

稳定的大范围现网应用

大唐移动在业内首创推出了GPS/北斗光纤拉远授时系统解决方案,该系统解决方案自2009年提出以来,已在现网进行了充分的验证测试及试商用。2009年,该系统在江苏南京进行了20个基站站点的规模组网验证测试及应用,完成了在现网第一个实现TD-SCDMA天

线与GPS/北斗天线共抱杆安装的测试与应用,以及现网第一个北斗授时基站的应用,所有基站至今运行稳定,性能良好。2010年,大唐移动首次为江苏某市移动提供了2套商用产品的应用服务,并在中移动研究院的主导下,率先完成了商用产品的全部测试用例,有效解决了该移动公司基站选址难、尤其是室内分布系统勘察设计选址难的问题。

图5 现网共抱杆安装应用实例

结束语

在TD- SCDMA网络建设中,基站站址是否具备安装条件已经成为很突出的矛盾,如何有效解决基站选址难题,是运营商普遍关注的问题。随着中国移动2010年TD-SCDMA网络扩容工程建设在全国的展开,大唐移动提出的一体化GPS/北斗光纤拉远授时系统产品解决方案将借助先进的设计理念、独特的技术优势、便捷的施工方式、良好的网络性能,解决中国移动基站选址的难题,从而实现TD-SCDMA网络快速建网的目标。

北斗卫星时间同步系统的重要性

北斗卫星时间同步系统的重要性 概述 电脑时间走时不准时常有的事,不准确的电脑时钟对时网络结构以及其中的应用程序的安全性会产生较大的影响,尤其是那些对没有实现网络同步而导致的问题比较敏感的网络质量或应用程序。 要得到最佳的网络表现,就得向系统提供标准的时间信息,这时可以选用北斗卫星时间同步系统来实现时间统一,千万不要等到出了问题才认识到时间同步的重要性。如果没有时间同步,网络指令是没法正常运行的,时间同步直接影响网络指令的领域有:记录文件安全、审核和监控、网络错误检查和复原、文件时间戳目录服务、文件及指令存取安全与确认、分散式计算、预设操作、真实世界世界值等等。 北斗授时 北斗授时是通信网络安全组网的根本保证就同步网而言,我国的频率同步网采用的是多基准混合同步方式,即全网部署多个1级基准时钟设备,并且需配置高性能的卫星授时接收机,以保证全网的定时性能。我国的时间同步网则采用分布式组网方式,即在每个时间同步设备上均需配置高性能的卫星授时接收机,以保证全网的时间精度。 就移动通信网络而言,CDMA基站、CDMA2000基站、TD-SCDMA基站等均需要高精度的时间同步,目前是在每个基站上配置GPS授时模块。如果基站与基站之间的时间同步不能达到一定要求,将可能导致在选择器中发生指令不匹配,从而导致通话连接不能正常建立,影响无线业务的接续质量。 北斗授时性能可以满足通信网络的需求,基于北斗/GPS双模的授时设备最早在2003年进入通信领域,在2008年之前主要提供频率同步服务,此后可同时提供时间同步和频率同步服务。根据近十年的多次测试情况,可以看出北斗设备在正常情况下可以满足通信网中对频率同步和时间同步的要求,尤其是2008年以后生产的北斗设备其性能普遍达到了GPS卫星接收机设备的水平,完全可以满足通信网中各种通信设备对频率同步和时间同步的需求。 北斗卫星同步时间的意义 利用北斗卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不

北斗卫星导航系统介绍整理材料

北斗卫星导航系统 (一)概述 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 (二)发展历程 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供

服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。2035年前还将建设完善更加泛在、更加融合、更加智能的综合时空体系。 (三)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (四)建设原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。 ——渐进。分步骤推进北斗系统建设发展,持续提升北斗系统服务性能,不断推动卫星导航产业全面、协调和可持续发展。 (五)发展计划 目前,我国正在实施北斗三号系统建设。根据系统建设总体规划,2018年底,完成19颗卫星发射组网,完成基本系统建设,向全球提

