实验十一 信道均衡器
- 格式:doc
- 大小:1.14 MB
- 文档页数:11
信道均衡在5G通信系统中的应用案例一、信道均衡在5G通信系统中的应用概述信道均衡是通信系统中一个至关重要的技术,它通过补偿信道引起的信号失真,以提高通信系统的性能。
在5G通信系统中,由于其高数据传输速率和复杂多变的通信环境,信道均衡技术的应用变得尤为关键。
本文将探讨信道均衡技术在5G通信系统中的应用案例,分析其在不同场景下的作用和效果。
1.1 信道均衡技术的核心原理信道均衡技术主要基于对信道特性的估计,通过调整接收信号,以抵消信道引起的时延扩展、衰减和相位变化。
在5G通信系统中,信道均衡器通常采用自适应滤波器,根据实时的信道状态信息动态调整滤波器系数,以实现最优的均衡效果。
1.2 信道均衡技术在5G通信系统中的应用场景5G通信系统因其高速率、大连接数和低时延的特点,对信道均衡技术提出了更高的要求。
信道均衡技术在5G通信系统中的应用场景包括:- 移动宽带通信:在高速移动环境下,信道均衡技术能够有效减少多径效应和频率选择性衰落,保证数据传输的稳定性和可靠性。
- 大规模机器类通信:在物联网(IoT)应用中,信道均衡技术有助于提高设备间的通信质量,确保大量设备的有效接入和数据传输。
- 车联网(V2X)通信:在车联网系统中,信道均衡技术对于实现车辆间高速、低延迟的通信至关重要,有助于提升交通安全和效率。
二、信道均衡技术在5G通信系统中的应用案例分析2.1 移动宽带通信中的信道均衡应用在移动宽带通信中,用户设备在高速移动过程中,信号会经历复杂的多径传播,导致接收信号出现时延扩展和频率选择性衰落。
信道均衡技术通过估计信道的冲激响应,采用自适应滤波器对接收信号进行均衡处理,以减少信号失真,提高数据传输速率和通信质量。
案例分析:在一项针对城市环境中5G移动宽带通信的研究中,研究人员通过实测数据发现,采用信道均衡技术后,系统在高速移动场景下的误码率(BER)显著降低,数据传输速率提高了20%以上。
此外,信道均衡器的自适应能力使得系统能够快速响应信道条件的变化,有效提升了通信的稳定性。
基于DDLMS算法的信道均衡器的FPGA实现白勇博;陈自力;祁栋升【摘要】无线通信系统中均衡技术是改善信道特性解决码间干扰的有效方法.从分析判决引导最小均方误差算法(DDLMS)算法出发,研究了其在信道均衡技术上的应用,并通过Matlab仿真和软件(Xilinx System Generator for DSP)开发软件在FPGA上实现了一个基于DDLMS算法的基带均衡器.从仿真测试结果可以看出,实现的信道均衡器能够达到消除码间干扰的效果.【期刊名称】《无线电工程》【年(卷),期】2011(041)002【总页数】3页(P10-12)【关键词】Decision Directed LMS算法;信道均衡器;FPGA【作者】白勇博;陈自力;祁栋升【作者单位】军械工程学院,河北,石家庄,050003;军械工程学院,河北,石家庄,050003;军械工程学院,河北,石家庄,050003【正文语种】中文【中图分类】TN911.50 引言在高速数字通信系统中,由于信道多径衰落效应的影响,会造成传输数据之间的符号间干扰(ISI)。
严重的符号间干扰会使接收端误码率增大,甚至导致系统不能正常工作。
为了克服ISI引起的失真,需要在通信系统中使用信道均衡处理技术,即在接收端添加均衡器。
信道均衡器的实质是信道的逆滤波器,通过对一个未知脉冲响应的信道使用自适应滤波器操作信道输出,使得信道与自适应滤波器的级联提供理想传输媒介的良好逼近。
1 信道均衡器原理1.1 信道均衡器信道均衡器由滤波器结构和均衡算法组成,信道均衡的目的就是把接收序列y(n)恢复成原始数据In。
均衡器通过跟踪信道 C(n),使得均衡器的输出结果和原始数据之间达到匹配。
理想的均衡器应该能实现F(z)=1/C(z),故均衡器又称为逆信道滤波器[2]。
目前常用的均衡器结构分为线性均衡器和非线性均衡器。
线性均衡器的常见结构是线性横向滤波结构(LTE),而非线性均衡器常用的是判决反馈结构(DFE)。
