有关线段角的计算问题专门练习题
- 格式:doc
- 大小:287.00 KB
- 文档页数:4
《线段与角度》的练习题线段与角度的练题
1. 线段练题:
a. 画一个长度为5cm的线段。
b. 根据给出的方向,画一个长度为8cm的线段。
c. 比较上面两个线段的长度。
2. 角度练题:
a. 画一个 90°的直角。
b. 画一个 45°的角度。
c. 比较上面两个角度的大小。
d. 画一个锐角。
e. 画一个钝角。
3. 混合练题:
a. 画一个以AB为边、90°为角度的直角三角形。
b. 如果一个直角三角形的直角边长为6cm,斜边长为10cm,求第三条边的长度。
c. 画一个以AC为边、45°为角度的等腰直角三角形。
d. 复以上练的内容,并回答以下问题:
- 直角三角形有几条直角边?
- 钝角的度数大于锐角的度数吗?
- 两个角度相等的直角形是什么角形?
- 直角处的两个线段称为什么?
4. 挑战题:
a. 画一个以AB为边、60°为角度的等边三角形。
b. 画一个以ABC为边、90°为角度的正方形。
c. 画一个以AD为边、120°为角度的正方形。
d. 在一个直角坐标系中画一个图形,其中包括不同角度和线段的组合。
以上是线段与角度的练习题,请按照题目要求完成。
综合算式专项练习题线段与角的计算综合算式专项练习题——线段与角的计算一、线段计算题1. 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC 的长度。
解析:根据线段加法原理,线段AC的长度等于线段AB的长度加上线段BC的长度。
即AC = AB + BC = 5cm + 7cm = 12cm。
2. 在平面直角坐标系中,已知点A(-3, 4)和点B(5, -2),求线段AB的长度。
解析:根据两点间距离公式,线段AB的长度可以计算为√[(x2 -x1)² + (y2 - y1)²]。
带入坐标得到AB = √[(5 - (-3))² + (-2 - 4)²] = √[64 + 36] = √100 = 10。
二、角计算题1. 已知一条线段DE,角BED为90°,角AEB为120°,求角DEB的度数。
解析:根据角的和为180°,∠DEB = 180° - ∠BED - ∠AEB = 180° - 90° - 120° = -30°。
2. 已知∠ABC = 30°,∠BCD = 120°,求∠ABD的度数。
解析:根据角的外角性质,∠ABD = ∠BCD - ∠ABC = 120° - 30° = 90°。
三、混合算式题1. 一条线段的长度为9cm,截取其中的1/4作为新线段的长度,再将新线段平均分成3段,求每段的长度。
解析:新线段的长度为9cm * (1/4) = 9cm * 0.25 = 2.25cm。
将新线段平均分成3段,则每段的长度为2.25cm / 3 = 0.75cm。
2. 若一物体从点A开始沿直线运动,经过8秒后到达点B,然后还需经过5秒才能到达点C,求从A到C的总时间。
解析:从A到B的时间已知为8秒,从B到C的时间已知为5秒。
(完整)初中数学线段与角练习题初中数学线段与角练题1. 已知线段AB的长度为5,线段BC的长度为3,求线段AC 的长度。
思路:根据线段的性质,线段AC的长度等于线段AB的长度加上线段BC的长度。
解答:线段AC的长度为5 + 3 = 8。
2. 已知线段DE的长度为4,点F是线段DE的中点,求线段EF的长度。
思路:根据线段的性质,线段EF的长度等于线段DE的长度除以2。
解答:线段EF的长度为4 ÷ 2 = 2。
3. 角XYZ的度数为37°,角YZW的度数为83°,求角XZW的度数。
思路:根据角度的性质,角XZW的度数等于角XYZ的度数加上角YZW的度数。
解答:角XZW的度数为37° + 83° = 120°。
4. 角ABC的度数为78°,角CDE的度数为42°,角BED的度数为90°,求角ABD的度数。
思路:根据角度的性质,角ABD的度数等于角ABC的度数加上角CDE的度数减去角BED的度数。
解答:角ABD的度数为78° + 42° - 90° = 30°。
5. 已知角MNO的度数为60°,角NOP的度数为120°,求角MOQ的度数。
思路:根据角度的性质,角MOQ的度数等于360°减去角MNO的度数减去角NOP的度数。
解答:角MOQ的度数为360° - 60° - 120° = 180°。
6. 已知角PQR是直角,角RPQ的度数为30°,求角RPQ的补角的度数。
思路:根据角度的性质,角RPQ的补角的度数等于90°减去角RPQ的度数。
解答:角RPQ的补角的度数为90° - 30° = 60°。
初2014级(七上)数学 线段和角的专题训练出题人:邹竹班级 姓名 学号一、知识要点1.有关线段长度的计算计算线段的长度是本章的计算题之一,是初中阶段求线段长度入门知识,也是中考必考知识点,因此,应重点掌握,解这类题目,线段的和、差、倍、分是基础,通常利用线段中点的定义,比例、方程综合解决这类题目. 2.基本结论一,如图,①若AD=BC ,则AC=DB ;②若AC=DB ,则AD=CB ;③AD+BC=AB+CD 3.基本结论二,如图,若M 、N 分别是AC 、BC 的中点,则12MN AB =4.角同线段一样,都是今后所学知识的基础,是中考命题的必考内容,有关角计算是本章两大计算问题之一.角的计算通常离不开如下知识点,周角、平角,直角,角的平分线,角的和、差、倍、分,以及方程、比例等.解决这类问题,通常是在认真审题的基础上,将有关知识融为一体来解题.5.若OE 、OD 分别是∠AOC 、∠COB 的角平分线,则12EOD AOB ∠=∠(如图)6.如图,若AO ⊥BO ,CO ⊥DO ,则∠BOC+∠AOD=180°,∠AOC=∠BOD (如图)二、训练题1、如图4-2-10在直线l 上按指定方向依次取点A 、B 、C 、D,且使AB :BC :CD=2:3:4,若AB 的中点M 与CD 的中点N 的距离是15cm ,求线段AB 的长.lABCD··N M图4-2-10O BC A D2、 如图4-2-8,将线段AB 延长至C ,使BC=2AB ,AB 的中点为D ,E 、F 是BC 上的点,且BE :EF=1:2,EF :FC=2:5,AC=60cm ,求DE 、DF 的长.A B C D E F图4-2-83、 在直线l 上有A 、B 、C 三个点,已知AB=4cm ,BC=3cm ,若O 是线段AC 的中点,求线段OB 的长度.4、已知线段AC 和BC 在同一直线上,如果AC=5cm ,BC=3cm ,求线段AC 和线段BC 的中点间的距离.5、如图4-2-10在直线l 上按指定方向依次取点A 、B 、C 、D,且使AB :BC :CD=2:3:4,若AB 的中点M 与CD 的中点N 的距离是15cm ,求线段AB 的长.lAC··N M图4-2-106、 如图4-4-2,∠AOB=90 ,OM 平分∠AOC,ON 平分∠BOC ,求∠MON 的度数.OAMBNC 图4-4-27、 如图4-6-9,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC. (1)求∠MON 的度数;(2)若(1)中,∠AOB=α,其它条件不变,求∠MON 的度数; (3)若(1)中,∠BOC=β(β为锐角),其它条件不变,求∠MON 的度数; (4)从(1)(2)(3)中你能得到什么结论?8、如图4-6-11,已知AO ⊥OC ,DO ⊥OB ,∠AOD :∠BOC=11:7. 求∠COD 的度数.OCBAD图4-6-11A B C OMN9、在如图4-6-1所示的方格纸中分别过点A、C画出与线段AB垂直的线段并用符号记出它们.10、.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于()A Q P M NB CA、1B、2C、3D、411、一条直线上距离相等地立有10根标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.6秒,则当他走到第10杆时所用时间是( )(A)11秒(B)13.2 秒(C)11.88秒(D)9.9秒12.直线l上有10个点A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A1A2=A2A3=A3A4=…=A9A10,则以这些点为端点的线段共有()条;将所有这些线段的中点用红点标出,则可得()个红点。
培优专题02 与三角形有关的线段和角的问题1.(2022·全国·八年级专题练习)如图,在ABC V 中,20AB =,18AC =,AD 为中线.则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4【答案】B 【分析】利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.【详解】Q 在ABC V 中,AD 为中线,BD CD \=.ABD C AB BD AD =++Q △,ACD C AC CD AD =++△,20182ABD ACD C C AB AC \-=-=-=V V .故选:B .【点睛】本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.2.(2022·全国·八年级专题练习)如图,ABC V 的面积是2,AD 是ABC V 的中线,13AF AD =,12CE EF =,则CDE △的面积为( )A .29B .16C .23D .49【答案】A【分析】根据中线的性质即可求出S △ACD ,然后根据等高时,面积之比等于底之比,即可依此求出3.(2022·四川成都·七年级期中)如图,ABC V 中,12Ð=Ð,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ^于H ,下列判断,其中正确的个数是( )①BG 是ABD V 中边AD 上的中线;②AD 既是ABC V 中BAC Ð的角平分线,也是ABE V 中BAE Ð的角平分线;③CH 既是ACD V 中AD 边上的高线,也是ACH V 中AH 边上的高线.A .0B .1C .2D .3【答案】C【分析】根据三角形的高,中线,角平分线的定义可知.【详解】解:①G 为AD 中点,所以BG 是ABD △边AD 上的中线,故正确;②因为12Ð=Ð,所以AD 是ABC V 中BAC Ð的角平分线,AG 是ABE △中BAE Ð的角平分线,故错误;③因为CF AD ^于H ,所以CH 既是ACD △中AD 边上的高线,也是ACH V 中AH 边上的高线,故正确.故选:C .【点睛】熟记三角形的高,中线,角平分线是解决此类问题的关键.4.(2018·江苏省江阴市第一中学七年级期中)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A .5B .6C .7D .8【答案】B 【分析】据三角形ABC 的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.