(浙江专用)高考数学总复习 第八章 立体几何与空间向量 第7讲 立体几何中的向量方法(一)—证明平行
- 格式:doc
- 大小:328.50 KB
- 文档页数:10
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
第7讲 立体几何中的向量方法1.空间向量与空间角的关系(1)两条异面直线所成角的求法(a ,b 分别为异面直线l 1,l 2的方向向量)a 与b 的夹角βl 1与l 2所成的角θ范围[0,π]⎝ ⎛⎦⎥⎤0,π2 求法 cos β=a·b|a||b|cos θ=|cos β|=|a·b ||a||b|(2)直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.(3)二面角大小的求法a .如图①,AB ,CD 是二面角αl β两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.b .如图②③,n 1,n 2分别是二面角αl β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.2.点到平面的距离的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离d =|AB →·n ||n |.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].( )答案:(1)× (2)× (3)× (4)√ [教材衍化]1.(选修21P104练习T2改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.解析:cos 〈m ,n 〉=m ·n |m ||n |=11·2=22,即〈m ,n 〉=45°.所以两平面所成二面角为45°或180°-45°=135°.答案:45°或135°2.(选修21P112A 组T6改编)在正方体ABCD -A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为________.解析:以D 点为原点,以DA ,DC ,DD 1的正方向为x 轴,y 轴,z 轴,如图建立空间直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎪⎫0,12,1,则AC →=(-1,1,0),DE →=⎝⎛⎭⎪⎫0,12,1,设异面直线DE 与AC所成的角为θ,则cos θ=|cos 〈AC →,DE →〉|=1010.答案:10103.(选修21P117A 组T4改编)正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.解析:以C 为原点建立空间直角坐标系,如图所示,得下列坐标A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=|AC 1→·AC 2→||AC 1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.答案:π6[易错纠偏]直线和平面所成的角的取值范围出错.已知向量m ,n 分别是直线l 的方向向量、平面α的法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.解析:设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12,所以θ=30°.答案:30°第1课时 空间角异面直线所成的角如图,在三棱锥P ABC 中,PA ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,点M 是线段AD 的中点,PA =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解】 如图,以A 为原点,分别以AB →,AC →,AP →方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系A xyz .依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可得n =(1,0,1). 又MN →=(1,2,-1),可得MN →·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2). 由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值. [提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.1.长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =1,点E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010 B.3010C.21510D.31010解析:选B.以D 为原点,以DA ,DC ,DD 1的正方向为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz ,如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=⎪⎪⎪⎪⎪⎪⎪⎪BC 1→·AE →|BC1→||AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 2.如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为PA ⊥平面ABCD ,所以PA ⊥BD . 又因为AC ∩PA =A ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. 即PB 与AC 所成角的余弦值为64.直线与平面所成的角(2018·高考浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【解】 法一:(1)由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB 得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC 得B 1C 1=5, 由AB =BC =2,∠ABC =120°得AC =23, 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21,故AB 1⊥B 1C 1. 因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD . 由AB 1⊥平面A 1B 1C 1得 平面A 1B 1C 1⊥平面ABB 1,由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21得 cos∠C 1A 1B 1=67,sin∠C 1A 1B 1=17,所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是3913. 法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O xyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3).