北斗授时

1.北斗授时工作机理 在现代卫星导航系统中,为了保证系统中各个钟的精确同步,需要一个准确、稳定和可靠的时间参考,这通常是以系统中的部分钟或全部的钟为基础。利用统计平均的方法建立一个系统时间来实现。星上通常以原子钟为参考钟。 系统时间与UTC之间协调方法,需要考虑国际标准时间到系统时间传递的各个环节,是提高授时准确度中的最重要一环。 系统钟的同步方法,主要涉及到系统中各个钟的精确数据的收集方法和控制方法,要研究相对论效应对星载钟同步的影响,比对测量和钟驾驭方法的研究是时钟同步的基础。 系统授时方法,包括卫星电文中的与时间有关的信息的制定与产生,用户终端定时技术涉及到接收、比对及控制技术等。 对用户来说,北斗的授时精度主要由授时模块来提供,通常20ns,由秒脉冲同步来保证。 2.为何要时间同步 对于一个进入信息社会的现代化大国,导航定位和授时系统是最重要、而且也是最关键的国家基础设施之一。现代武器实(试)验、战争需要它保障,智能化交通运输系统的建立和数字化地球的实现需要它支持。现代通信网和电力网建设也越来越增强了对精度时间和频率的依赖。为了提高民用定位定时的性能和可靠性、安全

性,利用这些卫星系统建立广域增强系统(Waas)美国、日本、欧洲和俄罗斯也在计划或研制之中。 这些系统导航定位的基本概念都是以精度时间测量为基础的。正如有人所指出的那样,我们人类生活在余割四维的世界(x、y、z、t)其中一维就是时间,而另外三维的精度确定,就今天而言,没有精确的定时也是难以实现的。 单从授时出发,不难理解系统发播时间的精确控制是不可缺少的。而对于导航定位,系统内部钟(星载钟和地面监测和控制台站的钟)的同步就极为关键。没有原子钟的支持,没有钟同步和保持技术的支持,实现星基导航和定位是不可能的。在完成精确时间的传递过程,需要对传播时延作精确修正,而这又需要知道用户的精确地理位置。 从以上分析可以看出,无论在系统概念、技术、装备或管理上,与其他通讯和卫星系统相比,导航定位卫星系统与高精度卫星授时系统有很好的兼容性和互补性,二者是相辅相成的。从资源共享和合理利用出发,先进的卫星系统应该成为一个导航授时一体化的高精度星基四维(x、y、z、t)信息源, GPS、北斗、Glonass和正在研制中的Galileo,无不把其授时功能提到仅次于导航定位的重要地位。以便满足个行各业对精度时间和频率日益增长的需求。 一般的电子设备晶振的精度为6~12ppm,亦即每秒有约9微秒(平均)的误差,1小时累积约32毫秒误差,1天累积约0.8秒误差,一个月累积约23秒误差,1年累积约280秒误差。可见日常工

中国北斗卫星导航系统(全文)

中国北斗卫星导航系统 (2016年6月) 中华人民共和国 国务院新闻办公室 目录 前言 一、发展目标与原则 二、持续建设和发展北斗系统 三、提供可靠安全的卫星导航服务 四、推动北斗系统应用与产业化发展 五、积极促进国际合作与交流 结束语

前言 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 一、发展目标与原则 中国高度重视北斗系统建设,将北斗系统列为国家科技重大专项,支撑国家创新发展战略。 (一)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (二)发展原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