【详解】解:C 点所有的情况如图所示:由图可得共有6个,故选:B .【点睛】本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.5.(2022·江苏·七年级专题练习)如图, D 、E 分别在∆ABC 的边 BC 、AC 上,13CD BC =,13CE AC =,CD = 1 ,CE = 1 ,AC , AD 与 BE 交于点O ,已知∆ABC 的面积为 12,则∆ABO 的面积为()A .4B .5C .6D .76.(2019·天津市静海区第二中学八年级期中)如图,在△ABC 中,∠B=70°,∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°7.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为( )A .60°B .67.5°C .75°D .82.5°【答案】C 【分析】根据//BC EF ,可得45FDB F Ð=Ð=°,再根据三角形内角和即可得出答案.【详解】由图可得6045B F Ð=°Ð=°,,∵//BC EF ,∴45FDB F Ð=Ð=°,∴180180456075BMD FDB B Ð=°-Ð-Ð=°-°-°=°,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.8.(2022·广西贵港·七年级期末)如图7,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠1+∠2=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;④∠F =135°,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:标注角度如图所示:∵AB ⊥BC ,AE ⊥DE ,∴∠1+∠AEB =90°,∠DEC +∠AEB =90°,∴∠1=∠DEC ,又∵∠1+∠2=90°,∴∠DEC +∠2=90°,∴∠C =90°,∴∠B +∠C =180°,9.(2022·全国·八年级课时练习)如图,将ABC V 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140Ð=°,则2Ð的度数为( )A .12B .60°C .90°D .140°【答案】D【分析】根据翻折变换前后对应角不变,故∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,∵∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.10.(2022·全国·八年级专题练习)如图,a b ∥,一块含45°的直角三角板的一个顶点落在直线b 上,若15854¢Ð=°,则∠2的度数为( )A .1036¢°B .1046¢°C .10354¢°D .10454¢°【答案】C 【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∵直角三角板含一个45°的锐角,∴该三角板为等腰三角形,∴∠4=45°,∵∠1=58°54′,又∵在三角形中有∠1+∠4+∠5=180°,∴∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∵∠3+∠5=180°,∴∠3=180°-∠5=180°-76°6′=103°54′,∵a b ∥,∴∠2=∠3,∴∠2=103°54′,故选:C .【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.11.(2022·江苏·盐城市初级中学七年级期中)如图,AD 是ABC V 的高,45BAD Ð=°,65C =°∠,则BAC Ð=________.【答案】70°【分析】先由直角三角形的性质求得∠DAC ,然后再根据线段的和差求解即可.【详解】解:AD Q 是ABC V 的高,90ADC °\Ð=,∵65C =°∠=9025DAC C °\Ð-Ð=o ,254570BAC DAC BAD °°°\Ð=Ð+Ð=+=.故答案为:70°.【点睛】本题主要考查了角的和差、直角三角形的性质、三角形高的性质等知识点,掌握直角三角形两锐角互余是解答本题的关键.12.(2022·江苏·扬州中学教育集团树人学校七年级期中)如图,在△ABC 中,点D 在BC 上,点E 、F 在AB 上,点G 在DF 的延长线上,且∠B =∠DFB ,∠G =∠DEG ,若29BEG Ð=°,则∠BDE 的度数为_____.【答案】58°【分析】设BED x Ð=,则29G DEG x Ð=Ð=+°,再根据三角形的内角和定理可得1222EDG x Ð=°-,根据三角形的外角性质可得122B DFB x Ð=Ð=°-,然后在BDE V 中,根据三角形的内角和定理即可得.【详解】解:设BED x Ð=,29BEG Ð=°Q ,29BED G DEG BEG x Ð=Ð=Ð=++\а,1801222EDG G DEG x \Ð=°-Ð-Ð=°-,122BED B DFB EDG x \Ð=Ð=Ð=а-+,()()180********BED BDE B x x Ð+=\Ð=°-а-°-=+°,故答案为:58°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理是解题关键.13.(2022·江苏·扬州市江都区第三中学七年级阶段练习)如图,∠A =45°,∠BCD =135°,∠AEB 与∠AFD 的平分线交于点P .下列结论:①EP ⊥FP ;②∠AEB +∠AFD =∠P ;③∠A =∠PEB +∠PFD .其中正确的结论是______.∵∠AEB与∠AFD的平分线交于点∴12BEPAEP AEB=Ð=ÐÐ∵∠BCD=135°,∴∠BCF=180°-∠BCD=45°14.(2022·全国·八年级专题练习)如图,在△ABC中,AM是△ABC的角平分线,AD是△ABC的高线.猜想∠MAD、∠B、∠C之间的数量关系,并说明理由.15.(2022·全国·八年级单元测试)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.【答案】(1)8(2)17【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是△ABC的中线得AD=CD,根据△ABD的周长为17和AB=1得AD+BD=9,即可求解.(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)如图所示:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为10,∴AB+AD+BD=10,∵AB=1,∴AD+BD=9,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+9=17.【点睛】本题考查的是三角形的三边关系、三角形的中线的定义,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.16.(2022·河南周口·七年级期末)如图.AD为△ABC的中线,BE为△ABD的中线,EF⊥BC于点F.(1)在△BEF中,请指出边EF上的高;(2)若BD=5,EF=2,求△ACD的面积;(3)若AB=m,AC=n,若△ACD的周长为a,请用含m,n,a的式子表示△ABD的周长.【答案】(1)边EF上的高是BF;(2)S△ACD=10;(3)△ABD的周长为m+a-n.【分析】(1)根据三角形高的定义即可得出边EF上的高是BF;(2)先求得△BDE的面积,然后根据三角形的中线将三角形分成两个三角形得到S△ABE=S△BDE=5,进一步得到S△ACD=S△ABD=10;(3)利用三角形周长公式即可求得.(1)解:∵EF⊥BC于点F,17.(2022·陕西渭南·七年级期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H .已知∠1=52°,∠2=128°.(1)探索BD 与CE 的位置关系,并说明理由;(2)若∠C =78°,求∠A 的度数.【答案】(1)BD CE ∥,理由见解析(2)50°【分析】(1)由152DGF Ð=Ð=°,∠2=128°,得到∠DGF +∠2=180°,利用“同旁内角互补,两直线平行”可证出BD CE ∥;(2)由BD CE ∥得到78ABD C Ð=Ð=°,由三角形内角和定理求解即可.(1)BD CE ∥,理由:∵152DGF Ð=Ð=°,∠2=128°,∴252128180DGF Ð+Ð=°+°=°,∴BD CE ∥.(2)∵BD CE ∥,∵78ABD C Ð=Ð=°,∴1801180785250A ABD Ð=°-Ð-Ð=°-°-°=°.【点睛】本题考查了平行线的判定与性质、三角形内角和定理,解题的关键是熟练掌握相关性质和定理.18.(2022·江苏·兴化市乐吾实验学校七年级阶段练习)(1)【问题背景】如图1的图形我们把它称为“8字形”,请说明A B C D Ð+Ð=Ð+Ð;(2)【简单应用】如图2,AP 、CP 分别平分BAD Ð、BCD Ð,若35ABC Ð=°,15ADC Ð=°,求P Ð的度数;(3)【问题探究】如图3,直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,若35ABC Ð=°,29ADC Ð=°,请猜想P Ð的度数,并说明理由;(4)【拓展延伸】在图4中,若设C a Ð=,B b Ð=,13CAP CAB Ð=Ð,13CDP CDB Ð=Ð,试问P Ð与C Ð、B Ð之间的数量关系为:___.(用a 、b 表示P Ð,不必说明理由)【答案】(1)见解析(2)25P Ð=°(3)32P Ð=°;理由见解析。
