IGBT驱动器驱动能力计算
- 格式:pdf
- 大小:150.14 KB
- 文档页数:4
高隔离电压的大功率IGBT二单元驱动板TX-DE106D2产品手册目录一、概述 (4)二、结构框图 (4)三、电气参数 (4)3.1 极限参数 (4)3.2 驱动特性 (5)3.3 工作条件 (6)3.4 短路保护特性 (6)3.5 对输入电源要求 (6)四、波形图 (7)4.1 正常驱动波形图 (7)4.3 说明 (7)五、尺寸结构和输入输出接口 (8)5.1 元器件位置示意图 (8)5.2 输入输出接口 (8)5.2.1 电源输入插座Jp (8)5.2.2 信号输入插座Js (8)5.2.3 驱动输出插座Jo1、Jo2 (9)六、应用电路说明 (9)6.1 DC/DC电源输入端Vdc的连接 (9)6.2 驱动板低压侧信号的连接 (9)6.2.1 逻辑电源Vdd (9)6.2.2 输入信号PWM (9)6.2.3 报警信号/Short (9)6.2.4 复位信号Reset (9)6.3 驱动板高压输出侧的连接 (9)6.3.1 驱动输出功率的计算 (9)6.3.2 IGBT的连接 (10)6.3.3 栅极电阻 (10)6.4 短路保护参数的设置 (10)6.4.1 短路保护阈值Vn的设置 (10)6.4.2 保护盲区Tblind的设置 (10)6.4.3 软关断时间Tsoft的设置 (11)6.5 驱动输出脉冲测试方法 (11)6.6 加装死区模块QP102的说明 (11)6.7 典型应用连接 (11)七、相关产品信息 (11)7.1 TX-KE106 (11)7.2 TX-PD106(DC-DC高隔离模块电源) (12)7.3 TX-QP102(死区控制芯片) (12)7.4 TX-DE106D1 (12)八、常见问题 (12)九、其它说明 (12)TX-DE106D2 高隔离电压、大电流IGBT 2单元驱动板一、概述∙ 高隔离电压二单元隔离驱动板,可驱动两只电压≤4500V 的 全系列IGBT 。
IGBT栅极驱动电阻的选择和计算韩朋乐【摘要】栅极电阻对IGBT的动态特性有很大影响,因此对栅极驱动电阻的选择进行探讨,分析了栅极电阻选择不当可能引发的问题,并给出了选择办法,最终通过一种实际的计算方式进行了计算分析.【期刊名称】《通信电源技术》【年(卷),期】2019(036)003【总页数】3页(P36-38)【关键词】栅极电阻;IGBT;动态特性【作者】韩朋乐【作者单位】国家知识产权局专利局专利审查协作河南中心,河南郑州 450001【正文语种】中文0 引言IGBT是常用的电力电子开关元件,其驱动输入端呈现容性。
当使用PWM信号对IGBT进行控制驱动时,信号会通过栅极驱动电阻对器件的输入端进行充放电。
因此,栅极电阻对IGBT的开关时间、损耗等开关参数有重要影响,也决定了开关过程的EMI干扰和电压、电流的上升下降速率。
所以,栅极驱动电阻的大小对IGBT 驱动电路的设计重要性不言而喻。
现有的各种数据手册中一般仅仅给出驱动电阻的测试典型值,并未对其大小进行选择计算。
因此,本文着眼于这一问题,给出了驱动电阻的选择和计算方法。
1 由栅极电阻引起的误动作1.1 与IGBT结电容相关联的误开通IGBT的集电极-栅极和发射极-栅极之间存在着结电容,分别是CCG和CCE,是由器件的固有工艺结构引起的。
当IGBT关断时,由于线路中的感性,使得电流并不会立即消失,而是寻找合适的通路。
同时,突变的电压会引起这一电流通路,结电容的存在使得关断电流沿着栅极驱动电阻到地。
当这一电流足够大时,栅极会产生一个足够高的电压,使得器件开通[1],如图1所示。
其中,RDriver是驱动芯片的输出等效电阻,栅极驱动电阻是RGon/off,IGBT栅极的等效电阻是RGint。
在开关管关断时,开关管两端电压产生突变,变化的电压会在结电容CCG两端产生电流:因此,结电容CCG会不断充电。
CCG和CGE相互串联,进行分压。
电流iCG通过结电容CCG、驱动电阻RGon/off、CGE回到驱动地,于是栅极电阻两端会产生一个并不需要的电平:当这一电平值的大小超过IGBT的开通阈值电压时,IGBT就会发生误开通。
基于M57962L的IGBT驱动电路【摘要】IGBT具有开关速度快、栅极驱动电流小、驱动功率大等特点得到广泛应用。
针对IGBT 驱动的实际要求,介绍了IGBT工作特性,并利用M57962L 设计出一种适用的IGBT驱动电路。