北斗卫星在电力系统授时中的研究

2008 中国国际供电会议 1 北斗卫星在电力系统授时中的研究 陈炯聪1,张道杰2,高新华1 1. 广东电网公司电力科学研究院,广州,510600; 2. 深圳市双合电脑系统股份有限公司 摘 要:利用卫星进行授时,有着精度高、受环境干扰小、实时性好等优点,其在授时研究和应用领域有着广泛和美好的前景。 GPS 是目前应用最为广泛的卫星定位授时系统,但仅仅依靠GPS 授时会存在两方面问题,一是手段单一,再则我国没有自主控制权。我国从80年代开始就着手研究双星定位系统,己于2003年成功完成“北斗一号”卫星定位系统的构建工作。 本文在对北斗卫星系统简介的基础上,分析北斗卫星时间同步系统在我国电力系统中应用的必要性和可行性。介绍了结合北斗卫星时钟信号和OCXO 特性 的1PPS 提供给电力授时的理论和实现方法。并设计实现了一种基于单片机和北斗卫星OEM 板的卫星同步时钟装置。它由北斗OEM 接收机、中央处理单元和输出接口组成。利用OEM 接收机提供的北斗卫星标准时间信号,通过中央处理单元对数据的处理驯服OCXO ,使输出的1PPS 具有良好的长稳、短稳特性。输出 的1PPS 秒脉冲信号可同步电网内运行的各时钟,保证电网内所有时钟的高精度同步运行。这种新的时钟同步方法具有实现手段简单、范围大、精度高、不受地理和气候条件限制等诸多优点,是理想的时钟同步方法。 利用北斗卫星同步时钟装置,对所属范围各厂站的保护系统、故障录波系统进行统一的随时的时钟校对,该课题对电网自动化水平的提高,特别是对事故分析、故障测距、稳定判断与控制技术的发展有重要的意义。 关键词:单片机;北斗;电力系统;同步时钟 1. 北斗卫星简介 北斗导航定位系统是由中国自主建设的卫星系统,1994年正式立项,2003年双星导航定位系统正式投入使用。北斗导航定位系统由空间卫星、地面中心控制系统和用户终端组成。 1.1 空间部分 空间部分由两颗地球同步的导航卫星和一颗在轨备用卫星组成。3颗卫星距地面约36000km ,分别位于赤道面东经80度、140度和110.5度(备份卫星)。空间卫星的任务是完成中心控制系统和用户收发机之间的双向无线电信号转发。卫星上主要载荷是变频转发器、S 波段天线(两个波束)和L 波段天线(两个波束)。 1.2 地面中心 地面中心控制系统由一个中心控制站、若干卫星定轨标校站、差分定位标校站和测高标校站组成。地面中心控制系统是北斗定位导航系统的控制和管理中心,是北斗导航定位系统的中枢,它由信号收发分系统、信息处理分系统、时间分系统、监控分系统和信道监控分系统等组成。 1.3 用户终端 用户终端由信号接收天线、混频和放大电路、发射装置、信息输入键盘和显示器等组成。根据执行任务的不同用户终端分为:通信终端、卫星测轨终端、差分定位标校终 端、和授时终端等。 2. 分析北斗卫星时间同步系统在我国电力系统 应用的必要性和可行性 高精度时间频率传递在国民经济中的地位十分突出,其在通信网的时间同步、电力系统调控等许多方面有着无可替代的重大作用。近年来,随着国防和空间技术的发展,对高精度时间和频率传递又提出了更高的要求,空中目标的探测与拦截、无线电导航系统的时钟基准等技术对时间同步精度要求都达到纳秒量级。因此开展高精度授时技术应用研究,对解决国民经济和国防建设事业对高精度时间同步的需求具有重要的意义。 GPS 授时是典型的利用卫星进行时间传递和比对的方法,工作范围覆盖全球,并且时间传递的准确度高,目前,GPS 授时精度已经达到10~20ns 。 但仅仅依靠GPS 授时会存在两方面问题,一是手段单一,再则我国没有自主控制权。我国从80年代开始就着手研究双星定位系统,己于2003年成功完成“北斗一号”卫星定位系统的构建工作。北斗导航系统又称双星快速定位通讯系统,它是星基区域双向主动式无线电导航系统,具有全天候、高精度、连续、实时、快速的导航定位和多功能、多用途、高可靠性的特点。 随着国民经济的不断发展,人们对电力的质量、需求

北斗卫星导航系统常识简介

北斗卫星导航系统常识 简介 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

北斗卫星导航系统常识简介一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗

北斗授时介绍

卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪

《“北斗卫星导航系统”》阅读练习及答案

阅读下面的文字,完成各题。 材料一: 材料二: 2005年,当时正在建设的北斗二号系统的“原子钟”突遇问题。 原子钟就如同一块“手表”,为卫星导航用户提供精确的时间信息服务。事实上,高精度的时间基准技术是卫星导航系统最核心的技术, 直接决定着系统导航定位精度,对整个工程成败起着决定性作用,其重要性如同人的心脏。 当时还想引进,但人家就不给你。因为这是个高精度的东西,他 们要对我们进行技术控制。没有原子钟,这个系统基本上就是空中楼阁。 国外的技术封锁,坚定了科研人员自力更生的信念。大家有了一 个共识,核心关键技术必须要自已突破,不能受制于人。当时北斗人 有一句话,“六七十年代有原子弹,我们北斗人一定要有我们自己的原子钟”。 他们成立了三支队伍同时开展研发,并在基础理论、材料、工程 等领域同步推进。就这样,仅仅用了两年的时间,科研团队就攻克了