中考数学复习线段和角的计算专项训练题1.已知线段AB=10 cm,在直线AB上有一点C,且BC=2 cm,则线段AC 的长为( )A.12 cm B.8 cm C.12 cm或8 cm D.不能确定2. 如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且点D是AC的中点,则AC的长等于( )A.3 cm B.6 cm C.11 cm D.14 cm3. 如图所示,C,D为线段AB上的两点,则下列各式中错误的是( )A.AB=AD+DB B.CB=AB-AC C.CB-DB=CD D.CB-DB=AC4. 如图,AB=12 cm,C为AB上的一点,D是AC的中点,E是BC 的中点,则DE的长是()A.3 cm B.6 cm C.7.5 cm D.9 cm5. 一个角是70°18′,则这个角等于( )A.70.18° B.70.3° C.70.018° D.70.03°6. 如图,∠1+∠2等于( )A.60° B.90° C.110° D.180°7. 如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对A.南偏西60° B.南偏西30° C.北偏东60° D.北偏东30°8. 已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =______________________.9. 如图,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB =1∶2,则线段AC的长度为 cm.10. (1)27.38°=____°____′____″;(2)26°30′36″=_______°.11. 如图,已知∠EOA=90°,射线OD在北偏东35°的方向,反向延长射线OD于点C,∠DOE的度数为____,∠AOC的度数为______.12. 如图,已知线段AD=6 cm,线段AC=BD=4 cm,E,F分别是线段AB,CD的中点,求线段EF的长.13. 已知线段AB=8 cm,延长AB到C,使BC=7 cm,D是AB的中点,E是AC的中点,求线段DE的长.14. 已知线段AB=10 cm,直线AB上有一点C,且BC=4 cm,M是线段AC 的中点,求AM的长.15. 如图,C是线段AB的一个三等分点,点D在线段CB上,CD∶DB=17∶2,且CD-AC=3,求线段AB的长.16. 如图,O为直线AB上一点,∠COE=90°,OF平分∠AOE,∠COF=30°,求∠BOE的度数.17. 如图,BD平分∠ABC,BE分∠ABC为2∶5两部分,∠DBE=21°,求∠ABC的度数.18. 如图,已知∠AOB=40°,以O为顶点,OB为边作∠BOC=10°,若OD平分∠AOC,求∠AOD的度数.参考答案: 1---7 CBDBB BA 8. 11cm 或5cm 9. 810. (1) 27 22 48 (2) 26.5111. 35° 55°12. 解:AB =AD -BD =6-4=2 cm ,因为E 是AB 的中点,所以AE =12AB =1cm ;CD =AD -AC =6-4=2 cm ,因为F 是CD 的中点,所以DF =12CD =1 cm ;所以EF =AD -AE -DF =6-1-1=4 cm13. 解:因为AB =8 cm ,BC =7 cm ,所以AC =AB +BC =15 cm.又D ,E 分别为AB ,AC 的中点,所以AD =12AB =4 cm ,AE =12AC =7.5 cm ,所以DE =AE-AD =3.5 cm14. 解:(1)当C 点在线段AB 的外部时,如图①,AC =AB +BC =10+4=14 cm ,因为M 是线段AC 的中点,所以AM =12AC =7 cm ;(2)当C 点在线段AB的内部时,如图②,AC =AB -BC =10-4=6 cm ,因为M 是线段AC 的中点,所以AM =12AC =3 cm15. 解:设CD =17x ,则BD =2x ,CB =19x ,因为C 是AB 的一个三等分点.所以AC =12BC =192x ,由CD -AC =3得:17x -192x =3,解得x =0.4,所以AC=192×0.4=3.8,AB =3AC =11.4 16. 解:∠EOF =∠COE -∠COF =60°,因为OF 平分∠AOE ,所以∠AOE =2∠EOF =120°,所以∠BOE =∠AOB -∠AOE =60°17. 解:设∠ABE =2x ,则∠CBE =5x ,∠ABC =7x.因为BD 平分∠ABC ,所以∠ABD =12∠ABC =72x.所以∠DBE =∠ABD -∠ABE =72x -2x =21°,所以x=14°,所以∠ABC =7x =98°18. 解:(1)当射线OC 在∠AOB 的外部时,∠AOC =∠AOB +∠BOC =50°,因为OD 平分∠AOC ,所以∠AOD =12∠AOC =25° (2)当射线OC 在∠AOB 的内部时,∠AOC =∠AOB -∠BOC =30°,因为OD 平分∠AOC ,所以∠AOD =12∠AOC =15°。
七年级数学上册-线段和角精选练习题线段和角精选练习题一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是,∠AOC的余角是;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.33.如图,已知∠AO B=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.试题解析一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条【分析】由图知,线段有AB,BC,CD,AC,BD,AD.3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线【分析】根据线段的性质,可得答案.5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°【分析】先表示出这个角的余角为(90°﹣α),再列方程.18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115°D.105°【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE的度数.22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE()A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 6 个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于135 度.【分析】根据平角和角平分线的定义求得.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140 度.【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中点的定义表示出CM、DN,然后根据MN=CM+CD+DN求解即可.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC 可求.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是∠AOE ,∠AOC的余角是∠BOC ;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.【分析】(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;(2)根据余角定义进行分析即可.。
线段、角典型例题(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2基本的平面图形典型例题与强化训练典型例题:例1、已知线段AB ,延长线段AB 到C ,使BC=23 AB ,反向延长线段AB至D ,使AD=12AB ,P 为线段CD 的中点,已知BP=15cm ,求线段AB 、CD 的长。
例2、如图,C ,D ,E 将线段AB 分成2:3:4:5四部分,M ,P ,Q ,N 分别是AC ,CD ,DE ,EB 的中点,且MN=21,求线段PQ 的长度.例3、已知线段AB=14cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长.例4、如图所示,∠AOB=90°, ∠BOC=30°,OE 平分∠AOC ,OD 平分∠BOC,求∠DOE 的度数。
(1)若∠AOB=α,其他条件不变,∠DOE 等于多少?(2)若∠BOC=β,其他条件不变,∠DOE 等于多少(3)若∠AOB=α,∠BOC=β,其他条件不变,∠DOE 等于多少?例5、如图,直线AB 、CD 相交于点O ,且∠BOC=80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.例6、如图,由点O 引出六条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB=90°,OF 平分∠BOC ,OE 平分∠AOD 。
若∠EOF=170°,求∠COD 的度数。
练习:1.下列说法中,错误的是()A .经过一点可以作无数条直线B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段 2.下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点的线段叫做两点间的距离3.平面上的三条直线最多可将平面分成( )部分。
期末复习专题08 线段与角有关动点的计算问题考点一 有关线段的中点计算问题考点二 有关角的平分线计算问题考点三 线段上动点计算问题 考点四 角上动点计算问题考点一 有关线段的中点计算问题故选:D .【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.2.(2022·新疆·乌鲁木齐八一中学七年级期中)如图,数轴上M ,N ,P ,Q 四点对应的数都是整数,且M 为线段NQ 的中点,P 为线段NM 的中点.若点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,则数轴上的原点是( )A .点MB .点NC .点PD .点Q【答案】D 【分析】由已知条件可知2QN QM =,因为点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,依此可得到数轴上的原点.【详解】解:∵点M 为线段NQ 的中点,∴2QN QM =,∵点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,∴数轴上的原点是Q .故选:D .【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.(2022·云南·楚雄市中山镇初级中学七年级期末)C 为直线AB 上一点,且线段3cm AB =,5cm =BC ,则AC 的长度是 ________.【答案】8cm 或2cm【分析】分A 、C 在点B 异侧和A 、C 在点B 同侧两种情况,分别作出图形,根据线段的和差计算即可.【详解】解:如图1,当A 、C 在点B 异侧时,358cm AC AB BC =+=+=,如图2,当点A 、C 在点B 同侧时,532cm AC BC AB =-=-=,即AC 的长度是8cm 或2cm ,故答案为:8cm 或2cm .【点睛】本题考查了线段的和差计算,注意分类讨论思想的应用.4.