FIR::Finite Impulse Response 有限冲激响应信道估计和均衡基本概念传输层组成信道均衡是宽带系统区别与窄带系统的一个明显特征信道均衡的原因•地面无线广播传输信道中(主要是VHF和UHF频段)是一个复杂的时变频率选择性衰落信道多径干扰(100us对应30公里)多普勒效应(100Hz)•均衡器产生与信道多径相反的特性,抵消信道的时变多径传播特性引起的码间干扰•信道是时变的,要求均衡器的特性能够自动适应信道的变化而均衡,故称自适应均衡。
•信道估计: 估计信道函数的过程•信道均衡: 使用得到的信道估计来补偿信道的过程均衡器的分类•均衡处理方法时域均衡器:单载波数字通信中多采用时域均衡器,从时域的冲激响应考虑正交频分复用OFDM调制:采用频域均衡•是否使用训练序列或导频DA(数据辅助)DD(判决指向)NDA(盲均衡):需要在接收到足够多的数据情况下才能得到一个可靠的估计导频或训练序列的插入地面数字电视一般使用DA方式信道估计和均衡•多径衰落信道可以看成是在时间和频率上的一个二维信号•训练序列时域的间隔取决于信道的相关时间•训练序列频域的间隔取决于相关带宽•训练序列对信道在时-频空间的不同点上进行采样,利用采样插值即可得到整个信道的频率响应值时域均衡器•均衡器的输出是否用于反馈控制线性均衡器:输出未被用于反馈控制非线性均衡器:输出用于反馈,如判决反馈均衡器(DFE-decision Feedback Equalizer)•线性均衡器如何求解线性均衡器系数Cj ?•常用的优化均衡器系数的准则迫零准则: 信道逆滤波器均衡技术带均衡器的数字通信系统的等效模型理论和实践证明,在数字通信系统中插入一种可调滤波器可以校正和补偿系统特性,减少码间干扰的影响。
这种起补偿作用的滤波器称为均衡器。
均衡技术-基本原理均衡器通常是用滤波器来实现的,使用滤波器来补偿失真的脉冲,判决器得到的解调输出样本,是经过均衡器修正过的或者清除了码间干扰之后的样本。
实习(调研)报告1.课题来源及意义通常信道特性是一个复杂的函数,它可能包括各种线性失真、非线性失真、交调失真、衰落等。
同时由于信道的迟延特性和损耗特性随时间做随机变化,因此,信道特性往往只能用随机的过程来进行描述。
例如,在蜂窝式移动通信中,电磁波会因为碰撞到建筑物或者其他物体而产生反射、散射、绕射,此外发射端和接收端还会受到周围环境的干扰,从而产生时变现象,其结果为信号能量会不止一条路径到达接收天线,我们称之为多径传播。
数字信号经过这样的信道传输后,由于受到了信道的非理想特性的影响,在接收端就会产生码间干扰(ISI),使系统误码率上升,严重情况下使系统无法继续正常工作。
理论和实践证明,在接收系统中插入一种滤波器,可以校正和补偿系统的特性,减少码间干扰的影响。
均衡可以从时域和频域两个不同的角度来考虑:频域均衡是利用可调滤波器的频率特性来弥补实际信道的幅频特性和群延时特性,使包括均衡器在内的整个系统的总频率特性满足无码间干扰传输条件。
时域均衡是从时间响应的角度考虑,使包括均衡器在内的整个传输系统的冲击响应满足无码间干扰的条件。
而随着数字信号的处理理论和超大规模集成电路的发展,时域均衡器已成为当今高速数字通信中所使用的主要方法。
总而言之,由多径影响而导致的码间干扰(ISI)会使被传输的信号产生变形,从而在接收时发生误码。
因此码间干扰被认为是在移动无线通信信道中传输高速率数据时的主要障碍,而均衡正是对付码间干扰的一项技术。
除了存在码间干扰以外,还可能存在由于载波间的正交特性遭到破坏而出现的子载波间干扰(ICI)。
因此也有必要采用一定的均衡技术来消除子载波间干扰,以提高系统性能。
2.国内外发展现状分析最常用于均衡的线性滤波器是一个横向滤波器,称为线性均衡。
有两种常用的方法确定均衡器的抽头系数:迫零(ZF)准则和最小均方误差(MMSE)准则。
研究表明,线性均衡器对于像固定电话这样的信道来说性能良好,因此这种算法被广泛应用到各种码间干扰不是很严重的场合。