原子钟这个最大技术屏障。不仅如此,现在用在北斗三号上的原子钟,已提升到每300万年才会出现1秒误差的精度,完全满足了我国的定位精度要求。 (摘编自“央视网”)材料三: 2018年7月29日9时48分,我国在西昌卫星发射中心用长征三号乙运载火费,以“一箭双星”的方式成功发射第33、34颗北斗导航卫星。 这是北斗三号全球组网卫星的第四次发射。两颗卫星均属于中圆 地球轨道卫星,是我国北斗三号系统第9、10颗组网卫星。 根据计划,2018年年底前将建成由18颗北斗三号卫星组成的基本系统,为“一带一路”沿线国家提供服务。从这次发射开始,北斗 卫星组网发射进入前所未有的高密度期。 (摘编自“新华网”)材料四: 据俄罗斯《劳动报》网站2018年8月26日报道,中国已与美国的全球定位系统(GPS)和俄罗斯的“格洛纳斯”全球卫星导航系统 展开激烈竞争。今年北斗系统将开始向“一带一路”沿线国家和地区 提供基本导航服务。两年之后,北斗将向全球提供导航服务。 报道认为,中国对太空领先地位的积极争夺令美国等太空强国感 到不安。尽管中国每年对太空项目的60亿美元投入与美国的400亿美元相差甚远,但中国发射的卫星数量却与美国不相上下。此外,中

中国北斗卫星导航系统——世界第三套全球卫星导航系统(图)来自网络

北斗卫星导航系统 ——世界第三套全球卫星导航系统 工程总投资:100亿元 工程期限:1994年——2020年 北京时间2007年2月3日凌晨零时28分,中国在西昌卫星发射中心用“长征三号甲”运载火箭,成功将第四颗北斗导航试验卫星送入太空。 北斗卫星导航定位系统是由中国自行研发的区域性有源三维卫星定位与通信系统(CNSS),

是继美国的全球定位系统(GPS)、俄罗斯的格洛纳斯(GLONASS)定位系统之后世界第三个成熟的卫星导航系统。 该系统分为“北斗一代”和“北斗二代”,分别由4颗(两颗工作卫星、两颗备用卫星)和35颗北斗定位卫星、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,定位精度可达数十纳秒(ns)的同步精度,其精度与GPS相当。中国在2000年至2007年先后发射了四颗“北斗一号”卫星,这种区域性(中国境内)的卫星导航定位系统,正在为中国陆地交通、航海、森林防火等领域提供着良好服务。 北斗一号导航定位卫星由中国空间技术研究院研究制造,四颗导航定位卫星的发射时间分别为: 日期火箭卫星轨道 2000年10月31日长征三号甲北斗-1A 地球静止轨道140°E 2000年12月21日长征三号甲北斗-1B GEO 80°E 2003年05月25日长征三号甲北斗-1C GEO 110.5°E 第三颗是备用卫星 2007年02月03日长征三号甲北斗-1D GEO 86°E 第四颗是备用卫星 2007年04月14日长征三号甲北斗-2A 中地球轨道(21500KM) 北斗二代首颗卫星

军用新型北斗卫星导航手持机 北斗卫星导航系统的历史 我国早在60年代末就开展了卫星导航系统的研制工作,但由于多种原因而夭折。在自行研制“子午仪”定位设备方面起步较晚,以致后来使用的大量设备中,基本上依赖进口。70年代后期以来,国内开展了探讨适合国情的卫星导航定位系统的体制研究。先后提出过单星、双星、三星和3-5星的区域性系统方案,以及多星的全球系统的设想,并考虑到导航定位与通信等综合运用问题,但是由于种种原因,这些方案和设想都没能够得到实现。 1983年,“两弹一星”功勋奖章获得者陈芳允院士和合作者提出利用两颗同步定点卫星进行定位导航的设想,经过分析和初步实地试验,证明效果良好,这一系统被称为“双星定位系统”。双星定位导航系统为我国“九五”列项,其工程代号取名为“北斗一号”。 双星定位导航系统是一种全天候、高精度、区域性的卫星导航定位系统,可实现快速导航定位、双向简短报文通信和定时授时3大功能,其中后两项功能是全球定位系统(GPS)所不能提供的,且其定位精度在我国地区与GPS定位精度相当。整个系统由两颗地球同步卫星(分别定点于东经80度和东经140度36000公里赤道上空)、中心控制系统、标校系统和用户机4大部分组成,各部分间由出站链路(即地面中心至卫星至用户链路)和入站链路(即用户机至卫星