(2022·全国·七年级专题练习)如图,M 是AB 的中点,N 是BC 的中点,7cm AB =,2cm BN =,则BC =________cm ,MC =______cm .AB=,点C线段(1)如图,已知线段8cmQ 点M 是AC 中点,12MC AC \=,M Q 为AC 的中点,N 为BC 的中点,1CM AC \=,1CN BC =,(1)若点C 为图1中线段AB 的“优点”6()AC AC BC =<(2)若点D 也是图1中线段AB 的“优点”(不同于点C )(填“=”或“¹”)[解决问题]∵点D是线段AB的“优点”,考点二有关角的平分线计算问题【点睛】本题主要考查了角平分线有关的计算以及几何图形中角的计算,解题关键是根据题意作出图形,运用分类讨论的思想分析问题.2.(2022·浙江台州·七年级期末)直线AB ,CD 相交于点O ,OE 是BOD Ð的角平分线,若3AOE BOC Ð=Ð,则EOC Ð的度数为( )A .36°B .72°C .108°D .144°【答案】C 【分析】根据OE 是BOD Ð的角平分线,得出DOE BOE Ð=Ð,根据3AOE AOD DOE BOC Ð=Ð+Ð=Ð,得出2DOE BOC Ð=Ð,求出36BOC Ð=°,即可得出272BOE BOC Ð=Ð=°,即可得出答案.【详解】解:∵OE 是BOD Ð的角平分线,∴DOE BOE Ð=Ð,∵3AOE AOD DOE BOC Ð=Ð+Ð=Ð,又∵AOD BOC Ð=Ð,∴3BOC DOE BOC Ð+Ð=Ð,∴2DOE BOC Ð=Ð,∴2BOE DOE BOC Ð=Ð=Ð,∵180DOE BOE BOC Ð+Ð+Ð=°,∴22180BOC BOC BOC Ð+Ð+Ð=°,解得:36BOC Ð=°,272BOE BOC \Ð=Ð=°,∴108EOC BOE BOC Ð=Ð+Ð=°,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,根据已知条件得出2DOE BOC Ð=Ð,是解题的关键.3.(2022·全国·七年级课时练习)如图,AB 、CD 交于点O ,若170=°∠,射线OE 平分∠AOC ,那么∠EOD =__________度.【答案】42°##42度【分析】先由对顶角相等求出【详解】解:∵∠AOC =∠∴∠BOD =70°,∵:2:3BOE EOD ÐÐ=,Ð,OD(1)如图1,OE平分AOB(2)如图2,OE、OD分别平分ÐÐ(3)若OE、OD分别平分AOC 接填空).则EOD EOC Ð=Ð1122AOC =Ð-Ð1(2AOB BOC =Ð+Ð45=°;则1(2EOD AOC Ð=Ð1(360)2AOB °=-Ð1(36090)2°°=-(1)如图1,过点O 作射线OE ,使OE 为AOD Ð的角平分线,当Ð=COE (2)如图2,过点O 作射线OE ,当OE 恰好为AOC Ð的角平分线时,另作射线求EOF Ð的度数;(3)过点O 作射线OE ,当OC 恰好为AOE Ð的角平分线时,另作射线OF ,时,求BOD Ð的度数.考点三线段上动点计算问题考点四 角上动点计算问题1.(2022·河北·石家庄外国语学校七年级期中)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,90C Ð=°,则旋转角BAB Т为( )A .60°B .100°C .120°D .150°【答案】C 【分析】直接根据180BAB BAC ¢Ð=°-Ð即可得出答案.【详解】解:∵将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,∴180********BAB BAC ¢Ð=°-Ð=°-°=°,故选:C .【点睛】本题考查了旋转角,题目比较简单,属于基础题.2.(2022·陕西·西安辅轮中学七年级期末)已知:O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .Ð=°Q,POB68\Ð=°-°,68POM nÐ=°Q,MON90\Ð=°-°-°=°-°,1809090AON n n\Ð-Ð=°-°-°-°=°;AON POM n n(90)(68)22当6890<<时,如图2,理由如下:nQ,Ð=°68POB\Ð=°-°,POM n68Q,Ð=°90MON\Ð=°-°-°=°-°,AON n n1809090\Ð+Ð=°-°+°-°=°;(90)(68)22AON POM n n故答案为:068n<<,6890<<.n【点睛】本题主要考查角的加减运算,能够熟练根据要求列角的等量关系是解题关键.。
《线段与角》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.如图,其中∠1与∠2是对顶角的是( )2.下列各式中,换算正确的是( )A.65.5°=65°50' B.13°12'36"=13.48°C.18°18'18"=3.33°D.75.2°=75°12'3.下列语句错误的是( )A.任意两个锐角的和一定小于180°B.锐角的余角一定是锐角C.钝角没有余角,但一定有补角D.一个角的补角一定比它本身大4.如图,下列说法:①OA的方向是北偏东30°;②OB的方向是西偏北65°;③OC的方向是南偏西15°;④OC的方向是南偏西75°.其中错误的有( )A.1个B.2个C.3个D.4个5.如果一个角的补角是它的3倍,那么这个角是( )A.30°B.45°C.60°D.90°6.如图,∠1=15°,∠AOC=90°,点B,O,D在一条直线上,则∠3的度数是( ) A.75°B.105°C.15°D.165°7.如果锐角∠1加上90°后,所得到的角与∠2互补,那么∠1与∠2之间的关系是( ) A.相等B.互余C.互补D.无法确定8.如图,∠1=105°,∠2+∠3=180°,则∠4等于( )A.65°B.75°C.80°D.105°9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a( km)及行驶的平均速度6(km/h)用(a,b)表示,则从景点A到景点C用时最少的路线是( ) A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C10.如图,直线a,b与直线c相交于点A,B.若∠1与∠2互补,则下列说法中,错误的是( )A.∠2与∠3互补B.∠1与∠4互补C.∠3与∠4相等D.∠4与∠5互补二、填空题(每小题3分,共24分)11.如图,点C、点D分别是线段AB的中点和三等分点,若AB=6,则CD=_______.12.把一根筷子一头放在水里,一头露在外面,我们发现它变弯了,它真的变弯了吗?其实没有,这只是光的折射现象,即光从空气射入水中,光线的传播方向发生了改变.如图,一束光AO射入水中,在水中的传播路径为OB,则∠1和∠2之间的大小关系是_______.13.如图,在线段AB上有两点C、D,且D点是AC的中点,若BC=4,BD=6,则AC =_______,AB=_______,点C是AB的_______.14.如图,直线AB与CD相交于点O,OE是∠AOC的平分线,若∠1=20°,则∠2=_______°,∠3=_______°.15.一个角的余角比这个角的补角的一半小40°,则这个角为_______度.16.如图,点A、O、B在一条直线上,若∠AOE=∠BOE=∠COD,则∠DOE的余角有_______,∠DOE的补角有_______.17.如图,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:5,则∠BOD=_______°.18.如图所示是一个3×3的正方形网格,则图中∠1+∠2+∠3+…+∠9=_______°.三、解答题(共46分)19.(6分)如图,直线MN,PQ,ST都经过点O,若∠1=25°,∠3=58°,求∠2的度数.20.(6分)已知线段AB和线段BC在同一条直线l上,且AB=4,BC=2,请认真分析、思考:线段AC是否存在最小值或者最大值?如果有,请写出来;如果没有,请说明理由.21.(7分)如图,点D,E在BC上,∠BDF和∠AEG都是直角,且∠1=∠2,请探究∠3与∠4的关系,并说明理由.22.(7分)按下面方法折纸,然后回答问题:(1) ∠2是多少度的角?为什么?(2) ∠1与∠3有何关系?为什么?23.(10分)数学老师到菜市场买菜,发现若把10 kg的菜放在某秤上,秤的指针盘上的指针转了180°,于是老师在学完一元一次方程和角的相关知识后给学生提出了两个问题:(1)老师把6 kg的菜放在该秤上,指针转过多少度?(2)若刘大妈第一次把若干千克的菜放在秤上,通过指针盘度数发现与自己所需数量还差一些,于是再放了1 kg的菜上去,发现前、后两次指针转过的角度恰好互余,求刘大妈第一次放多少千克菜在秤盘上?24.(10分)认真思考,解答下列问题:(1)如图①,经过点O的2条射线OA,OB,组成1个角,是∠AOB(小于平角,以下都一样);如图②,经过点O的3条射线OA,OB,OC,组成3个角,分别是∠AOB,∠AOC,∠BOC;如图③,经过点O的4条射线OA,OB,OC,OD,组成_______个角,分别是_____________________.(2)认真分析、思考,根据你从上面发现的规律,请猜想并写出经过点O有n条射线时,一共可以组成多少个角.(不需要说明理由)参考答案一、1.C 2.D 3.D 4.C 5.B 6.B 7.B 8.B 9.D 10.A 二、11.1 12.∠1>∠2 13.4 8 中点14.40 140 15.80 16.∠AOD,∠COE ∠AOC 17.157.5 18.405 三.19.97°20.线段AC存在最小值和最大值.(1)如图①,点C在线段AB上时,AC 有最小值2;(2)如图②,点C在线段AB的延长线上时,AC有最大值6.21.∠3=∠4.22.(1)∠2=90°(2)∠1与∠3互余.23.(1)108°.(2)4 kg24.( 1)6 ∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD (2)一共可以组成()12 n n-个角.。