由AB 1→·A 1B 1→=0得AB 1⊥A 1B 1. 由AB 1→·A 1C 1→=0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的法向量n =(x ,y ,z ).由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,即⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cosAC 1→,n|=|AC 1→·n ||AC 1→|·|n |=3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是3913.利用向量求线面角的方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.(2020·浙江省高中学科基础测试)如图,在三棱锥P ABC 中,△ABC 是等边三角形,点D 是AC 的中点,PA =PC ,二面角P AC B 的大小为60°.(1)求证:平面PBD ⊥平面PAC ; (2)求AB 与平面PAC 所成角的正弦值.解:(1)证明:⎭⎪⎬⎪⎫BD ⊥ACPD ⊥AC PD ∩BD =D ⇒AC ⊥平面PBD , 又AC ⊂平面PAC ,所以平面PAC ⊥平面PBD , 即平面PBD ⊥平面PAC .(2)因为AC ⊥BD ,如图建立空间直角坐标系D xyz . 则D (0,0,0),令A (1,0,0), 则B (0,3,0),C (-1,0,0).又∠PDB 为二面角P AC B 的平面角,得∠PDB =60°. 设DP =λ,则P ⎝⎛⎭⎪⎫0,λ2,32λ,设n =(x ,y ,z )为平面PAC 的一个法向量,则AC →=(-2,0,0),AP →=⎝⎛⎭⎪⎫-1,λ2,32λ,由⎩⎪⎨⎪⎧n ·AC →=0n ·AP →=0,得⎩⎪⎨⎪⎧-2x =0-x +λ2y +32λz =0, 取y =3,得n =(0,3,-1).又AB →=(-1,3,0),得cos 〈n ,AB →〉=32×2=34.设AB 与平面PAC 所成角为θ,则sin θ=|cos 〈n ,AB →〉|=34.二面角(高频考点)二面角是高考的重点,是考查热点,题型多以解答题形式出现,一般为中档题.主要命题角度有:(1)求二面角; (2)由二面角求其他量. 角度一 求二面角如图,在三棱台ABC DEF 中,平面BCFE ⊥平面ABC ,∠ACB=90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ; (2)求二面角BAD F 的平面角的余弦值.【解】 (1)证明:延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC ,所以,AC ⊥平面BCK ,因此,BF ⊥AC .又EF ∥BC ,BE =EF=FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK ,又AC ∩CK =C ,所以BF ⊥平面ACFD .(2)如图,延长AD ,BE ,CF 相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以,KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系O xyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E (12,0,32),F (-12,0,32). 因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0得⎩⎨⎧3y 1=0x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m·n |m |·|n |=34.所以,二面角B AD F 的平面角的余弦值为34. 角度二 由二面角求其他量如图,四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60°,AP =1,AD =3,求三棱锥E ACD 的体积.【解】 (1)证明:连接BD ,设AC 与BD 的交点为G ,则G 为AC ,BD 的中点,连接EG .在三角形PBD 中,中位线EG ∥PB ,且EG 在平面AEC 内,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)设CD =m ,以A 为原点,分别以AB →,AD →,AP →的方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz ,则A (0,0,0),D (0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,C (m ,3,0). 所以AD →=(0,3,0),AE →=⎝ ⎛⎭⎪⎫0,32,12,AC →=(m ,3,0).设平面ADE 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AD →=0,n ·AE →=0,解得n 1=(1,0,0).同理设平面ACE 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·AC →=0,n 2·AE →=0,解得一个n 2=(-3,m ,-3m ).因为cos 60°=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=33+m 2+3m 2=12,解得m =32. 设F 为AD 的中点,连接EF ,则PA ∥EF ,且EF =AP 2=12,EF ⊥平面ACD ,所以EF 为三棱锥E ACD 的高.所以V E ACD =13·S △ACD ·EF =13×12×32×3×12=38.所以三棱锥E ACD 的体积为38.求二面角大小的常用方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2020·温州普通高中模考)如图,四棱锥P ABCD 中,∠ABC =∠BCD =90°,AB =2,CD =CB =CP =1,点P 在底面上的射影为线段BD 的中点M ,点F 为AB 的中点.(1)若点E 为棱PB 的中点,求证:CE ∥平面PAD ; (2)求二面角A PB C 的平面角的余弦值.解:(1)如图,由点P 在底面上的射影为线段BD 的中点M ,且MC =MB =MF =MD ,则PC =PB =PD =BC ,以B 为坐标原点,BC ,BA 所在直线为x ,y 轴,建立空间直角坐标系B xyz ,则B (0,0,0),A (0,2,0),C (1,0,0),D (1,1,0), P ⎝ ⎛⎭⎪⎫12,12,22,E ⎝ ⎛⎭⎪⎫14,14,24, 则AD →=(1,-1,0),AP →=⎝ ⎛⎭⎪⎫12,-32,22,CE →=⎝ ⎛⎭⎪⎫-34,14,24, 所以t =(1,1,2)为平面PAD 的一个法向量, 所以CE →·t =0,所以CE ∥平面PAD .