北斗+GPS光纤拉远授时系统

GPS/北斗光纤拉远授时系统有效解决TD-SCDMA基站选址难题 中国移动建设运营的第三代移动通信TD-SCDMA-SCDMA网络是严格要求同步的 TD-SCDMAD系统,目前基站的时间同步由单一GPS授时系统实现。传统GPS授时系统, 由于拉远距离、工程施工和抗干扰能力等受限因素,限制了TD-SCDMA系统采用BBU+RRU 光纤拉远分布式基站的优势发挥,在TD-SCDMA站址选择日益困难的现状下,进一步加剧 基站选址的难度,已经成为TD-SCDMA站址选址的瓶颈。 在TD-SCDMA网络工程建设中,TD-SCDMA站址选择成为基站建设的重点问题,需主 要克服以下几点:首先,GPS天线与基站BBU侧的接收机通过射频馈线连接,射频馈线较 粗而且韧性差不易弯曲,其工程施工的难度限制了BBU与天面的拉远距离,极大地降低了BBU机房选址的灵活性;其次,射频馈线的信号衰减性限制了GPS射频信号的传输距离,拉远距离为百米之外就需要增加线路补偿放大器,加装放大器既增加了故障维护点又加大了施工难度,进一步加大新增站址的BBU机房选址灵活性;另外,GPS卫星系统属于美国军方,将使TD-SCDMA系统的正常运行受制于人,非常情况下,卫星系统一旦关闭或受干扰,TD-SCDMA系统将工作紊乱和瘫痪,整网安全存在很大隐患。 在TD-SCDMA网络建设过程中,GPS授时系统的替代解决方案一直是中国移动研究的 课题之一,大唐移动与中国移动持续加强创新合作,面对网络工程建设中的实际问题,推出了GPS/北斗双模一体化光纤拉远授时系统解决方案。该方案采用GPS/北斗双模一体化设计,相比传统GPS授时系统在拉远距离、工程实施、抗干扰能力、美化天面外观、安装维护便 捷性等方面有明显的优势,可实现TD-SCDMA系统天线和GPS/北斗天线的共抱杆安装,给GPS/北斗天线布放及基站选址提供了极大的灵活性,有效解决了网络建设中的基站选址难题,满足运营商快速建网的需求。 GPS/北斗光纤拉远授时系统解决工程施工难题 针对传统GPS单一授时系统普遍存在的传输距离受限、施工困难、易受干扰及安全隐 患的问题,为适应更广泛的布站场景,本方案采用GPS/北斗双模一体化设计,并且采用光 纤拉远的方法有效解决工程施工中传输距离受限和施工困难的难题。一体化GPS/北斗光纤 拉远授时系统方案,就是在天面部分将GPS/北斗天线与接收机进行一体化设计,接收机输 出的PPS与TOD信息通过光纤拉远的方法传输给基站机房内的BBU,BBU时钟恢复模块恢复PPS和TOD信息,并且传送到BBU需要同步的模块。基站设计不再需要考虑接收机的类型(GPS/北斗)、型号、厂家、尺寸等一系列问题,只需要基站和拉远接收机有相同的标 准接口和时间传输机制(如图1所示)。

四创电子北斗单向授时型模块说明书

目 次 1 背景 (1) 2 模块简介 (1) 3 功能特点和技术指标 (2) 3.1 模块功能特点 (2) 3.2 模块性能指标 (2) 4 接口规范 (4) 4.1 外形尺寸 (4) 4.2 引脚定义 (4) 4.3 软件接口 (5) 5 连接说明 (6)

1 背景 “北斗一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称“双星定位”系统或“北斗一号”系统。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星定位、授时、通信系统。 随着北斗卫星系统的不断成熟和终端技术的不断发展,实现北斗授时同步已成为我国卫星授时应用的发展趋势。其终端模块的应用可减少对国外卫星系统的依赖性,这将为我国通信、电力等重点行业授时应用提供可靠技术保障。 2 模块简介 在北斗应用早期,由于“北斗一号”系统固有的局限,用户机实现授时定位通信等功能必须通过有源发射,因此现有的北斗用户机设备普遍存在体积大、成本高、系统容量小的缺点。四创公司通过多年在北斗领域的研发攻关,推出具备无源授时功能的“北斗一号”单向授时产品(模块外观示意图如图2-1所示)。 图2-1 北斗单向授时模块实物图