人教版2020——2021年七年级上册新题线段与角的计算专项练习1.(2020秋•福田区校级期中)如图,P是线段AB上任一点,AB=12厘米,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若AP=8厘米.①运动1秒后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2秒时,CD=1厘米,直接写出AP的值是9或11厘米.【分析】(1)①先求出PB、CP与DB的长度,然后利用CD=CP+PB﹣DB即可求出答案.②用t表示出AC、DP、CD的长度即可求证AC=2CD;(2)当t=2时,求出CP、DB的长度,由于没有说明D点在C点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm),∵AP=8cm,AB=12cm,∴PB=AB﹣AP=4(cm),∴CD=CP+PB﹣DB=2+4﹣3=3(cm),②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,1∴AC=2CD;(2)当t=2时,CP=2×2=4(cm),DB=3×2=6(cm),当点D在C的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7(cm),∴AC=AB﹣CB=5(cm),∴AP=AC+CP=9(cm),当点D在C的左边时,如图所示:∴AD=AB﹣DB=6(cm),∴AP=AD+CD+CP=11(cm),综上所述,AP=9或11,故答案为:9或11.2.(2020秋•聊城期中)如图所示,BC=6cm,BD=7cm,D是AC的中点,求AD的长.【分析】由点D是AC的中点,于是得到AD=CD=1cm,根据线段的和差即可得到结论.【解答】解:∵BC=6cm,BD=7cm,.2∴CD=BD﹣BC=1cm;∵点D是AC的中点,∴AD=CD=1cm.3.(2020秋•聊城期中)在平面内有三点A,B,C,(1)当A,B,C三点不共线时,如图,画直线AC,线段BC,射线AB,在线段AB上任取一点D(不同于点A,B),连接CD,并数一数,此时图中共有多少条线段.(2)当A,B,C三点共线时,若AB=25cm,BC=16cm,点E,F分别是线段AB,BC的中点,求线段EF的长.(画出图形并写出计算过程)【分析】(1)根据直线,射线,线段的概念,利用直尺即可作出图形;(2)根据线段的定义即可求解.【解答】解:(1)作图如下:此时图中共有6条线段;(2)解:有两种情况:①当点C在线段AB的延长线上时,如图1:因为E,F分别是AB,BC的中点,AB=25cm,BC=16cm,所以,3所以EF=EB+BF=+8=20.5(cm);②当点C在线段AB上时,如图2:根据题意,如图2,,,所以EF=BE﹣BF=12.5﹣8=4.5(cm),综上可知,线段EF的长度为20.5cm或4.5cm.4.(2020秋•香洲区校级期中)如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.【分析】(1)由B在线段AC上可知AC=AB+BC,把AB=21cm,BC=AB代入即可得到答案;(2)根据O是线段AC的中点及AC的长可求出CO的长,由OB=CO﹣BC即可得出答案.【解答】解:(1)∵AB=21cm,BC=AB=7cm,∴AC=AB+BC=21+7=28(cm);(2)由(1)知:AC=28cm,∵点O是线段AC的中点,∴CO=AC=×28=14(cm),∴OB=CO﹣BC=14﹣7=7(cm).45.(2020秋•振兴区校级期中)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?你能用一句简洁的话描述你发现的结论吗?【分析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可,(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=(AC+BC)=7cm;(2)MN=a,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=(AC+BC)=a;结论:无论点C在线段上移动到哪里,MN始终长为AB的一半.566.(2020秋•锦江区校级期中)如图,线段AB =8cm ,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.(1)AC =3cm ,求线段CM 、NM 的长;(2)若线段AC =m ,线段BC =n ,求MN 的长度(m <n 用含m ,n 的代数式表示).【分析】(1)求出AM 长,代入CM =AM ﹣AC 求出即可;分别求出AN 、AM 长,代入MN =AM ﹣AN 求出即可;【解答】解:(1)∵AB =8cm ,M 是AB 的中点,∴AM =AB =4cm ,∵AC =3cm ,∴CM =AM ﹣AC =4﹣3=1(cm );∵AB =8cm ,AC =3cm ,M 是AB 的中点,N 是AC 的中点,∴AM =AB =4cm ,AN =AC =1.5cm ,∴MN =AM ﹣AN =4﹣1.5=2.5(cm );(2)∵AC =m ,BC =n ,∴AB =AC +BC =m +n ,∵M 是AB 的中点,N 是AC 的中点,∴AM =AB =(m +n ),AN =AC =m ,∴MN =AM ﹣AN =(m +n )﹣m =n .7.(2020秋•铁西区期中)如图,已知点C ,D 在线段AB 上,且AC :CD :DB =2:5:3,AC =4cm,若点M是线段AD的中点,求线段BM的长.【分析】设AC=2xcm,CD=5xcm,BD=3xcm,由AC=4cm,得到2x=4,求得x=2,于是得到AC=2×2=4(cm),CD=5×2=10(cm),DB=3×2=6(cm),根据线段中点的定义得到结论.【解答】解:设AC=2xcm,CD=5xcm,BD=3xcm,∵AC=4cm,∴2x=4,解得:x=2,∴AC=2×2=4(cm),CD=5×2=10(cm),DB=3×2=6(cm),∴AD=AC+CD=4+10=14(cm),∵点M是线段AD的中点,∴DM=AD=14=7(cm),∴BM=BD+DM=6+7=13(cm).8.(2020秋•锦江区校级期中)(1)如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,求线段MN的长度;(2)已知点C在线段BA的延长线上,点M,N分别是AC,BC的中点,设BC﹣AC=a,请根据题意画出图形并求MN的长度;(3)在(1)的条件下,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?7【分析】(1)根据中点的定义、线段的和差,可得答案;(2)根据中点的定义、线段的和差,可得答案;(3)根据线段中点的性质,可得方程,根据解方程,可得答案.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)如图,∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CN﹣CM=(BC﹣AC)=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.9.(2020春•泰山区期末)如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC的长.8【分析】首先根据AB=12,点D是线段AB的中点,求出线段BD的长度是多少;然后根据BD=3BC,求出线段BC的长度是多少,进而求出AC的长是多少即可.【解答】解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.10.(2020春•延庆区期中)已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.【分析】本题主要考查两点间的距离,可分两种情况:①点M在点A左侧,②点M在点A右侧,结合中点的定义计算可求解.【解答】解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;9②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.11.(2020秋•锦江区校级期中)已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD 的度数.【分析】根据角的和差、角平分线的定义,可得出答案.【解答】解:∵∠AOB=30°,∠COB=20°,10∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+∠COD=20°+50°=70°.12.(2019秋•两江新区期末)如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.【分析】设∠BOE=α°,通过互余、互补关系及角平分线的性质,用含α的代数式表示∠BOC与∠FOD,得方程求解即可.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,11∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.13.(2020秋•郁南县校级月考)将一副三角板中的含有60°角的三角板的顶点和另一块的45°角的顶点重合于一点O,绕着点O旋转60°的三角板,拼成如图的情况(OB在∠COD内部),请回答问题:(1)如图1放置,将含有60°角的一边与45°角的一边重合,求出此时∠AOD的度数.(2)绕着点O,转动三角板AOB,恰好是OB平分∠COD,此时∠AOD的度数应该是多少?(3)是否存在这种情况,∠AOC的度数恰好等于∠BOD度数的3倍.如果存在,请求出∠AOD的度数,如果不存在请说明理由.【分析】)(1)根据题意即可得到结论;(2)根据角平分线的定义得到∠BOD=∠COD=22.5°,于是得到结论;(3)设∠BOC=x,然后表示出∠AOC和∠BOD,再列出方程求解即可.12【解答】解:(1)由三角板知,∠AOB=60°,∠COD=45°,∴∠AOD=45°+60°=105°;(2)∵OB平分∠COD,∴∠BOD=,∴∠AOD=∠AOB+∠BOD=60°+22.5°=82.5°;(3)设∠BOC=x,则∠AOC=60°﹣x,∠BOD=45°﹣x,∵∠AOC=3∠BOD,∴60°﹣x=3(45°﹣x),解得x=37.5°,此时,∠AOD=∠COD+∠AOC=45°+(60°﹣37.5°)=45°+22.5°=67.5°.14.(2020秋•南岗区校级月考)已知:∠AOB和∠COD是直角.(1)如图1,当射线OB在∠COD内部时,请探究∠AOD和∠BOC之间的关系;(2)如图2,当射线OA,射线OB都在∠COD外部时,过点O作射线OE,射线OF,满足∠BOE=∠BOC,∠DOF=∠AOD,求∠EOF的度数;(3)如图3,在(2)的条件下,在平面内是否存在射线OG,使得∠GOF:∠GOE=2:3,若不存在,请说明理由,若存在,求出∠GOF的度数.13【分析】(1)根据已知条件,∠AOB和∠COD是直角,可得出∠BOD和∠AOC与∠BOC的关系式,再根据∠AOC与∠AOB和∠BOD列出等量关系,即可得出答案;(2)根据已知条件∠BOE=∠BOC,可设∠BOE=a,则∠BOC=3a,再根据周角的关系可得到∠AOD 的等量关系,再根据∠DOF=∠AOD,可得到∠AOF的等量关系式,由∠BOE、∠AOB和∠∠AOF 可列出等量关系,即可得到答案;(3)分两种情况,①当射线OG在∠EOF内部时,由∠GOF:∠GOE=2:3,可得出结果,当射线OG 在∠EOF外部时,由∠GOF:∠GOE=2:3,可得出结果.