(2)BA →=(0,2,0),BC →=(1,0,0),BP →=⎝ ⎛⎭⎪⎫12,12,22,设平面BPA 的一个法向量为m=(x ,y ,z ),由⎩⎪⎨⎪⎧BA →·m =0BP →·m =0,即⎩⎪⎨⎪⎧2y =012x +12y +22z =0, 取m =(2,0,-1),同理,平面BPC 的一个法向量为n =(0,2,-1), 设θ是二面角A PB C 的平面角,易见θ与〈m ,n 〉互补, 故cos θ=-cos 〈m ,n 〉=-m ·n |m ||n |=-13, 所以二面角A PB C 的平面角的余弦值为-13.[基础题组练]1.在直三棱柱ABC A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:选C.不妨设AB =AC =AA 1=1,建立空间直角坐标系如图所示,则B (0,-1,0),A 1(0,0,1),A (0,0,0),C 1(-1,0,1),所以BA 1→=(0,1,1),AC 1→=(-1,0,1),所以cos 〈BA 1→,AC 1→〉 =BA 1→·AC 1→|BA 1→|·|AC 1→|=12×2=12,所以〈BA 1→,AC 1→〉=60°,所以异面直线BA 1与AC 1所成的角等于60°.2.在三棱锥P ABC 中,PA ⊥平面ABC ,∠BAC =90°,点D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.25解析:选C.以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz ,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1. 所以PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DFE 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=55,所以直线PA 与平面DEF 所成角的正弦值为55.3.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.解析:以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12, D (0,1,0),所以A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,所以⎩⎪⎨⎪⎧y =2,z =2.所以n 1=(1,2,2).因为平面ABCD 的一个法向量为n 2=(0,0,1),所以cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.答案:234.在正三棱柱ABC A 1B 1C 1中,AB =1,点D 在棱BB 1上,若BD =1,则AD 与平面AA 1C 1C 所成角的正切值为________.解析:如图,设AD 与平面AA 1C 1C 所成的角为α,点E 为AC 的中点,连接BE ,则BE ⊥AC ,所以BE ⊥平面AA 1C 1C ,可得AD →·EB →=(AB →+BD →)·EB →=AB →·EB →=1×32×32=34=2×32×cos θ(θ为AD →与EB →的夹角),所以cosθ=64=sin α,所以所求角的正切值为tan α=cos θsin θ=155. 答案:1555.已知单位正方体ABCD A 1B 1C 1D 1,E ,F 分别是棱B 1C 1,C 1D 1的中点.试求: (1)AD 1与EF 所成角的大小; (2)AF 与平面BEB 1所成角的余弦值.解:建立如图所示的空间直角坐标系B 1xyz ,得A (1,0,1),B (0,0,1),D 1(1,1,0),E ⎝⎛⎭⎪⎫0,12,0,F ⎝⎛⎭⎪⎫12,1,0.(1)因为AD 1→=(0,1,-1), EF →=⎝ ⎛⎭⎪⎫12,12,0,所以cos 〈AD 1→,EF →〉=(0,1,-1)·⎝ ⎛⎭⎪⎫12,12,02×22=12,即AD 1与EF 所成的角为60°.(2)FA →=⎝ ⎛⎭⎪⎫12,-1,1,由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ,则sin θ=|cos 〈BA →,FA →〉|=⎪⎪⎪⎪⎪⎪(1,0,0)·⎝ ⎛⎭⎪⎫12,-1,11×⎝ ⎛⎭⎪⎫122+(-1)2+12=13,所以cos θ=223.即AF 与平面BEB 1所成角的余弦值为223.6.(2020·宁波市余姚中学高三期中)如图,在四棱锥P ABCD 中,底面ABCD 为菱形,∠BAD =60°,点Q 为AD 的中点.(1)若PA =PD ,求证:平面PQB ⊥平面PAD ;(2)设点M 是线段PC 上的一点,PM =tPC ,且PA ∥平面MQB . ①求实数t 的值;②若PA =PD =AD =2,且平面PAD ⊥平面ABCD ,求二面角M BQ C 的大小. 解:(1)证明:连接BD ,因为四边形ABCD 为菱形, ∠BAD =60°,所以△ABD 是正三角形,又Q 为AD 中点, 所以AD ⊥BQ .因为PA =PD ,Q 为AD 中点,所以AD ⊥PQ .又BQ ∩PQ =Q ,所以AD ⊥平面PQB ,AD ⊂平面PAD , 所以平面PQB ⊥平面PAD .(2)①当t =13时,使得PA ∥平面MQB .连接AC 交BQ 于N ,交BD 于O ,则O 为BD 的中点,又因为BQ 为△ABD 边AD 上的中线,所以N 为正三角形ABD 的重心, 令菱形ABCD 的边长为a ,则AN =33a ,AC =3a . 因为PA ∥平面MQB ,PA ⊂平面PAC ,平面PAC ∩平面MQB =MN ,所以PA ∥MN ,PM PC =AN AC =3a 33a =13,即PM =13PC ,t =13.②因为PQ ⊥AD ,又平面PAD ⊥平面ABCD ,所以QA ,QB ,QP 两两垂直,以Q 为坐标原点,分别以QA ,QB ,QP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系Q xyz ,由PA =PD =AD =2,则B (0,3,0),C (-2,3,0),P (0,0,3),设M (a ,b ,c ),则PM →=(a ,b ,c -3),PC →=(-2,3,-3), 因为PM =13PC ,所以PM →=13PC →,所以a =-23,b =33,c =233,所以M ⎝ ⎛⎭⎪⎫-23,33,233,设平面MQB 的法向量n =(x ,y ,z ), 由QM →=⎝ ⎛⎭⎪⎫-23,33,233,QB →=(0,3,0),且n ⊥QM →,n ⊥QB →,得⎩⎪⎨⎪⎧-23x +33y +233z =03y =0, 取z =1,得n =(3,0,1), 又平面ABCD 的法向量m =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=12,由图知二面角M BQ C 的平面角为锐角, 所以二面角M BQ C 的大小为60°.[综合题组练]1.(2020·杭州中学高三月考)如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,PA ⊥底面ABCD ,点M 是棱PD 的中点,且PA =AB =AC =2,BC =2 2.(1)求证:CD ⊥平面PAC ; (2)求二面角M AB C 的大小;(3)如果N 是棱AB 上一点,且直线CN 与平面MAB 所成角的正弦值为105,求ANNB的值. 