北斗单向授时模块是一款通过无源方式实现授时功能的核心处理板,该产品可同时接收“北斗一号” 三通道信号,北斗授时功能通过跟踪现有的三颗北斗卫星和通过外输入高程值而快速实现。授时模块功耗小,数据更新率1Hz。北斗单向授时模块从硬件和软件上都易于使用,非常适合系统集成应用。模块产品主要面向军队、电力、通信、金融、广电等需要时间同步的系统应用客户。 3 功能特点和技术指标 3.1 模块功能特点 ?同时跟踪三颗北斗卫星; ?具备北斗授时功能、提供UTC时间输出; ?提供高精度1PPS 输出; ?支持本地串口进行参数配置; ?支持天线开短路检测和保护功能。 3.2 模块性能指标 表3-1北斗单向授时模块性能指标 接收器结构●3个并行通道 跟踪能力●同时跟踪3颗卫星 基本特征 接收信号灵敏度●-157.6dBW 秒脉冲(1PPS)●误差≤100 ns(初始化精确位置信息,1σ) ●脉冲宽度:500ms ●前沿宽度:<10ns ●首帧串口信息与 1PPS上升沿的同步精度:<10 ms ●幅度:≥3V(LVCMOS电平) ●极性:正极性,前沿为正 ●输出阻抗:50? 性能特点 锁定时间●时钟(1PPS)锁定时间小于3分钟

北斗卫星导航系统

北斗卫星导航系统- 简介 北斗卫星导航系统 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国独立发 展、自主运行,并与世界其他卫星导航系统兼容互用的全球卫星导航系统。 北斗卫星导航系统既能提供高精度、高可靠的定位、导航和授时服务,还具备短报文通信、差分服务和完好性服务特色,是中国国家安全、经济和社会发展不可或缺的重大空间信息基础设施。 北斗卫星导航系统包括北斗一号和北斗二号两代导航系统。其中北斗一号用于中国及其周边 地区的区域导航系统,北斗二号是类似美国GPS的全球卫星导航系统。[1] 北斗卫星导航系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的中国卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。[2] 三步走 按照“质量、安全、应用、效益”的总要求,坚持“自主、开放、兼容、渐进”的发展原则,北斗卫星导航系统按照“三步走”的发展战略稳步推进。具体如下: 第一步,2000年建成北斗卫星导航试验系统,使中国成为世界上第三个拥有自主卫星导航系统的国家。 第二步,建设北斗卫星导航系统,2012年左右形成覆盖亚太大部分地区的服务能力。 第三步,2020年左右,北斗卫星导航系统形成全球覆盖能力。[3][4] 北斗卫星导航系统- 系统组成

北斗导航卫星应用战略图 北斗卫星导航系统包括北斗一号和北斗二号的2代系统,由空间段,地面段,用户段三部分 组成。 空间段 空间段包括五颗静止轨道卫星和三十颗非静止轨道卫星。地球静止轨道卫星分别位于东经5 8.75度、80度、110.5度、140度和160度。非静止轨道卫星由27颗中圆轨道卫星和3颗同步 轨道卫星组成。 地面站 地面段包括主控站、卫星导航注入站和监测站等若干个地面站。 主控站主要任务是收集各个监测站段观测数据,进行数据处理,生成卫星导航电文和差分完好性信息,完成任务规划与调度,实现系统运行管理与控制等。 注入站主要任务是在主控站的统一调度下,完成卫星导航电文、差分完好性信息注入和有效载荷段控制管理。 监测站接收导航卫星信号,发送给主控站,实现对卫星段跟踪、监测,为卫星轨道确定和时间同步提供观测资料。 用户段 用户段包括北斗系统用户终端以及与其他卫星导航系统兼容的终端。系统采用卫星无线电测