【关键词】M57962L;IGBT;驱动;电路ABSTRACT:This article describes the IGBT gate drive circuit protection classification,analysis of the trends of the IGBT driver protection circuit,common IGBT drive optocoupler isolated,transformer isolated typical circuit analysis,and common market manufacturers.IGBT drive operating parameters and compares the performance analysis on the MOSFET fault in the engineering practice to discuss the principle of selection of IGBT driver reference.KEY WORDS:M57962L;IGBT;drive;circuit引言IGBT是一种新型功率器件,即绝缘栅极双极集体管(Isolated Gate Bipolar Transistor),是上世纪末出现的一种复合全控型电压驱动式电力电子器件。
它将GTR和MOSFET的优点集于一身:输入阻抗高,开关频率高,工作电流大等,在变频器、开关电源、弧焊电源等领域得到广泛地应用[1]。
IGBT具有一个2.5V~5.0V的阀值电压,有一个容性输入阻抗,因此IGBT 对栅极电荷集聚很敏感。
IGBT驱动电路参数计算详解电阻大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。
1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。
2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。
为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。
门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。
这个参数我们称为驱动功率PDRV。
驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。
驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。
如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期内被完全的充放电,那么RGE 值并不影响所需驱动功率。
驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。
1IGBT 的驱动特性及功率计算陈暹辉深圳裕能达电气有限公司摘要:根据目前市场的使用情况,介绍IGBT 的驱动特性及不同功率计算。
关键词:开通损耗 关断损耗 栅极电阻 导通压降 短路时间1 IGBT 的驱动特性1.1 驱动特性的主要影响因素IGBT 的驱动条件与IGBT 的特性密切相关。
设计栅极驱动电路时,应特别注意开通特性、负载短路能力和d v /d t 引起的误触发等问题。
栅极电压 U ge 增加(应注意U ge 过高而损坏IGBT ),则通态电压下降(Eon 也下降),如图1所示(此处以200 A IGBT 为例)。
由图1中可看出,若U ge 固定不变时,导通电压将随集电极电流增大而增高,如图1 a ,电流容量将随结温升高而减少(NPT 工艺正温度特性的体现)如图1b 所示。
(a )Uge 与Uce 和Ic 的关系 (b )Uge 与Ic 和Tvj 的关系图1 栅极电压U ge 与U ce 和T vj 的关系栅极电压 U ge 直接影响 IGBT 的可靠运行,栅极电压增高时有利于减小IGBT 的开通损耗和导通损耗,但同时将使IGBT 能承受的短路时间变短(10 μs 以下),使续流二极管反向恢复过电压增大,所以务必控制好栅极电压的变化范围,一般V ge 可选择在-10~+15 V 之间,关断电压-10 V ,开通电压+15 V 。
开关时U ge 与I g 的关系曲线见图2 a 和图2 b 所示。
栅极电阻R g 增加,将使IGBT 的开通与关断时间增加,使开通与关断能耗均增加,但同时,可以使续流二极管的反恢复过电压减小,同时减少EMI 的影响。
而门极电阻减少,则又使d i /d t 增大,可能引发IGBT 误导通,但是,当R g 减少时,可(a)开通时 (b)关断时 图2 开关时U ge 与 I g 的关系曲线以使得IGBT 关断时由d u /d t 所带来误触发的可能性减小,同时也可以提高IGBT 承受短路能量的能力,所以R g 大小各有好坏,客户可根据自己设计特点选择。
第一部分IGBT模块静态参数1,:集射极阻断电压在可使用的结温范围内,栅极和发射极短路状况下,集射极最高电压.手册里一般为25℃下的数据,随着结温的降低,会逐渐降低.由于模块内外部的杂散电感,IGBT在关断时最容易超过限值。