解:(1)证明:因为在△ABC 中,AB =AC =2,BC =22, 所以BC 2=AB 2+AC 2,所以AB ⊥AC , 因为AB ∥CD ,所以AC ⊥CD ,又因为PA ⊥底面ABCD ,所以PA ⊥CD , 因为AC ∩PA =A ,所以CD ⊥平面PAC .(2)如图,建立空间直角坐标系A xyz ,则A (0,0,0),P (0,0,2),B (2,0,0),C (0,2,0),D (-2,2,0),因为点M 是棱PD 的中点,所以M (-1,1,1),所以AM →=(-1,1,1),AB →=(2,0,0), 设n =(x ,y ,z )为平面MAB 的法向量, 所以⎩⎪⎨⎪⎧n ·AM →=0n ·AB →=0,即⎩⎪⎨⎪⎧-x +y +z =02x =0.令y =1,则⎩⎪⎨⎪⎧x =0y =1z =-1,所以平面MAB 的法向量n =(0,1,-1). 因为PA ⊥平面ABCD ,所以AP →=(0,0,2)是平面ABC 的一个法向量. 所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-22×2=-22.因为二面角M AB C 为锐二面角,所以二面角M AB C 的大小为π4.(3)因为N 是棱AB 上一点,所以设N (x ,0,0),NC →=(-x ,2,0), 设直线CN 与平面MAB 所成角为α, 因为平面MAB 的法向量n =(0,1,-1), 所以sin α=|cos 〈NC →,n 〉|=22×x 2+4=105, 解得x =1,即AN =1,NB =1,所以ANNB=1.2.(2020·惠州市第三次调研考试)如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,点G 是DP 的中点,圆柱OQ 的底面圆的半径OA =2,侧面积为83π,∠AOP =120°.(1)求证:AG ⊥BD ;(2)求二面角P AG B 的平面角的余弦值. 解:建立如图所示的空间直角坐标系A xyz ,由题意可知83π=2×2π×AD ,解得AD =2 3.则A (0,0,0),B (0,4,0),D (0,0,23),P (3,3,0), 因为G 是DP 的中点,所以可求得G ⎝⎛⎭⎪⎫32,32,3. (1)证明:BD →=(0,-4,23),AG →=⎝ ⎛⎭⎪⎫32,32,3.所以AG →·BD →=⎝ ⎛⎭⎪⎫32,32,3·(0,-4,23)=0,所以AG ⊥BD . (2)BP →=(3,-1,0),AG →=⎝ ⎛⎭⎪⎫32,32,3,PG →=⎝ ⎛⎭⎪⎫-32,-32,3,BG →=⎝ ⎛⎭⎪⎫32,-52,3,因为BP →·PG →=0,AG →·BP →=0,所以BP →是平面APG 的法向量.设n =(x ,y ,1)是平面ABG 的法向量,由n ·AG →=0,n ·BG →=0.解得n =(-2,0,1), cos 〈BP →,n 〉=BP →·n |BP →|·|n |=-2325=-155.结合图形得,二面角P AG B 的平面角的余弦值为155. 3.(2020·温州十五校联考)已知菱形ABCD 中,对角线AC 与BD 相交于一点O ,∠BAD =60°,将△BDC 沿着BD 折起得△BDC ′,连接AC ′.(1)求证:平面AOC ′⊥平面ABD ;(2)若点C ′在平面ABD 上的投影恰好是△ABD 的重心,求直线CD 与底面ADC ′所成角的正弦值.解:(1)证明:因为C ′O ⊥BD ,AO ⊥BD ,C ′O ∩AO =O ,所以BD ⊥平面C ′OA ,又因为BD ⊂平面ABD ,所以平面AOC ′⊥平面ABD .(2)如图建系O xyz ,令AB =a ,则A ⎝⎛⎭⎪⎫32a ,0,0, B ⎝⎛⎭⎪⎫0,12a ,0,D ⎝⎛⎭⎪⎫0,-12a ,0,C ′⎝ ⎛⎭⎪⎫36a ,0,63a ,所以DC →=AB →=⎝ ⎛⎭⎪⎫-32a ,12a ,0,平面ADC ′的法向量为m =⎝ ⎛⎭⎪⎫1,-3,22,设直线CD 与底面ADC ′所成角为θ,则sin θ=|cos 〈DC →,m 〉|=|DC →·m ||DC →||m |=3a a ·32=63, 故直线CD 与底面ADC ′所成角的正弦值为63. 4.如图,在四棱锥PABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,PA ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q AC D 的余弦值为63?若存在,求出PQ QD的值;若不存在,请说明理由.解:(1)在△PAD 中,PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD ,所以PO ⊥平面ABCD .在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,直线OC 为x 轴,直线OD 为y 轴,直线OP 为z 轴可建立空间直角坐标系Q xyz (OC →、OD →、OP →的方向分别为x 轴、y 轴、z 轴的正方向),则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),所以PB →=(1,-1,-1).易证OA ⊥平面POC ,所以OA →=(0,-1,0)是平面POC 的一个法向量, 又cos 〈PB →,OA →〉=PB →·OA →|PB →||OA →|=33,所以直线PB 与平面POC 所成角的余弦值为63. (2)PD →=(0,1,-1),CP →=(-1,0,1), 设平面PCD 的法向量为u =(x ,y ,z ),则{u ·CP →=-x +z =0,u ·PD →=y -z =0,取z =1,得u =(1,1,1). 所以B 点到平面PCD 的距离为d =|BP →·u ||u |=33..专业. (3)存在.设PQ →=λPD →(0≤λ<1),因为PD →=(0,1,-1),所以PQ →=(0,λ,-λ)=OQ →-OP →, 所以OQ →=(0,λ,1-λ),所以Q (0,λ,1-λ).设平面CAQ 的法向量为m =(x ′,y ′,z ′),则⎩⎪⎨⎪⎧m ·AC →=x ′+y ′=0,m ·AQ →=(λ+1)y ′+(1-λ)z ′=0.取z ′=λ+1,得m =(1-λ,λ-1,λ+1), 易知平面CAD 的一个法向量为n =(0,0,1),因为二面角Q AC D 的余弦值为63, 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63, 得3λ2-10λ+3=0,解得λ=13或λ=3(舍去), 所以存在点Q ,使得二面角Q AC D 的余弦值为63,且PQ QD =12.。