北斗二号卫星导航系统介绍与应用

北斗二号卫星导航系统介绍及应用 南京工业大学工业工程 北斗二号卫星导航系统是中国自行研制的全球卫星定位与通信系统(BDS),是继美全球定位系统(GPS)和俄GLONASS之后第三个成熟的卫星导航系统。系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10m,授时精度优于100ns。2012年12月27日,北斗二号系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。 北斗二号卫星导航系统由空间端、地面端和用户端三部分组成。空间端包括5颗静止轨道卫星和30颗非静止轨道卫星。地面端包括主控站、注入站和监测站等若干个地面站。用户端由北斗用户终端以及与美国GPS、俄罗斯GLONASS、欧盟GALILEO等其他卫星导航系统兼容的终端组成。 北斗二号卫星导航系统是在北斗一号的基础上建设的卫星导航系统,但其并不是北斗一号的简单延伸,完整构成的北斗二号卫星导航系统是一个类似于GPS和GLONASS的全球导航系统。 一.研发背景 1.重要的战略意义 战略意义一:建设北斗卫星导航系统,是提高我国国际地位的重要载体战略意义二:是促进和推动经济社会发展的强大动力。战略意义三:是推动我国信息化建设的重要保证。战略意义四:是应对重大自然灾害的生命保障。战略意义五:是增强武器效能,维护国家安全的根本命脉v战略意义七:是我国履行航天国家国际责任的需要。战略意义八:对提升中国航天的能力,推动航天强国建设意义重大。 2.北斗一号卫星导航系统及其不足 北斗一号卫星导航系统是我国第一代区域卫星导航系统,也是继GPS和GLONASS之后的第三个成熟的卫星导航系统。作为我国自主建设的卫星导航系统,其政治,经济,军事意义不言而喻。同美国的GPS相比。有其独特之处,如其具有短信通讯功能就是GPS所不具备的,但总体来看,北斗一号存在明显不足: 1.定位原理:北斗一号是主动式双向测距二维导航,地面中心控制系统解算,供用户三维定位数据;GPS是被动式伪码单向测距三维导航,由用户设备独立解算自己三维定位数据。 2.用户容量:北斗一号由于是主动双向测距的询问应答系统,其用户设备容量有限;GPS是单向测距系统,用户设备只要接收导航卫星发出的导航电文即可进行测距定位,因此GPS的用户设备容量是无限的 3.生存能力:和所有导航定位卫星一同一样,北斗一号基于中心控制系统和卫星的工作,但是北斗一号对中心控制系统的依赖性明显要大的多,因为定位解算在那里而不是由用户设备完成 4.实时性:北斗一号用户的定位申请要送回中心控制系统,中心控制系统解算出用户的

北斗卫星授时介绍

北斗卫星授时介绍 北斗卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪该卫星信号。经过一定的信息处理和时延后,再按确定的格式同时向两颗地球同步卫星播发自己的应答信号。两颗地球同步卫星将其应答信号转发到地面中心站。地面中心站接收到该应答信号以后,测量整个应答信号的往返总时延,并根据地面中心站至两颗同步卫星的距离、用户机的高度等数据信息,解算出该用户机(即载体)在地球表面或空中的当前位置。再由地面中心站经过地球同步卫星把该位置信息传送给用户机,在用户机的显示器上显示其当前地理坐标位置,完成了用户机的单收双发定位工作模式。如果用户机同时接收到两颗地球同步卫星的信号,并测量出两个询问信号的时差后,将该时差通过一颗地球同步卫星转发给地面中心站,地面中心站的计算机根据该时差值就可以解算出用户机(即载体)在地球表面或空中的当前位置,并发送给用户机,完成了双收单发的定位工作模式。 地面中心站发送广播询问信号的同时也可以传送通信电文。用户机可以通过自己的应答信号向地面中心站传送需要发送的通信信息,因而该系统具备双向通信功能。地面中心站所发送的广播询问信号中还可以发播标准时间信号,用户机应用这些信号可以进行校时,所以该系

北斗卫星系统

北斗卫星导航系统 北斗卫星导航系统(BDS)是中国正在实施的自主发展、独立运行的全球卫星导航系统,致力于向全球用户提供高质量的定位、导航、授时服务,并能向有更高要求的授权用户提供进一步服务。中国在2003年完成了具有区域导航功能的北斗卫星导航试验系统,之后开始构建服务全球的北斗卫星导航系统,于2012年起向亚太大部分地区正式提供服务,并计划至2020年完成全球系统的构建。 北斗卫星导航系统、美国全球定位系统、俄罗斯格洛纳斯系统和欧盟伽利略定位系统为联合国卫星导航委员会认定的全球卫星导航 系统四大核心供应商。 目录 1 历史与发展 早期研究 试验系统 中国加入欧盟伽利略计划 正式系统 东盟各国加入合作 2 试验系统