2,:最大允许功耗在25℃时,IGBT开关的最大允许功率损耗,即通过结到壳的热阻所允许的最大耗散功率.其中,为结温,为环境温度。
二极管的最大功耗可以用同样的公式获得.在这里,顺便解释下这几个热阻,结到壳的热阻抗,乘以发热量获得结与壳的温差;芯片热源到周围空气的总热阻抗,乘以发热量获得器件温升;芯片结与PCB间的热阻抗,乘以单板散热量获得与单板的温差。
3,集电极直流电流在可以使用的结温范围流集射极的最大直流电流.根据最大耗散功率的定义,可以由最大耗散功率算出该值.所以给出一个额定电流,必须给出对应的结和外壳的温度。
)4,可重复的集电极峰值电流规定的脉冲条件下,可重复的集电极峰值电流.5,RBSOA,反偏安全工作区IGBT关断时的安全工作条件。
如果工作期间的最大结温不被超过,IGBT在规定的阻断电压下可以驱使两倍的额定电流。
6,短路电流短路时间不超过10us。
请注意,在双脉冲测试中,上管GE之间如果没有短路或负偏压,就很容易引起下管开通时,上管误导通,从而导致短路。
7,集射极导通饱和电压在额定电流条件下给出,Infineon的IGBT都具有正温度效应,适宜于并联。
随集电极电流增加而增加,随着增加而减小.可用于计算导通损耗.根据IGBT的传输特性,计算时,切线的点尽量靠近工作点。
对于SPWM方式,导通损耗由下式获得,M为调制因数;为输出峰值电流;为功率因数。
第二部分 IGBT模块动态参数1,模块内部栅极电阻为了实现模块内部芯片的均流,模块内部集成了栅极电阻,该电阻值常被当成总的驱动电阻的一部分计算IGBT驱动器的峰值电流能力.2,外部栅极电阻数据手册中往往给出的是最小推荐值,可以通过以下电路实现不同的和。
IGBT 的驱动特性及功率计算1 IGBT 的驱动特性1.1 驱动特性的主要影响因素IGBT的驱动条件与IGBT的特性密切相关。
设计栅极驱动电路时,应特别注意开通特性、负载短路能力和dv/dt 引起的误触发等问题。
栅极电压U ge增加(应注意U ge过高而损坏IGBT),则通态电压下降(E on也下降),如图1所示(此处以200A IGBT为例)。
由图1中可看出,若U ge固定不变时,导通电压将随集电极电流增大而增高,如图1a,电流容量将随结温升高而减少(NPT工艺正温度特性的体现)如图1b所示。
(a)Uge与Uce和Ic的关系(b)Uge与Ic和Tvj的关系图1 栅极电压U ge与U ce和T vj的关系栅极电压U ge直接影响IGBT 的可靠运行,栅极电压增高时有利于减小IGBT的开通损耗和导通损耗,但同时将使IGBT能承受的短路时间变短(10μs以下),使续流二极管反向恢复过电压增大,所以务必控制好栅极电压的变化范围,一般U ge可选择在-10~+15 V之间,关断电压-10 V,开通电压+15 V。
开关时U ge与I g的关系曲线见图2 a和图2 b所示。
(a)开通时 (b)关断时图2 开关时U ge与I c的关系曲线栅极电阻R g增加,将使IGBT的开通与关断时间增加,使开通与关断能耗均增加,但同时,可以使续流二极管的反恢复过电压减小,同时减少EMI的影响。
而门极电阻减少,则又使di/dt增大,可能引发IGBT误导通,但是,当R g减少时,可以使得IGBT关断时由du/dt 所带来误触发的可能性减小,同时也可以提高IGBT承受短路能量的能力,所以R g大小各有好坏,客户可根据自己设计特点选择。
图3为R g大小对开关特性的影响,损耗关系请参照图4所示。
图3 R g大小对开关特性的影响(di/dt 大小不同)图4 门极电阻R g与E on/E off由上述可得:IGBT 的特性随门极驱动条件的变化而变化,就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。
IGBT模块参数详解二-IGBT动态参数IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。
RGint:模块内部栅极电阻:为了实现模块内部芯片均流,模块内部集成有栅极电阻。
该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。
RGext:外部栅极电阻:外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。
上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。
用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。
已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。
实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。