第2课时 空间距离与立体几何中的最值(X 围)问题(选用)空间中的距离问题如图,平面PAD ⊥平面ABCD ,四边形ABCD 为正方形,△PAD 是直角三角形,且PA=AD =2,点E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面PAB ; (2)求点A 到平面EFG 的距离.【解】 如图,建立空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0),AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0,EF →·AB →=0×2+1×0+0×0=0,所以EF ⊥AP ,EF ⊥AB .又因为AP ,AB ⊂平面PAB ,且PA ∩AB =A , 所以EF ⊥平面PAB .又EF ⊂平面EFG ,所以平面EFG ⊥平面PAB . (2)设平面EFG 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以{y =0,,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.(1)空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. ①点点距:点与点的距离,以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,若直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离为d =|MN →|·sin〈MN →,a 〉;③线线距:两平行线间的距离转化为点线距离,两异面直线间的距离转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,若平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |.(2)利用空间向量求空间距离问题,首先应明确所求距离的特征,恰当选用距离公式求解.1.如图,P ABCD 是正四棱锥,ABCD A 1B 1C 1D 1是正方体,其中AB =2,PA =6,则B 1到平面PAD 的距离为________.解析:以A 1为原点,以A 1B 1所在直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系A 1xyz ,则AD →=(0,2,0),AP →=(1,1,2),设平面PAD 的法向量是m =(x ,y ,z ),所以由⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0,可得⎩⎪⎨⎪⎧2y =0,x +y +2z =0.取z =1,得m =(-2,0,1),因为B 1A →=(-2,0,2),所以B 1到平面PAD 的距离d =|B 1A →·m ||m |=65 5.答案:6552.如图,在长方体ABCD A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2.(1)求证:平面A 1BC 1∥平面ACD 1; (2)求平面A 1BC 1与平面ACD 1的距离.解:(1)证明:因为AA 1綊CC 1,所以四边形ACC 1A 1为平行四边形,所以AC ∥A 1C 1. 又AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1,所以AC ∥平面A 1BC 1.同理可证CD 1∥平面A 1BC 1. 又AC ∩CD 1=C ,AC ⊂平面ACD 1,CD 1⊂平面ACD 1, 所以平面A 1BC 1∥平面ACD 1.(2)以B 1为原点,分别以B 1A 1→,B 1C 1→,B 1B →的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系B 1xyz ,则A 1(4,0,0),A (4,0,2),D 1(4,3,0),C (0,3,2),A 1A →=(0,0,2),AC →=(-4,3,0),AD 1→=(0,3,-2),设n =(x ,y ,z )为平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-4x +3y =0,3y -2z =0,取n =(3,4,6),所以所求距离d =|A 1A →|×|cos 〈n ,A 1A →〉|=|n ·A 1A →||n |=1232+42+62=126161,故平面A 1BC 1与平面ACD 1的距离为126161.立体几何中的最值(X 围)问题(1)(2020·某某十校联考)如图,平面PAB ⊥平面α,AB ⊂α,且△PAB 为正三角形,点D 是平面α内的动点,ABCD是菱形,点O 为AB 中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A.-3+372B. 3+372C.7D .3(2)(2020·某某高考模拟)如图,在三棱锥A BCD 中,平面ABC ⊥平面BCD ,△BAC 与△BCD 均为等腰直角三角形,且∠BAC =∠BCD =90°,BC =2,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得直线PQ与AC 成30°的角,则线段PA 长的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎣⎢⎡⎦⎥⎤0,63 C.⎝⎛⎭⎪⎫22,2 D.⎝⎛⎭⎪⎫63,2 【解析】 (1)如图,不妨以CD 在AB 前侧为例.以点O 为原点,分别以OB 、OP 所在直线为y 、z 轴建立空间直角坐标系O xyz ,设AB =2,∠OAD =θ(0<θ<π),则P (0,0,3),D (2sin θ,-1+2cos θ,0),所以Q ⎝ ⎛⎭⎪⎫23sin θ,23cos θ-13,0,所以QP →=⎝ ⎛⎭⎪⎫-23sin θ,13-23cos θ,3,设α内与AB 垂直的向量n =(1,0,0),PQ 与直线l 所成角为φ,则cos φ=⎪⎪⎪⎪⎪⎪⎪⎪QP →·n |QP →||n |=⎪⎪⎪⎪⎪⎪⎪⎪-23sin θ329-49cos θ=sin θ8-cos θ=1-cos 2θ8-cos θ.令t =cos θ(-1<t <1),则s =1-t 28-t ,s ′=t 2-16t +1(8-t )2,令s ′=0,得t =8-37,所以当t =8-37时,s 有最大值为16-67.则cos φ有最大值为16-67,此时sin φ取最小值为 67-15. 所以正切值的最小值为67-1516-67=3+372.故选B.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系C xyz ,则A (0,1,1),B (0,2,0),C (0,0,0),设Q (q ,0,0),AP →=λAB →=(0,λ,-λ)(0≤λ≤1),则PQ →=CQ →-CP →=CQ →-(CA →+AP →)=(q ,0,0)-(0,1,1)-(0,λ,-λ)=(q ,-1-λ,λ-1),因为直线PQ 与AC 成30°的角,所以cos 30°=|CA →·PQ →||CA →|·|PQ →|=22·q 2+(1+λ)2+(λ-1)2=2q 2+2λ2+2=32, 所以q 2+2λ2+2=83,所以q 2=23-2λ2∈[0,4],所以⎩⎪⎨⎪⎧23-2λ2≥023-2λ2≤4,解得0≤λ≤33,所以|AP →|=2λ∈⎣⎢⎡⎦⎥⎤0,63,所以线段PA 长的取值X 围是⎣⎢⎡⎦⎥⎤0,63. 故选B.【答案】 (1)B (2)B(1)求解立体几何中的最值问题,需要先确定最值的主体,确定题目中描述的相关变量,然后根据所求,确定是利用几何方法求解,还是转化为代数(特别是函数)问题求解.