【解答】(1)∠AOD+∠BOC=180°.证明:∵∠AOB和∠COD是直角,∴∠AOB=∠COD=90°,∵∠BOD+∠BOC=∠COD,∴∠BOD=90°﹣∠BOC,同理:∠AOC=90°﹣∠BOC,∴∠AOD=∠AOB+∠BOD=90°+90°﹣∠BOC=180°﹣∠BOC,∴∠AOD+∠BOC=180°;(2)解:设∠BOE=a,则∠BOC=3a,14∵∠BOE+∠EOC=∠BOC,∴∠EOC=∠BOC﹣∠BOE=2a,∵∠AOD+∠COD+∠BOC+∠AOB=360°,∴∠AOD=360°﹣∠COD﹣∠BOC﹣∠AOB=360°﹣90°﹣3a﹣90°=180°﹣3a,∵∠DOF=∠AOD,∴∠DOF=(180°﹣3a)=120°﹣2a,∴∠AOF=∠AOD=(180°﹣3a)=60°﹣a,∴∠EOF=∠BOE+∠AOB+∠AOF=a+90°+60°﹣a=150°,∠EOF的度数为150°;(3)①当射线OG在∠EOF内部时,∴∠GOF:∠GOE=2:3,∴∠GOF=(∠GOF+∠GOE)=∠EOF=150°=60°;②当射线OG在∠EOF外部时,∵∠GOF:∠GOE=2:3,∴∠GOF=(∠GOF+∠GOE)=∠EOF=(∠DOF+∠COD+∠EOC)15=(120°﹣2a+90°+2a)=84°.综上所述,∠GOF的度数是60°或84°.15.(2019秋•岳阳楼区校级期末)如图1,已知∠AOB的内部有一条射线OC,OM、ON分别平分∠AOC 和∠BOC.(1)若∠AOB=120°,∠BOC=40°,求∠MON的度数.(2)若去掉(1)中的条件∠BOC=40°,只保留∠AOB=120°,求∠MON的度数.(3)若将∠AOB内部的射线OC旋转到∠AOB的外部,如图2,∠AOB=120°,求∠MON的度数,并请用一句话或一个式子概括你发现的∠MON与∠AOB的数量关系.【分析】(1)先利用角平分线的性质得到∠MOC=∠AOC,∠NOC=∠BOC,再利用∠MON=∠COM+∠CON计算;(2)根据角平分线的性质解答即可;(3)先利用角平分线的性质得到∠CON=∠AOC,∠COM=∠BOC,再利用∠MON=∠COM﹣∠CON计算,即可解答.【解答】解:(1)∵∠AOB=120°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=120°﹣40°=80°,∵OM、ON分别平分∠AOC和∠BOC,16∴∠MOC=,,∴∠MON=∠MOC+∠NOC=40°+20°=60°;(2)如图1,∵OM、ON分别平分∠AOC和∠BOC,∴∠MOC=,,∵∠AOC+∠BOC=∠AOB,∠AOB=120°,∴∠MON=∠MOC+∠NOC====60°;(3)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,所以∠MON=∠COM﹣∠CON=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)==×120°=60°,.16.(2019秋•西城区期末)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON 内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.17(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是OB2;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.【分析】(1)由∠MON内含对称的定义可求解;(2)由∠MON内含对称的定义可得10°≤(x+10)°≤30°,可求解;(3)分两种情况讨论,利用∠MON内含对称的定义列出不等式,即可求解.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,18∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.17.(2019秋•渝中区校级期末)如图所示,AB为一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE:∠BOD=2:5,∠COE=80°,求∠EOB的度数.19【分析】设∠DOE=2x,根据题意得到∠BOE=3x,∠AOC=∠COD=80°﹣2x,再根据平角为180度,得到2×(80°﹣2x)+5x=180°,解得x=20°,即可得到∠BOE的度数.【解答】解:如图,设∠DOE=2x,∵∠DOE:∠BOD=2:5,∴∠BOE=3x,又∵OC是∠AOD的平分线,∠COE=80°,∴∠AOC=∠COD=80°﹣2x2×(80°﹣2x)+5x=180°,解得x=20°∴∠BOE=3x=3×20°=60°.故答案为:60°.18.(2019秋•龙岗区校级期末)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON 平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).【分析】(1)利用角平分线的定义可得∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°,然后利用∠AOD=∠AOB+∠BOC+∠COD,可得结果;20(2)由角的加减可得∠AOM+∠DON的度数,从而求得∠BOM+∠CON,再利用∠BOC=∠MON﹣(∠BOM+∠CON)可得结果;(3)由OM与ON分别为角平分线,利用角平分线的定义得到两对角相等,根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小.【解答】解:(1)∵OM平分∠AOB,ON平分∠COD∴∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°∴∠AOD=∠AOB+∠BOC+∠COD=30°+25°+20°=75°(2)∵∠AOD=75°,∠MON=55°,∴∠AOM+∠DON=∠AOD﹣∠MON=20°,∵∠BOM+∠CON=∠AOM+∠DON=20°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=55°﹣20°=35°,(3)∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,∴∠BOC=2β﹣α.19.(2020春•道里区期末)如图,∠AOC=80°,OB是∠AOC的平分线,OD是∠COE的平分线.21(1)求∠BOC的度数;(2)若∠DOE=30°,求∠BOE的度数.【分析】(1)根据角平分线定义得出∠BOC=∠AOC,代入求出即可;(2)根据角平分线定义求出∠BOC和∠COE,再代入∠BOE=∠BOC+∠COE求出即可.【解答】解:(1)∵∠AOC=80°,OB是∠AOC的平分线,∴∠BOC=∠AOC=×80°=40°;(2)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOC=80°,∠DOE=30°,∴∠BOC=∠AOC=40°,∠COE=2∠DOE=60°,∴∠BOE=∠BOC+∠COE=40°+60°=100°.20.(2020春•南岗区期末)已知,在∠AOB内部作射线OC,OD平分∠BOC,∠AOD+∠COD=120°.(1)如图1,求∠AOB的度数;(2)如图2,在∠AOB的外部和∠BOD的内部分别作射线OE、OF,已知∠COD=2∠BOF+∠BOE,求证:OF平分∠DOE;(3)如图3,在(2)的条件下,在∠COD内部作射线OM,当∠BOM=4∠COM,∠BOE=∠AOC 时,求∠MOF的度数.22【分析】(1)根据OD平分∠BOC,得∠BOD=∠COD,再由∠AOD+∠COD=120°,得∠AOD+∠BOD =120°,即∠AOB=120°;(2)根据OD平分∠BOC,得∠BOD=∠COD,再由∠COD=2∠BOF+∠BOE,得∠BOD=2∠BOF+∠BOE,可得∠DOF=∠BOD﹣∠BOF=2∠BOF+∠BOE﹣∠BOF=∠BOF+∠BOE=∠EOF,即可得出结论;(3)设∠AOC=10α,则∠BOE=11α,由∠AOB=120°得∠BOC=∠AOB﹣∠AOC=120°﹣10α,根据OD平分∠BOC,得∠COD=∠BOD=∠BOC=60°﹣5α,再由∠BOM=4∠COM,得∠COM=∠BOC=(120°﹣10α)=24°﹣2α,可得∠DOM=∠COD﹣∠COM=36°﹣3α,∠DOE=∠BOD+∠BOE=60°+6α,根据OF平分∠DOE可得∠DOF=∠DOE=(60°+6α)=30°+3α,由∠MOF =∠DOM+∠DOF可得结果.【解答】(1)解:∵OD平分∠BOC,∴∠BOD=∠COD,∵∠AOD+∠COD=120°,∴∠AOD+∠BOD=120°,即∠AOB=120°;(2)证明:∵OD平分∠BOC,∴∠BOD=∠COD,∵∠COD=2∠BOF+∠BOE,23∴∠BOD=2∠BOF+∠BOE,∴∠DOF=∠BOD﹣∠BOF=2∠BOF+∠BOE﹣∠BOF=∠BOF+∠BOE=∠EOF,∴OF平分∠DOE;(3)解:设∠AOC=10α,则∠BOE=11α,∵∠AOB=120°,∴∠BOC=∠AOB﹣∠AOC=120°﹣10α,∵OD平分∠BOC,∴∠COD=∠BOD=∠BOC=60°﹣5α,∵∠BOM=4∠COM,∴∠COM=∠BOC=(120°﹣10α)=24°﹣2α,∴∠DOM=∠COD﹣∠COM=(60°﹣5α)﹣(24°﹣2α)=36°﹣3α,∴∠DOE=∠BOD+∠BOE=(60°﹣5α)+11α=60°+6α,∵OF平分∠DOE,∴∠DOF=∠DOE=(60°+6α)=30°+3α,∴∠MOF=∠DOM+∠DOF=(36°﹣3α)+(30°+3α)=66°.21.(2020春•南岗区期末)如图,已知,∠AOB=120°,在∠AOB内画射线OC,∠AOC=40°.(1)如图1,求∠BOC的度数;(2)如图2,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.24【分析】(1)利用两个角的和进行计算即可;(2)根据角平分线的意义和等式的性质,得出∠DOE═∠AOB即可.【解答】解:(1)∵∠AOB=120°,∠AOC=40°,∴∠BOC=∠AOB﹣∠AOC=120°﹣40°=80°;(2)∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC;∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=×120°=60°.25。
四年级线与角练习题四年级线与角练习题在四年级数学课堂上,线与角是一个重要的学习内容。