如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。
最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。
Cge:外部栅极电容:高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。
IGBT寄生电容参数:IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。
输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。
其中:Cies = C GE + C GC:输入电容(输出短路)Coss = C GC + C EC:输出电容(输入短路)Cres = C GC:反馈电容(米勒电容)动态电容随着集电极与发射极电压的增加而减小,如下图所示。
IGBT驱动电路的选择及驱动电阻的选择IGBT驱动电路的选择绝缘栅双极型晶体管(IGBT)在今天的电力电子领域中已经得到广泛的应用,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。
驱动器的选择及输出功率的计算决定了换流系统的可靠性。
驱动器功率不足或选择错误可能会直接导致IGBT 和驱动器损坏。
以下总结了一些关于IGBT驱动器输出性能的计算方法以供选型时参考。
IGBT 的开关特性主要取决于IGBT的门极电荷及内部和外部的电阻。
图1是IGBT 门极电容分布示意图,其中CGE 是栅极-发射极电容、CCE 是集电极-发射极电容、CGC 是栅极-集电极电容或称米勒电容(Miller Capacitor)。
门极输入电容Cies 由CGE 和CGC 来表示,它是计算IGBT 驱动器电路所需输出功率的关键参数。
该电容几乎不受温度影响,但与IGBT 集电极-发射极电压VCE 的电压有密切联系。
在IGBT数据手册中给出的电容Cies 的值,在实际电路应用中不是一个特别有用的参数,因为它是通过电桥测得的,在测量电路中,加在集电极上C 的电压一般只有25V(有些厂家为10V),在这种测量条件下,所测得的结电容要比VCE=600V 时要大一些(如图2)。
由于门极的测量电压太低(VGE=0V )而不是门极的门槛电压,在实际开关中存在的米勒效应(Miller 效应)在测量中也没有被包括在内,在实际使用中的门极电容Cin 值要比IGBT 数据手册中给出的电容Cies 值大很多。
因此,在IGBT数据手册中给出的电容Cies值在实际应用中仅仅只能作为一个参考值使用。
确定IGBT 的门极电荷对于设计一个驱动器来说,最重要的参数是门极电荷QG(门极电压差时的IGBT 门极总电荷),如果在IGBT 数据手册中能够找到这个参数,那么我们就可以运用公式计算出:图一门极驱动能量E = QG ? UGE = QG ? [ VG(on) - VG(off) ] 门极驱动功率PG = E ? fSW = QG ? [ VG(on) - VG(off) ] ? fSW 驱动器总功率P = PG + PS(驱动器的功耗)平均输出电流IoutAV = PG / ΔUGE = QG ? fSW 最高开关频率fSW max. = IoutAV(mA) / QG(μC) 峰值电流IG MAX =ΔUGE / RG min = [ VG(on) - VG(off) ] / RG min 其中的RG min = RG extern + RG intern fsw max. : 最高开关频率IoutAV : 单路的平均电流QG : 门极电压差时的IGBT门极总电荷RG extern : IGBT 外部的门极电阻RG intern : IGBT 芯片内部的门极电阻但是实际上在很多情况下,数据手册中这个门极电荷参数没有给出,门极电压在上升过程中的充电过程也没有描述。
IGBT基本参数详解解读第一部分 IGBT模块静态参数1,,集射极阻断电压在可使用的结温范围内,栅极和发射极短路状况下,集射极最高电压。
手册里一般为25?下的数据,随着结温的降低,会逐渐降低。
由于模块内外部的杂散电感,IGBT在关断时最容易超过限值。
2,,最大允许功耗在25?时,IGBT开关的最大允许功率损耗,即通过结到壳的热阻所允许的最大耗散功率。
其中,为结温,为环境温度。
二极管的最大功耗可以用同样的公式获得。
在这里,顺便解释下这几个热阻,结到壳的热阻抗,乘以发热量获得结与壳的温差,芯片热源到周围空气的总热阻抗,乘以发热量获得器件温升,芯片结与PCB间的热阻抗,乘以单板散热量获得与单板的温差。
3,集电极直流电流在可以使用的结温范围流集射极的最大直流电流。
根据最大耗散功率的定义,可以由最大耗散功率算出该值。
所以给出一个额定电流,必须给出对应的结和外壳的温度。