利用几何方法求解时,往往利用几何体的结构特征将问题转化为平面几何中的问题进行求解,如求几何体表面距离的问题.利用代数法求解时,要合理选择参数,利用几何体中的相关运算构造目标函数,再根据条件确定参数的取值X 围,从而确定目标函数的值域,即可利用函数最值的求解方法求得结果.(2)用向量法解决立体几何中的最值问题,不仅简捷,更减少了思维量.用变量表示动点的坐标,然后依题意用向量法求其有关几何量,构建有关函数,从而用代数方法即可求其最值.1.(2020·某某省五校联考模拟)如图,棱长为4的正方体ABCD A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°,则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)解析:选B.如图所示,作C 1O ⊥α,交ABCD 于点O ,交α于点E ,由题得O 在AC 上,则C 1E 为所求,∠OAE =30°, 由题意,设CO =x ,则AO =42-x ,C 1O =16+x 2,OE =12OA =22-12x ,所以C 1E =16+x 2+22-12x ,令y = 16+x 2+22-12x ,则y ′=x16+x 2-12=0,可得x =43, 所以x =43时,顶点C 1到平面α的距离的最大值是2(3+2).2.(2020·某某省名校协作体高三联考)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值X 围.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB=2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC ,因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)如图所示,由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系C xyz ,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z )为平面MAB 的一个法向量,由⎩⎪⎨⎪⎧n 1·AB →=0n 1·BM →=0,得⎩⎨⎧-3x +y =0λx -y +z =0,取x =1,则n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量, 所以cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2×1 =1(λ-3)2+4,因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,所以cos θ∈⎣⎢⎡⎦⎥⎤77,12.[基础题组练]1.(2020·某某市镇海中学高考模拟)在直三棱柱A 1B 1C 1ABC 中,∠BAC =π2,AB =AC =AA 1=1,已知点G 和E 分别为A 1B 1和CC 1的中点,点D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值X 围为( )A.⎣⎢⎡⎭⎪⎫55,1 B.⎣⎢⎡⎦⎥⎤55,1 C.⎝⎛⎭⎪⎫255,1 D.⎣⎢⎡⎭⎪⎫255,1 解析:选A.建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),E ⎝ ⎛⎭⎪⎫0,1,12,G ⎝ ⎛⎭⎪⎫12,0,1,F (x ,0,0),D (0,y ,0),由于GD ⊥EF ,所以x +2y -1=0,DF = x 2+y 2=5⎝ ⎛⎭⎪⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1,又不包括端点,故y =0不能取,故选A.2.(2020·某某市学军中学高考数学模拟)如图,三棱锥P ABC 中,已知PA ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,设PD =x ,∠BPC =θ,记函数f (x )=tan θ,则下列表述正确的是( )A .f (x )是关于x 的增函数B .f (x )是关于x 的减函数C .f (x )关于x 先递增后递减D .f (x )关于x 先递减后递增解析:选C.因为PA ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,PD =x ,∠BPC =θ, 所以可求得AC =2,AB =5,PA =x 2-1,PC =x 2+1,BP =x 2+4, 所以在△PBC 中,由余弦定理知cos θ=PB 2+PC 2-BC 22BP ·PC =2x 2+42x 2+1x 2+4. 所以tan 2θ=1cos 2θ-1=(x 2+1)(x 2+4)(x 2+2)2-1=x2(x 2+2)2.所以tan θ=x x 2+2=1x +2x ≤12x ·2x=24(当且仅当x =2时取等号),所以f (x )关于x 先递增后递减.3.(2020·义乌市高三月考)如图,边长为2的正△ABC 的顶点A 在平面γ上,B ,C 在平面γ的同侧,点M 为BC 的中点,若△ABC 在平面γ上的射影是以A 为直角顶点的△AB 1C 1,则M 到平面γ的距离的取值X 围是________.解析:设∠BAB 1=α,∠CAC 1=β,则AB 1=2cos α,AC 1=2cos β,BB 1=2sin α,CC 1=2sin β,则点M 到平面γ的距离d =sin α+sin β,又|AM |=3,则|B 1C 1|=23-d 2,即cos 2α+cos 2β=3-(sin 2α+2sin αsin β+sin 2β).也即sin αsin β=12,所以d =sin α+sin β=sin α+12sin α≥2,因为sin α<1,sin β<1,所以12sin α<1,所以12<sin α<1,所以当sin α=12或1时,d =32,则2≤d <32.答案:⎣⎢⎡⎭⎪⎫2,324.(2020·某某市学军中学高考数学模拟)如图,在二面角A CD B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值X 围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折的过程中,二面角A CD B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →, 设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ,即x 2-4x cos θ-1=0,即cos θ=x 2-14x.因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0, 则⎩⎨⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值X 围是[5-2,5+2]. 答案:[5-2,5+2]5.(2020·金丽衢十二校联考)如图,在三棱锥D ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:26.