] 系统组成 性能 3 正式系统 亚太服务 全球服务 4 系统构成 空间段 地面段 用户段 5 原理 空间定位原理 ) 有源与无源定位 精度 6 技术

卫星平台 卫星制造与发射 时间系统 信号传输 7 应用 开放服务 授权服务 应用状况 } 1、历史与发展 早期研究 1970年代,中国开始研究卫星导航系统的技术和方案,但之后这项研究计划被取消。 1983年,中国航天专家陈芳允提出使用两颗静止轨道卫星实现区域性的导航功能,1989年,中国使用通信卫星进行试验,验证了其可行性,之后的北斗卫星导航试验系统就是依据此方案进行。

试验系统 1994年,中国正式开始北斗卫星导航试验系统(北斗一号)的研制,并在2000年发射了两颗静止轨道卫星,实现了区域性的导航功能。2003年又发射了一颗备份卫星,完成了北斗卫星导航试验系统的组建。 中国加入欧盟伽利略计划 2003年09月,中国打算加入欧盟的伽利略定位系统计划,并在接下来的几年中投入了亿欧元的资金。由此,人们相信中国的北斗系统只会用于自己的武装力量。中国与欧盟在2004年10月09日正式签署伽利略计划技术合作协议。 、正式系统 2004年,中国启动了具有全球导航能力的北斗卫星导航系统的建设(北斗二号),并在2007年发射一颗中地球轨道卫星,进行了大量试验。2009年起,后续卫星持续发射,并在2011年开始对中国和周边地区提供测试服务, 2012年完成了对亚太大部分地区的覆盖并正式提供卫星导航服务。 中国为北斗卫星导航系统制定了“三步走”发展规划,从1994年开始发展的试验系统(第一代系统)为第一步,2004年开始发展的正式系统(第二代系统)分为两个阶段,即第二步与第三步。至

北斗卫星导航系统测量型终端通用规范

北斗卫星导航系统位置报告/短报文型终端通用规 范(预) 2014.08.14 1 范围 本通用规范规定了北斗卫星导航系统位置报告/短报文型终端(简称为北斗通信终端)的技术要求(包括一般要求、功能要求、性能要求、环境适应性要求)、试验方法、检验规则、以及包装、运输和储存等要求。 本标准适用于北斗通信终端的研制、生产和使用,也是制定北斗通信终端产品标准、检验产品质量和产品应用选型的依据。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 191 包装储运图示标志 ?GB 2312—1980 信息交换用汉字编码字符集基本集 ?GB/T 2828.1—2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 ?GB 4208—2008 外壳防护等级(IP代码) ?GB/T 4857.5 包装运输包装件跌落试验方法 ?GB/T 5080.1—1986 设备可靠性试验总要求 ?GB/T 5080.7—1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案 ?GB/T 5296.1—1997 消费品使用说明总则 ?GB/T 12267—1990 船用导航设备通用要求和试验方法 ?GB/T 12858—1991 地面无线电导航设备环境要求和试验方法 ?GB/T 13384—2008 机电产品包装通用技术条件 ?GB 15702—1995 电子海图技术规范

?GB 15842—1995 移动通信设备安全要求和试验方法 ?GB/T 17626.3—2006 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 3 术语、定义和缩略语 3.1 术语和定义 下列术语和定义适用于本标准。 3.1.1 北斗卫星导航系统 BeiDou navigation satellite system 中国的全球卫星导航系统,简称北斗系统(BeiDou)。具有卫星无线电测定(RDSS)和卫星无线电导航(RNSS)两种业务,可以提供导航、定位、授时、位置报告和短报文服务。 3.1.2 北斗终端 BeiDou terminal 北斗系统各种用户应用终端的总称。北斗终端按照应用北斗卫星业务的不同服务模式,分为北斗RDSS终端和北斗RNSS终端两种类型;按其用途主要分为导航型终端、测量型终端、定时型终端和位置报告/短报文型终端。 3.1.3 北斗RDSS终端 BeiDou RDSS terminal 利用北斗RDSS业务,可以提供定位、导航、定时、位置报告和短报文通信全部或部分功能的终端。 3.1.4 指挥管理型终端 command and management terminal 利用北斗RDSS业务兼收下属用户的定位和通讯信息的多用户地址码,一般具有用户信息管理、通播、组播、单播、查询、调阅、指挥调度和管理功能的北斗通信终端。

相关主题
文本预览
相关文档 最新文档