)4,可重复的集电极峰值电流规定的脉冲条件下,可重复的集电极峰值电流。
5,RBSOA,反偏安全工作区IGBT关断时的安全工作条件。
如果工作期间的最大结温不被超过,IGBT在规定的阻断电压下可以驱使两倍的额定电流。
6, 短路电流短路时间不超过10us。
请注意,在双脉冲测试中,上管GE之间如果没有短路或负偏压,就很容易引起下管开通时,上管误导通,从而导致短路。
7, 集射极导通饱和电压在额定电流条件下给出,Infineon的IGBT都具有正温度效应,适宜于并联。
随集电极电流增加而增加,随着增加而减小。
可用于计算导通损耗。
根据IGBT的传输特性,计算时,切线的点尽量靠近工作点。
对于SPWM方式,导通损耗由下式获得,M为调制因数,为输出峰值电流,为功率因数。
第二部分 IGBT模块动态参数1,模块内部栅极电阻为了实现模块内部芯片的均流,模块内部集成了栅极电阻,该电阻值常被当成总的驱动电阻的一部分计算IGBT驱动器的峰值电流能力。
2,外部栅极电阻数据手册中往往给出的是最小推荐值,可以通过以下电路实现不同的和。
正确理解IGBT模块规格书参数本文将阐述IGBT模块手册所规定的主要技术指标,包括电流参数、电压参数、开关参数、二极管参数及热学参数,使大家正确的理解IGBT模块规格书,为器件选型提供依据。
本文所用参数数据以英飞凌IGBT模块FF450R17ME3 为例。
一、电流参数1. 额定电流(IC nom)大功率IGBT模块一般是由内部并联若干IGBT芯片构成,FF450R17ME3内部是3个150A芯片并联,所以标称值为450A额定电流可以用以下公式估算:Tjmax–TC= VCEsat·IC nom·RthJCVCEsat 是IC nom的函数,见规格书后图1,采用线性近似VCEsat=(IC nom+287)/310Tjmax=150℃,TC=80℃,RthJC =0.055K/W计算得:IC nom=500A2. 脉冲电流(Icrm 和Irbsoa)Icrm是可重复的开通脉冲电流(1ms仅是测试条件,实际值取决于散热情况)Irbsoa 是IGBT可以关断的最大电流所有模块的的Icrm和Irbsoa都是2倍额定电流值3. 短路电流ISC短路条件:t<10μs,Vge<15V,Rg>Rgnom(规格书中的值),Tj<125℃短路坚固性ØIGBT2为平面栅IGBT:5-8倍ICØIGBT3/IGBT4为沟槽栅IGBT:4倍IC二、电压参数1. 集电极-发射极阻断电压Vces测量Vces时,G/E两极必须短路Vces为IGBT模块所能承受的最大电压,在任何时候CE间电压都不能超过这一数值,否则将造成去器件击穿损坏Vces和短路电流ISC一起构成了IGBT模块的安全工作区:RBSOA图由于模块内部寄生电感△V=di/dt*Lin 在动态情况下,模块耐压和芯片耐压有所区别2. 饱和压降VCEsatIFX IGBT的VCEsat随温度的升高而增大,称为VCEsat具有正温度系数,利于芯片之间实现均流VCEsat 是IC的正向函数,随增大而增大ICVCEsat的变化VCEsat随IC的增大而增大VCEsat随VG的减小而增大VCEsat 值可用来计算导通损耗对于SPWM 控制, 导通损耗是:三、开关参数1. 内部门极电阻RGint为了实现模块内部芯片的均流,模块内部集成了内部门极电阻。
IGBT驱动参数计算详解大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。
1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。
2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。
为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。
门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。
这个参数我们称为驱动功率PDRV。
驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。
转载请注明出处驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。
如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期内被完全的充放电,那么RGE 值并不影响所需驱动功率。
驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。
IGBT驱动器输出性能的计算IGBT驱动器输出性能的计算1、引言今天,绝缘栅双极型晶体管(IGBT)在电力电子领域已经普及,并被用于许多应用中,如变频器、电源和电子驱动器。