通过学习线与角的概念和性质,学生可以更好地理解几何形状和空间关系。
为了帮助同学们巩固所学的知识,下面我将给大家提供一些线与角的练习题。
练习题一:线段的长度计算1. 请计算以下线段的长度:(a) AB,其中A(-2, 3),B(4, 7);(b) CD,其中C(1, 2),D(5, 6);(c) EF,其中E(-3, -1),F(1, 3)。
2. 请计算以下线段的长度,并判断哪个线段最长:(a) GH,其中G(2, 4),H(6, 8);(b) IJ,其中I(-1, 3),J(3, -1);(c) KL,其中K(-5, 2),L(-1, -2)。
练习题二:角的性质1. 在下图中,角A和角B的度数分别是多少?(图略)2. 在下图中,角C和角D的度数分别是多少?(图略)3. 在下图中,角E和角F的度数分别是多少?(图略)练习题三:角的分类1. 根据下列描述,判断角的分类:(a) 角G的度数为90度,它是一个锐角/直角/钝角;(b) 角H的度数为180度,它是一个锐角/直角/钝角;(c) 角I的度数为45度,它是一个锐角/直角/钝角。
2. 根据下列描述,判断角的分类:(a) 角J的度数为120度,它是一个锐角/直角/钝角;(b) 角K的度数为90度,它是一个锐角/直角/钝角;(c) 角L的度数为160度,它是一个锐角/直角/钝角。
练习题四:角的度数计算1. 请计算以下角的度数:(a) 角M,其中角M的补角度数为40度;(b) 角N,其中角N的补角度数为120度;(c) 角O,其中角O的补角度数为160度。
2. 请计算以下角的度数:(a) 角P,其中角P的补角度数为60度;(b) 角Q,其中角Q的补角度数为150度;(c) 角R,其中角R的补角度数为170度。
以上是一些关于线与角的练习题,希望同学们能够通过练习加深对线与角的理解。
线段和角精选练习题线段和角是几何学中的基本概念,对于理解和解决几何问题起着重要的作用。
在本文中,我们将提供一些关于线段和角的精选练习题,帮助读者巩固相关知识并提升解题能力。
1. 线段问题a) 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC的长度。
b) 若线段DE的长度为8cm,线段EF的长度为12cm,求线段DF 的长度。
c) 线段GH的长度为10cm,线段HI的长度为6cm,线段GI的长度为多少cm?2. 角度问题a) 已知∠ABC = 30°,∠BCD = 60°,求∠BAD的度数。
b) 若∠EFG = 90°,∠FGH = 45°,求∠EFH的度数。
c) 已知∠IJK = 120°,∠KLM = 30°,求∠ILM的度数。
3. 线段和角度综合问题a) 在△ABC中,AB = 6cm,BC = 8cm,∠ABC = 90°,求AC的长度。
b) 在△DEF中,DE = 5cm,∠DEF = 60°,求EF的长度。
c) 已知∠GHI = 45°,∠HIJ = 60°,GH = 4cm,求GJ的长度。
4. 角度问题的解析a) 若三角形的内角和为180°,求该三角形每个角的度数。
b) 若四边形的内角和为360°,求该四边形每个角的度数。
5. 线段比例问题a) 在△ABC中,AD是BC的1/2,且BD = 6cm,求AC的长度。
b) 在平行四边形DEFG中,EG是DF的2倍,且DF = 10cm,求EG的长度。
c) 在△HIJ中,HL是IJ的1/3,且IL = 12cm,求HJ的长度。
通过以上的练习题,我们可以巩固线段和角的相关知识,培养解题能力。
当然,在解答这些题目时,我们要积极思考,分析问题,合理运用所学知识,以得到准确和有效的解答。
最后,希望读者能够通过这些练习题更好地理解线段和角的概念,并能够在实际应用中灵活运用。
线段计算专题1.如图,线段AB=8cm,点C在BA的延长线上,AC=2cm,M是BC中点,则AM的长是cm.2.如图,已知线段AB=16cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=3cm,则线段MP=cm.3.已知线段AB=8cm,在直线AB上有一点C,且BC=2cm,点M为线段AC的中点,则线段AM的长是cm.4.如图,C、D是线段AB上两点,已知::1:2:3AC CD DB=,M、N分别为AC、DB的中点,且AB cm=,12(1)求线段CD的长;(2)求线段MN的长.,在线段AD上.5.如图,已知点B C(1)尺规作图:在线段AD的延长线上确定一点E,使得DE AB=;(保留作图痕迹,不写作法)(2)在(1)的条件下,若点C是线段BD的中点,且12AD=,5BC=,求AE的长.6.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且1AM=MC,BN=2NC.2(1)若AC=9,BC=6,求线段MN的长;(2)若MC:NC=5:2,MN=7,求线段AB的长7..如图①,已知线段MN=24cm,线段AB在线段MN上运动(点A不超过点M,点B不超过点N),点C和点D分别是AM,BN的中点.(1)若AM=8cm,AB=2cm,求CD的长度;(2)若AB=2acm,线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,请求出CD的长度,如果变化请说明理由.8..如图,AB=20cm,点P从点A出发,沿AB以2cm/s的速度匀速向终点B运动;同时点Q从点B出发,沿BA以4cm/s的速度匀速向终点A运动,设运动时间为ts.(1)填空:PA=cm;BQ=cm;(用含t的代数式表示)(2)当P、Q两点相遇时,求t的值;(3)探究:当PQ两点相距5cm时,求t的值.9..如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足()2++-=.a c260(1)=a______,b=______,c=______;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为______,点B与数______表示的点重合,原点与数______表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒______个单位长度,点Q的速度是每秒______个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.10..如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP上,且AM=MP,N在线段CQ上,且C=C,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.角度计算专题1.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若∠1=70°,求∠2的度数是()A .70°B .65°C .60°D .55°2.已知∠1=38°36',∠2=38.36°,∠3=38.6°,则下列说法正确的是()A .∠1=∠2B .∠1=∠3C .∠2=∠3D .∠1,∠2,∠3互不相等3.如图,O 为直线AB 上一点,∠DOE =90°,OD 是∠AOC 的角平分线,若∠AOC =70°.(1)求∠BOD 的度数.(2)试判断OE 是否平分∠BOC ,并说明理由.4.已知:如图,AOB ∠被分成::2:3:4AOC COD DOB ∠∠∠=,OM 平分AOC ∠,ON 平分DOB ∠,且90MON ∠=︒,求AOB ∠的度数.5.已知∠AOB =120°,∠COD =60°.(1)如图1,当∠COD 在∠AOB 的内部时,若∠AOD =98°,求∠BOC 的度数;(2)如图2,当射线OC 在∠AOB 的内部,OD 在∠AOB 的外部时,试探索∠AOD 与∠BOC 的数量关系:(3)如图3,当∠COD 在∠AOB 的外部时,分别在∠AOC 内部和∠BOD 内部画射线OE ,OF ,使∠EOC=∠AOC ,∠DOF =∠BOD ,求∠EOF 的度数.6.已知∠AOD=40°,射线OC从OD出发,绕点O以20°/秒的速度逆时针旋转,旋转时间为t秒.射线OE、OF分别平分∠AOC、∠AOD.(1)如图①:如果t=4秒,求∠EOA的度数;(2)如图①:若射线OC旋转时间为t(t≤7)秒,求∠EOF的度数(用含t的代数式表示);(3)若射线OC从OD出发时,射线OB也同时从OA出发,绕点O以60°/秒的速度逆时针旋转,射线OC、OB在旋转过程中(t≤3),∠COE=∠BOE.请你借助图②与备用图进行分析后,(Ⅰ)求此时t的值;(Ⅱ)求的值.7.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,当∠AOC=40°时,求∠DOE的度数;(2)如图2,OF平分∠BOD,求∠EOF的度数;(3)如图3,∠AOC=36°,此时∠COD绕点O以每秒6°沿逆时针方向旋转t秒(0≤t<60),请直接写出∠AOC和∠DOE之间的数量关系8.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一块直角三角板DOE直角顶点放在点O处.(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=____________°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠BOD、∠COE的度数;(3)如图3,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.线段角度综合应用证明题推导体验:1.已知:如图,AB =18cm ,点M 是线段AB 的中点,点C 把线段MB 分成MC :CB =2:1的两部分,求线段AC 的长.请补充完成下列解答:解:∵M 是线段AB 的中点,AB =18cm ,∴AM =MB =AB =cm .∵MC :CB =2:1,∴MC =MB =cm .∴AC =AM +=+=cm .2..如图,已知∠AOB =90°,∠AOC =60°,OD 平分∠BOC ,OE 平分∠AOC .求∠DOE 的度数.解:∵∠AOB =90°,∠AOC =60°,∴∠BOC =∠AOB +∠AOC =°.∵OD 平分∠BOC ,∴∠DOC =∠=°.∵OE 平分∠AOC ,∴∠EOC =∠=°.∴∠DOE =∠﹣∠=°.2..如图,平面上有四个点A ,B ,C ,D .根据下列语句,完成尺规作图:(1)画直线AC ;(2)画射线BD 交直线AC 于点O ;(3)连接BC ,并延长至点E ,使CE =2BC .3.如图①,已知线段MN =24cm ,线段AB 在线段MN 上运动(点A 不超过点M ,点B 不超过点N ),点C 和点D 分别是AM ,BN 的中点.(1)若AM =8cm ,AB =2cm ,求CD 的长度;(2)若AB =2acm ,线段AB 运动时,试判断线段CD 的长度是否发生变化?如果不变,请求出CD 的长度,如果变化,请说明理由.(3)知识迁移:我们发现角的很多规律和线段一样,如图②,已知∠AOB 在∠MON 内部转动,射线OC 和射线OD 分别平分∠AOM 和∠BON .当∠AOB 转动时,∠COD 是否发生变化?∠AOB ,∠COD 和∠MON 三个角有怎样的数量关系,请说明理由.4.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是[],A B 的美好点.例如;如图1,点A表示的数为1-,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是[],A B的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[],A B的美好点,但点D是[],B A的美好点.如图2,M,N为数轴上两点,点M所表示的数为7-,点N所表示的数为2.(1)点E,F,G表示的数分别是3-,6.5,11,其中是[],M N美好点的是________;写出[],N M美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,点P恰好为M 和N的美好点?5.如图,动点A,B同时从表示数1的位置出发沿数轴做匀速运动,已知动点A,B运动速度之比是3∶1(速度单位:1个单位长度/秒)。