(2020·某某十五校联合体期末考试)在正四面体P ABC 中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN →=λAB →,设异面直线NM 与AC 所成角为α,当13≤λ≤23时,则cos α的取值X 围是________.解析:设点P 到平面ABC 的射影为点O ,以AO 所在直线为y 轴,OP 所在直线为z 轴,过点O 作BC 的平行线为x 轴,建立空间直角坐标系O xyz ,如图.设正四面体的棱长为43,则有A (0,-4,0),B (23,2,0),C (-23,2,0),P (0,0,42),M (-3,1,22).由AN →=λAB →,得N (23λ,6λ-4,0).从而有NM →=(-3-23λ,5-6λ,22),AC →=(-23,6,0). 所以cos α=|NM →·AC →||NM →||AC →|=3-2λ24λ2-4λ+3,设3-2λ=t ,则53≤t ≤73.则cos α=12t 2t 2-4t +6=1 2 6⎝ ⎛⎭⎪⎫1t 2-4·1t +1,因为13<37≤1t ≤35,所以51938≤cos α≤71938. 答案:⎣⎢⎡⎦⎥⎤51938,71938 7.如图,在△ABC 中,∠B =π2,AB =BC =2,点P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若点P 为AB 的中点,点E 为A ′C 的中点,求证:A ′B ⊥DE .解:(1)设PA =x ,则PA ′=x ,所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝⎛⎭⎪⎫2-x 22. 令f (x )=13x ⎝⎛⎭⎪⎫2-x 22=2x 3-x 36(0<x <2), 则f ′(x )=23-x 22.当x 变化时,f ′(x ),f (x )的变化情况如下表: x⎝ ⎛⎭⎪⎫0,233 233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )+ 0 - f (x ) 单调递增 极大值 单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值. (2)证明:取A ′B 的中点F ,连接EF ,FP .由已知,得EF 綊12BC 綊PD . 所以四边形EFPD 是平行四边形,所以ED ∥FP .因为△A ′PB 为等腰直角三角形,所以A ′B ⊥PF .所以A ′B ⊥DE .8.(2020·某某市第一次高考科目数学质量检测)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC ,平面A 1BC ⊥平面A 1ABB 1.(1)求证:AB ⊥BC ;(2)设直线AC 与平面A 1BC 所成的角为θ,二面角A 1BC A 的大小为φ,试比较θ和φ的大小关系,并证明你的结论.解:(1)证明:过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,因为平面A 1BC ⊥平面A 1ABB 1,平面A 1BC ∩平面A 1ABB 1=A 1B ,所以AD ⊥平面A 1BC ,又因为BC ⊂平面A 1BC ,所以AD ⊥BC .因为AA 1⊥平面ABC ,所以AA 1⊥BC .又因为AA 1∩AD =A ,所以BC ⊥侧面A 1ABB 1,又因为AB ⊂平面A 1ABB 1,故AB ⊥BC .(2)连接CD ,由(1)知∠ACD 是直线AC 与平面A 1BC 所成的角.又∠ABA 1是二面角A 1BC A 的平面角.则∠ACD =θ,∠ABA 1=φ.在Rt △ADC 中,sin θ=AD AC ,在Rt △ADB 中,sin φ=AD AB .由AB <AC ,得sin θ<sin φ,又0<θ,φ<π2, 所以θ<φ.[综合题组练]1.(2020·某某市高考数学模拟)如图,在矩形ABCD 中,AB AD=λ(λ>1),将其沿AC 翻折,使点D 到达点E 的位置,且二面角C AB E为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设点F 是BE 的中点,二面角E AC F 的平面角的大小为θ,当λ∈[2,3]时,求cos θ的取值X 围.解:(1)证明:因为二面角C AB E 为直二面角,AB ⊥BC, 所以BC ⊥平面ABE ,所以BC ⊥AE .因为AE ⊥CE ,BC ∩CE =C ,所以AE ⊥平面BCE .因为AE ⊂平面ACE ,所以平面ACE ⊥平面BCE .(2)如图,以E 为坐标原点,以AD 长为一个单位长度,建立如图所示的空间直角坐标系E xyz ,则AB =λ,A (0,1,0),B (λ2-1,0,0),C (λ2-1,0,1),E (0,0,0),F ⎝ ⎛⎭⎪⎫λ2-12,0,0, 则EA →=(0,1,0),EC →=(λ2-1,0,1),设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎨⎧y =0λ2-1·x +z =0,取x =1,则m =(1,0,-λ2-1). 同理得平面FAC 的一个法向量为n =(2,λ2-1,-λ2-1). 所以cos θ=m ·n |m |·|n |=λ2+1λ·2(λ2+1)=22·1+1λ2 .因为λ∈[2,3],所以cos θ∈⎣⎢⎡⎦⎥⎤53,104. 2.如图,在四棱锥P ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2, PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数, 所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.。
第七节立体几何中的向量方法[最新考纲][考情分析][核心素养]1。
理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
4。
能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。
主要通过空间角(异面直线所成角、直线与平面所成角、二面角)的求法考查向量方法应用,多为解答题第2问,分值为12分.1.直观想象2.逻辑推理3.数学运算‖知识梳理‖空间角的求法(1)求异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)错误!错误!求法cos β=a·b|a||b|cos θ=|cos β|=|a·b||a||b|►常用结论两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(2)求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=错误!|cos<a,n〉|=错误!错误!.(3)求二面角的大小①如图①,AB,CD是二面角α-l-β的两条面内与棱l垂直的直线,则二面角的大小θ=错误!〈错误!,错误!>.②如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=错误!|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).►常用结论解空间角最值问题时往往会用到最小角定理cosθ=cosθ1cos θ2如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2。