IGBT具有较高的反向电压(高达6.5kV),开关电流最大可达3kA。
除功率模块自身外,电力电子系统中的一个关键组件是IGBT驱动器,它是功率晶体管和控制器之间重要的接口。
驱动器的选择及其准确输出功率的计算决定了转换器解决方案的可靠性。
驱动器功率不足或选择错误可能会导致模块和驱动器故障。
以下总结了一些计算用于开关IGBT的驱动器输出性能的方法。
2、栅极电荷体现IGBT的特性IGBT模块的开关特性主要取决于半导体电容(电荷)及内部和外部的电阻。
图1是IGBT电容的示意图,其中CGE是栅极-发射极电容、CCE是集电极-发射极电容、CGC是栅极-集电极电容(或称为米勒电容)。
栅极电荷的特性由输入电容CGC和CGE来表示,它是计算IGBT驱动器电路所需输出功率的关键参数。
该电容几乎不受温度影响,但与电压关系密切,是IGBT集电极-发射极电压VCE的函数。
当在集电极-发射极电压非常低时这种依赖性大幅提高,电压高时依赖性下降。
当IGBT导通时,IGBT的特性由栅极电荷来体现。
图2显示了栅极-发射极电压VGE、栅极电流IG和相应的集电极电流IC作为时间的函数,从IGBT导通到饱和这段时间的简化波形。
正如IG=f(t)图所示,导通过程可以分为三个阶段。
分别是栅极-发射极电容的充电,栅极-集电极电容的充电和栅极-发射极电容的充电直至IGBT全饱和。
栅极电流IG对输入电容进行充电,IGBT的导通和关断特性由与充电过程有关的电压VGE和VCE来体现。
在关断期间,所描述的过程运行在相反的方向,电荷必须从栅极上移除。
由于输入电容的非线性,为了计算驱动器输出功率,输入电容可能只被应用到某种范围。
一种更为实际的确定驱动器输出功率的方法是利用栅极电荷特性。
图 1 IGBT 的电容图 2 简化的栅极充电波形3、如何测量和确定栅极电荷栅极电荷可以通过一个简化的测试电路进行测量。
IGBT栅极驱动的参数要求和驱动条件IGBT(Insulated Gate Bipolar Transistor)是一种集成了MOSFET (金属氧化物半导体场效应晶体管)和BJT(双极型晶体管)特性的功率半导体器件。
它在高压和高电流应用中具有低导通压降和高开关速度的优势,广泛应用于各种交流或直流驱动系统中。
为了确保IGBT的正常工作和稳定性,需要满足以下的参数要求和驱动条件:1.驱动电压:IGBT需要足够的驱动电压来打开和关闭,这个电压通常是5V至15V之间的电压。
过低的驱动电压将导致IGBT无法完全开启,而过高的电压则可能导致电路故障或产生过大的功耗。
2.驱动电流:IGBT的驱动电流需要足够大,以确保其快速开启和关闭。
一般情况下,驱动电流应为IGBT额定电流的10%至30%。
如果驱动电流过小,IGBT可能无法完全开启,从而导致导通压降增大和功耗增加。
如果驱动电流过大,可能会造成电流和功率浪费。
3.上升时间和下降时间:IGBT的上升时间和下降时间决定了其开关速度。
通常情况下,上升时间和下降时间应尽可能短,以减少开关过程中的功耗。
为了实现更快的开关速度,可以采用专用的驱动电路或芯片,如光耦隔离驱动器。
4.脉冲宽度:IGBT的工作需要根据特定的应用进行脉冲宽度调制。
脉冲宽度可以通过外部控制信号(如PWM信号)来调节。
脉冲宽度的控制可以实现IGBT的开关控制和功率输出的调节。
5.抗干扰能力:IGBT需要具有较好的抗干扰能力,以保证其在工作过程中不受外界的电磁干扰和噪声干扰。
为了减少驱动过程中的电磁干扰,可以采用抗干扰设计的驱动电路或模块。
除了上述参数要求外,IGBT的驱动条件还需要满足以下几个方面:1.保证驱动电路的稳定性和可靠性,防止驱动电流的波动或噪声干扰,采用适当的滤波和隔离措施。
2.控制IGBT的开启和关闭时间,调整驱动电路的延时时间和响应速度,以适应不同的应用要求。
3.保护IGBT免受过电流、过压和过温等异常情况的影响。
IGBT驱动参数计算详解大功率IGBT 模块在使用中驱动器至关重要,本文介绍在特定应用条件下IGBT门极驱动性能参数的计算方法,经验公式及有关CONCEPT 驱动板的选型标准,得出的一些参数值可以作为选择一款合适IGBT驱动器的基本依据。
1 门极驱动的概念IGBT存在门极-发射极电容Cge,门极-集电极电容Cgc,我们将IGBT的门极等效电容定义为Cg,门极驱动回路的等效电路如下图所示:其本质是:一个脉冲电压源向RC电路进行充放电,对于这个电压源,有2个物理量我们需要关心,1.它的功率;2.它的峰值电流。
2 驱动功率的计算驱动器是用来控制功率器件的导通和关断。
为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压VGE_on,或者是对门极进行放电至门极关断电压VGE_off。
门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。