FIR::Finite Impulse Response 有限冲激响应信道估计和均衡基本概念传输层组成信道均衡是宽带系统区别与窄带系统的一个明显特征信道均衡的原因•地面无线广播传输信道中(主要是VHF和UHF频段)是一个复杂的时变频率选择性衰落信道多径干扰(100us对应30公里)多普勒效应(100Hz)•均衡器产生与信道多径相反的特性,抵消信道的时变多径传播特性引起的码间干扰•信道是时变的,要求均衡器的特性能够自动适应信道的变化而均衡,故称自适应均衡。
•信道估计: 估计信道函数的过程•信道均衡: 使用得到的信道估计来补偿信道的过程均衡器的分类•均衡处理方法时域均衡器:单载波数字通信中多采用时域均衡器,从时域的冲激响应考虑正交频分复用OFDM调制:采用频域均衡•是否使用训练序列或导频DA(数据辅助)DD(判决指向)NDA(盲均衡):需要在接收到足够多的数据情况下才能得到一个可靠的估计导频或训练序列的插入地面数字电视一般使用DA方式信道估计和均衡•多径衰落信道可以看成是在时间和频率上的一个二维信号•训练序列时域的间隔取决于信道的相关时间•训练序列频域的间隔取决于相关带宽•训练序列对信道在时-频空间的不同点上进行采样,利用采样插值即可得到整个信道的频率响应值时域均衡器•均衡器的输出是否用于反馈控制线性均衡器:输出未被用于反馈控制非线性均衡器:输出用于反馈,如判决反馈均衡器(DFE-decision Feedback Equalizer)•线性均衡器如何求解线性均衡器系数Cj ?•常用的优化均衡器系数的准则迫零准则: 信道逆滤波器均衡技术带均衡器的数字通信系统的等效模型理论和实践证明,在数字通信系统中插入一种可调滤波器可以校正和补偿系统特性,减少码间干扰的影响。
这种起补偿作用的滤波器称为均衡器。
均衡技术-基本原理均衡器通常是用滤波器来实现的,使用滤波器来补偿失真的脉冲,判决器得到的解调输出样本,是经过均衡器修正过的或者清除了码间干扰之后的样本。
1.1简述移动通信的特点:答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。
1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的?答:①互调干扰;②邻道干扰;③同频干扰;(蜂窝系统所特有的)④多址干扰。
1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。
答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。
其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。
从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。
主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。
在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。
第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。
其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。
从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。
主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。
《无线通信基础》课程研究性学习手册实验三信道均衡姓名:学号:同组成员:指导教师:***时间:2015年6月一、实验任务:在本实验中,你需要在Labview 平台上利用线性最小二乘算法,实现线性均衡器的设计,以领会信道均衡器的基本思想。
此外,通过比较不同接收机误码率性能,你将感受到均衡技术对于抗多径信道的重要意义。
二、理论分析:经过多径传播到达接收机的信号,一般表示为()()()e z t h x t d ττττ=-⎰ (1)其中, ()e h τ为基带的频率选择性信道。
则调制解调器间的等价基带信道为()()*()*()e tx rx h t g t g t τ=,其中,()tx g t ()rx g t 为匹配滤波器组。