线段角度计算专项一.直线、射线、线段(一((三).数线段方法:如果一条直线上有n个点,含有(n-1)条基本线段(把相邻两点间的线段叫作基本线段),直线上的线段条数为:2)1(123)3()2()1(-=+++⋅⋅⋅+-+-+-nnnnn条(四).两个公理:1.直线公理:经过两点有一条直线,并且只有一条直线,简称“两点确定一条直线”2.线段公理:两点之间的连线中,线段最短,简称“两点之间,线段最短”二.线段的相关计算(一). 两点的距离:连接两点间的线段的长度(二). 线段的和差倍分例1. 两条相等线段AB,CD有三分之一重合,M,N分别是AB,CD的中点,且MN=12cm,则AB的长度是()A.12cm B.14cm C.16cm D.18cm迁移练习1. 如图,A,B,C,D是直线L上顺次四点,M,N分别是AB,CD的中点,且MN=6cm,BC=1cm,则AD的长等于()A.10cm B.11cm C.12cm D.13cm例2. C,D是线段AB上任意两点,M,N分别是AC,BD的中点,若CD=a,MN=b,求AB的长?迁移练习2. 如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为40cm,求绳子的原长?例3. 如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=8cm,求线段MN的长.迁移练习3. 已知,如图,B,C两点把线段AD分成2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长.例4. 如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP 的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN 的值不变,选择一个正确的结论,并求出其值.三.角的认识(一).角的概念有公共端点的两条射线组成的图形叫角,这个公共端点是角的顶点,这两条射线是角的两条边.角的大小只与开口的大小有关,而与角的边画出部分的长短无关.这是因为角的边是射线而不是线段. (二).角的表示方法1、 例2、(三)角度制换算(四)钟面角(1)时针12小时转动360度,每小时转动30度; (2)分针60分钟转动360度,每分钟转动6度。
线段与角的认识与计算测验题及答案一、选择题1. 下列哪个选项是线段的定义?A. 由两个端点和它们之间的线段所组成B. 由一个端点和它两边延伸无限的直线所组成C. 由一个端点和它对立面无限延伸的线段所组成2. 在下列选项中,哪个是正确的角定义?A. 两条射线中间的一部分B. 两个线段之间的夹角C. 两个垂直线之间的角3. 下面哪个选项展示了两个相互垂直的直线之间的角?A. 直角B. 钝角C. 顶角4. 如果两个线段相等,它们的长度分别是3厘米和5厘米,那么这两个线段分别是多少厘米?A. 3厘米和5厘米B. 5厘米和3厘米C. 8厘米和8厘米5. 下面哪个选项是正确的角度度量单位?A. 米B. 毫米C. 度二、填空题1. 线段AB的长度是7.5厘米,线段AC的长度是3.2厘米,那么线段AB比线段AC长________厘米。
2. 若线段AB和线段CD的长度相等,线段AB的长度是8.9厘米,那么线段CD的长度为________厘米。
3. 一个角的度数是120°,那么它是一个________角。
4. 两条直线相交时,互相垂直的角称为________角。
5. 两条直线平行时,对应的内角和外角之和为________。
三、简答题1. 什么是共线点?请举例说明。
2. 什么是顶角?它们有什么特点?3. 请解释什么是直角和钝角,并给出相应的例子。
答案:一、选择题1. A2. A3. A4. B5. C二、填空题1. 4.32. 8.93. 锐角4. 直角5. 180°三、简答题1. 共线点是指在一条直线上的点。
例如,A、B和C是共线点,它们都在直线上。
2. 顶角是指两条相邻线段之间的角。
它们的特点是共享同一边,并且位于这两条线段的夹角内部。
3. 直角是一个90°的角,例如一个正方形的内角。
钝角是一个大于90°但小于180°的角,例如一个圆的内角。
小学数线段数角数学练习题在小学数学中,线段和角是基础概念之一。
通过练习题,可以加深对线段和角的理解和应用。
本文将为您提供一些小学数学练习题,帮助您巩固线段和角的知识。
练习一:线段相关题目1. 请画出以下线段的示意图,并标明每个线段的长度:a) AB = 5cmb) CD = 3cmc) EF = 7cmd) GH = 9cm解答:a) 请画出AB长度为5cm的线段示意图,并用标尺测量出长度。
b) 请画出CD长度为3cm的线段示意图,并用标尺测量出长度。
c) 请画出EF长度为7cm的线段示意图,并用标尺测量出长度。
d) 请画出GH长度为9cm的线段示意图,并用标尺测量出长度。
2. 下面是一些线段的长度,请你判断哪些线段是相等的:a) AB = 5cm, CD = 5cmb) EF = 3cm, GH = 6cmc) IJ = 8cm, KL = 4cmd) MN = 2cm, OP = 2cm解答:a) AB = 5cm, CD = 5cm - 这两个线段的长度是相等的。
b) EF = 3cm, GH = 6cm - 这两个线段的长度不相等。
c) IJ = 8cm, KL = 4cm - 这两个线段的长度不相等。
d) MN = 2cm, OP = 2cm - 这两个线段的长度是相等的。
练习二:角相关题目1. 请画出以下角的示意图,并标明每个角的类型:a) 直角b) 锐角c) 钝角解答:a) 请画出一个直角示意图,并标明角的类型。
b) 请画出一个锐角示意图,并标明角的类型。
c) 请画出一个钝角示意图,并标明角的类型。
2. 下面是一些角的度数,请你判断哪些角是锐角、直角或钝角:a) 30°b) 90°c) 120°d) 45°解答:a) 30° - 这个角是锐角。
b) 90° - 这个角是直角。
c) 120° - 这个角是钝角。
d) 45° - 这个角是锐角。
有关线段,角的计算问题专门练习
1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.
2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长
3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.
4. 如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度.
5. 已知P 为线段AB 上的一点,且2
5
AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.
6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,1
3
AD AB =,12AB cm =,求CD 、BD 的长.
7. 在一条直线上顺次取A 、B 、C 三点,已知5AB cm =,点O 是线段AC 的中点,且 1.5OB cm =,求线段BC 的长.(两种情况)
8. 已知A 、B 、C 三点共线,且10AB cm =,4BC cm =,M 是A C 的中点,求AM 的长.
9.如图所示,B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 中点,CD =8,求MC 的长.
10.如图所示,回答问题:’
(1)在线段AB 上取一点C 时,共有几条线段?
(2)在线段AB 上取两点C 、D 时,共有几条线段?
(3)在线段AB 上取两点C 、D 、E 时,共有几条线段?
(4)你能否说出,在线段AB 上取n 个点时(不与A 、B 重合),直线A 上共有多少条
线段?你发现它们有什么规律,你能试着总结出来吗?和同学们交流一下.
1.如图所示,OE平分∠BOC,OD平分∠AOC,∠BOE=20°,∠AOD=•40•°,求∠DOE的度数.
2.已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=50°,∠BOC=10°,•求∠AOC的度数.3.如图所示,OE平分∠BOC,OD平分∠AOC,∠BOE= 200,∠AOD =400,求∠DOE的度数
4.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27•°,•求∠ABC的度数.
5.如图所示,OM平分∠AOB,ON平分∠COD,∠MON=90°,∠BOC=26•°,•求∠AOD的度数.
6、以∠AOB的顶点O为端点引射线OC,使∠AOC: ∠BO C=5:4,若∠AOB=150,求
∠AOC的度数.
7.如图所示,O是直线AB上的点,OD是∠AOC的平分线,OE是∠COB的平分线,
∠COD =280,求∠EOB的度数.
8如图,已知OE为∠BOC的平分线,OD为∠AOC的平分线,且∠AOB=1500,求
∠DOE的度数.
9.如图所示,OB,OC是∠AOD内任意两条射线,OM平分∠AOB,ON平分∠COD,•若∠MON=α,∠BOC=β,试用α,β表示∠AOD.
10(1)如图,∠AOB= 900,∠BOC =300,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数?
(3)如果(1)中∠BOC=β(β是锐角),其他条件不变,求∠MON的度数?
(4)从(1),(2),(3)的结果能看出什么规律?。