这个参数我们称为驱动功率PDRV。
驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。
请注明出处.igbt8.驱动功率可以从门极电荷量QGate,开关频率fIN,以及驱动器实际输出电压摆幅ΔVGate 计算得出:P DRV = Q Gate * f IN * ΔV Gate (Eq. 1)备注:P DRV: 驱动器每通道输出功率;f IN: IGBT开关频率;Q Gate :IGBT门极电荷,可从规格书第一页查出,不同IGBT该数值不同;ΔV Gate:门极驱动电压摆幅,等于驱动正压+U 和负压–U 之间差值。
如果门极回路放置了一个电容CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1 所示:图1.带外接阻容的门级驱动只要CGE 在一个周期被完全的充放电,那么RGE 值并不影响所需驱动功率。
驱动功率可以从以下公式得出:P DRV = Q GATE * f IN *ΔV GATE + C GE * f IN*ΔV GATE2(Eq. 2)这个功率是每个IGBT 驱动时必须的,但门极的充放电是没有能量损失的,这个功率实际上损失在驱动电阻及外部电路中。
IGBT 以及MOSFET 的驱动参数的计算方法简介本应用指南介绍了在特定应用条件下门极驱动性能参数的计算方法。
通过本应用手册得出的一些参数值可以作为选择一款合适驱动器的基本依据。
CONCEPT 产品的数据手册中所给出的参数在实际应用中是可以直接使用的。
驱动器内部功率损耗以及其他内部参数不必进一步降额或者修正。
对于快速预览,公式1,4及5是最重要的。
所需驱动功率驱动器是用来控制功率器件的导通和关断。
为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通电压V GE_on ,或者是对门极进行放电至门极关断电压V GE_off 。
门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。
这个参数我们称为驱动功率P DRV 。
驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。
驱动功率可以从门极电荷量Q Gate ,开关频率f IN ,以及驱动器实际输出电压摆幅∆V Gate 计算得出:Gate IN Gate DRV V f Q P ∆⋅⋅= (Eq. 1)如果门极回路放置了一个电容C GE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图1所示:图1.带外接阻容的门级驱动只要C GE 在一个周期内被完全的充放电,那么R GE 值并不影响所需驱动功率。
驱动功率可以从以下公式得出:2Gate IN GE Gate IN Gate DRV V f C V f Q P ∆⋅⋅+∆⋅⋅= (Eq. 2)以上公式是在门极驱动电流不发生谐振的条件下得出的。
只要这个开关过程是IGBT 门极从完全打开到完全关断或者反过来,则驱动功率并不依赖于门极电阻及占空比的变化而变化。
接下来我们来看如何确定门极电荷量Q Gate 。
ACIN GH (output high)I OUT GL (output low)integration timegate charge: 11.4uC 门极电荷量Q Gate 绝不能从IGBT 或MOSFET 的输入电容C ies 计算得出。
IGBT驱动芯片的驱动能力计算
顾恩伟
上方能源
2012年10月17日
概要:一个可靠稳定的IGBT驱动电路设计需要IGBT门端损耗与驱动电路的驱动能力相匹配。
关键词:IGBT,驱动能力
1.IGBT门端参数计算
P g=fQ g∆V
I gmax=V R g
I gavg=fQ g
其中,f开关频率、Q g为IGBT门端电荷量、V为正或负驱动电压值、R g为门电阻。
例:IGBT(FZ1600R12KE3)门端电荷量Q g为15.4uC,驱动器的驱动电压为+15V与-5V,R g为2Ω,开关平率为7KHz,计算门端参数:
P g=7k∗15.4u∗20=2.156W
I gmax+=15
2
=7.5A
I gmax−=−5
2
=−2.5A
I gavg=7k∗15.4u=108mA
2.驱动器驱动参数
●VLA500:
I gmax+为12A
I gmax−为-12A
I gavg为210mA
●HCLP316J
P o为400mW
I gmax+为2.5A
I gmax−为-2.5A
I gavg为20mA
3.驱动参数与IGBT参数比较
驱动参数需要大于IGBT门端参数,所以VLA500可以驱动 FZ1600R12KE3,而HCLP-316J 不行。