ℎ[n]为数字基带等价信道即[]()h n h nT =,其中T 为符号周期,则[][][][][0][][][][] 0,1,...mm y n h m s n m v n h s n h m s n m v n m L ≠=-+=+-+=∑∑(2)其中,0[][]m s n m h m ≠-∑表示符号间干扰;当()h t 为奈奎斯特脉冲时该项为0,即解调器输入信号无符号间干扰。
均衡器()f t 满足()*()()e d h t f t t t δ=-,即均衡器可补偿信道的影响,使得()()*()*()*()e tx rx h t g t g t f t τ=保持奈奎斯特滤波器特征,消除了符号间干扰,如下图1所示。
均衡器参数是由具体信道参数决定的,一般可采用直接估计均衡器参数,和根据估计的信道参数间接估计均衡器参数两种方式完成均衡器的设计。
在本实验中,均衡器间接估计算法已经给出,直接估计算法需要自己完成。
图 1 信道均衡2.1 最小线性二乘本实验所需完成的信道估计和信道均衡都是基于最小二乘法的,下面简单介绍一下该方法的原理。
A 是N M ⨯的列满秩矩阵(N M >),b 是1N ⨯维的矢量,x 是1N ⨯未知的矢量。
《无线通信基础》课程研究性学习手册实验三信道均衡姓名:学号:同组成员:指导教师:***时间:2015年6月一、实验任务:在本实验中,你需要在Labview 平台上利用线性最小二乘算法,实现线性均衡器的设计,以领会信道均衡器的基本思想。
此外,通过比较不同接收机误码率性能,你将感受到均衡技术对于抗多径信道的重要意义。
二、理论分析:经过多径传播到达接收机的信号,一般表示为()()()e z t h x t d ττττ=-⎰ (1)其中, ()e h τ为基带的频率选择性信道。
则调制解调器间的等价基带信道为()()*()*()e tx rx h t g t g t τ=,其中,()tx g t ()rx g t 为匹配滤波器组。
ℎ[n]为数字基带等价信道即[]()h n h nT =,其中T 为符号周期,则[][][][][0][][][][] 0,1,...mm y n h m s n m v n h s n h m s n m v n m L ≠=-+=+-+=∑∑(2)其中,0[][]m s n m h m ≠-∑表示符号间干扰;当()h t 为奈奎斯特脉冲时该项为0,即解调器输入信号无符号间干扰。
均衡器()f t 满足()*()()e d h t f t t t δ=-,即均衡器可补偿信道的影响,使得()()*()*()*()e tx rx h t g t g t f t τ=保持奈奎斯特滤波器特征,消除了符号间干扰,如下图1所示。
均衡器参数是由具体信道参数决定的,一般可采用直接估计均衡器参数,和根据估计的信道参数间接估计均衡器参数两种方式完成均衡器的设计。
在本实验中,均衡器间接估计算法已经给出,直接估计算法需要自己完成。
图 1 信道均衡2.1 最小线性二乘本实验所需完成的信道估计和信道均衡都是基于最小二乘法的,下面简单介绍一下该方法的原理。
A 是N M ⨯的列满秩矩阵(N M >),b 是1N ⨯维的矢量,x 是1N ⨯未知的矢量。
本科学生设计性实验报告
学号姓名
学院物电学院专业、班级
实验课程名称现代通讯原理实验及仿真
教师及职称
开课学期2013 至2014 学年下学期
填报时间2014 年06 月04 日
云南师范大学教务处编印
图3 仿真系统框图
图4 基带数字传输发送端图5 数据发生器Source Data
图6 串扰信道模型
)基带数字传输接收端
图8 信道均衡器模型结构
图9 Matlab界面
4.3 在图9中,选择:File>New>Model新建文件,保存在matlab工作目录下,
并取名为equalizer.mdl。
4.4 在Find命令行处输入:Bernouli Binary Generator,就在窗口的右边找到
图11 接收信号(均衡之前)的眼图
图13 均衡前(上)和均衡后(下)信号波形比较。