第1课时 空间角[基础题组练]1.在直三棱柱ABC A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°解析:选C.不妨设AB =AC =AA 1=1,建立空间直角坐标系如图所示,则B (0,-1,0),A 1(0,0,1),A (0,0,0),C 1(-1,0,1),所以BA 1→=(0,1,1),AC 1→=(-1,0,1),所以cos 〈BA 1→,AC 1→〉 =BA 1→·AC 1→|BA 1→|·|AC 1→|=12×2=12,所以〈BA 1→,AC 1→〉=60°,所以异面直线BA 1与AC 1所成的角等于60°.2.在三棱锥P ABC 中,PA ⊥平面ABC ,∠BAC =90°,点D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.25解析:选C.以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz ,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝⎛⎭⎪⎫12,0,0,E ⎝⎛⎭⎪⎫12,12,0, F ⎝⎛⎭⎪⎫0,12,1. 所以PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DFE 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=55,所以直线PA 与平面DEF 所成角的正弦值为55.3.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.解析:以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12, D (0,1,0),所以A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,所以⎩⎪⎨⎪⎧y =2,z =2.所以n 1=(1,2,2).因为平面ABCD 的一个法向量为n 2=(0,0,1), 所以cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.答案:234.在正三棱柱ABC A 1B 1C 1中,AB =1,点D 在棱BB 1上,若BD =1,则AD 与平面AA 1C 1C 所成角的正切值为________.解析:如图,设AD 与平面AA 1C 1C 所成的角为α,点E 为AC 的中点,连接BE ,则BE ⊥AC ,所以BE ⊥平面AA 1C 1C ,可得AD →·EB →=(AB →+BD →)·EB →=AB →·EB →=1×32×32=34=2×32×cos θ(θ为AD →与EB →的夹角),所以cosθ=64=sin α,所以所求角的正切值为tan α=cos θsin θ=155. 答案:1555.已知单位正方体ABCD A 1B 1C 1D 1,E ,F 分别是棱B 1C 1,C 1D 1的中点.试求:(1)AD 1与EF 所成角的大小; (2)AF 与平面BEB 1所成角的余弦值.解:建立如图所示的空间直角坐标系B 1xyz ,得A (1,0,1),B (0,0,1),D 1(1,1,0),E ⎝⎛⎭⎪⎫0,12,0,F ⎝ ⎛⎭⎪⎫12,1,0. (1)因为AD 1→=(0,1,-1), EF →=⎝ ⎛⎭⎪⎫12,12,0,所以cos 〈AD 1→,EF →〉=(0,1,-1)·⎝ ⎛⎭⎪⎫12,12,02×22=12,即AD 1与EF 所成的角为60°.(2)FA →=⎝ ⎛⎭⎪⎫12,-1,1,由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ,则sin θ=|cos 〈BA →,FA →〉|=⎪⎪⎪⎪⎪⎪(1,0,0)·⎝ ⎛⎭⎪⎫12,-1,11×⎝ ⎛⎭⎪⎫122+(-1)2+12=13,所以cos θ=223.即AF 与平面BEB 1所成角的余弦值为223.6.(2020·某某市余姚中学高三期中)如图,在四棱锥P ABCD 中,底面ABCD 为菱形,∠BAD =60°,点Q 为AD 的中点.(1)若PA =PD ,求证:平面PQB ⊥平面PAD ;(2)设点M 是线段PC 上的一点,PM =tPC ,且PA ∥平面MQB . ①某某数t 的值;②若PA =PD =AD =2,且平面PAD ⊥平面ABCD ,求二面角M BQ C 的大小. 解:(1)证明:连接BD ,因为四边形ABCD 为菱形, ∠BAD =60°,所以△ABD 是正三角形,又Q 为AD 中点, 所以AD ⊥BQ .因为PA =PD ,Q 为AD 中点,所以AD ⊥PQ .又BQ ∩PQ =Q ,所以AD ⊥平面PQB ,AD ⊂平面PAD , 所以平面PQB ⊥平面PAD .(2)①当t =13时,使得PA ∥平面MQB .连接AC 交BQ 于N ,交BD 于O ,则O 为BD 的中点,又因为BQ 为△ABD 边AD 上的中线,所以N 为正三角形ABD 的重心, 令菱形ABCD 的边长为a ,则AN =33a ,AC =3a . 因为PA ∥平面MQB ,PA ⊂平面PAC ,平面PAC ∩平面MQB =MN ,所以PA ∥MN ,PM PC =AN AC =3a33a =13,即PM =13PC ,t =13.②因为PQ ⊥AD ,又平面PAD ⊥平面ABCD ,所以QA ,QB ,QP 两两垂直,以Q 为坐标原点,分别以QA ,QB ,QP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系Q xyz ,由PA =PD =AD =2,则B (0,3,0),C (-2,3,0),P (0,0,3),设M (a ,b ,c ),则PM →=(a ,b ,c -3),PC →=(-2,3,-3), 因为PM =13PC ,所以PM →=13PC →,所以a =-23,b =33,c =233,所以M ⎝ ⎛⎭⎪⎫-23,33,233,设平面MQB 的法向量n =(x ,y ,z ), 由QM →=⎝ ⎛⎭⎪⎫-23,33,233,QB →=(0,3,0),且n ⊥QM →,n ⊥QB →,得⎩⎪⎨⎪⎧-23x +33y +233z =03y =0, 取z =1,得n =(3,0,1), 又平面ABCD 的法向量m =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=12,由图知二面角M BQ C 的平面角为锐角, 所以二面角M BQ C 的大小为60°.[综合题组练]1.(2020·某某中学高三月考)如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,PA ⊥底面ABCD ,点M 是棱PD 的中点,且PA =AB =AC =2,BC =2 2.(1)求证:CD ⊥平面PAC ; (2)求二面角M AB C 的大小;(3)如果N 是棱AB 上一点,且直线与平面MAB 所成角的正弦值为105,求ANNB的值. 解:(1)证明:因为在△ABC 中,AB =AC =2,BC =22, 所以BC 2=AB 2+AC 2,所以AB ⊥AC , 因为AB ∥CD ,所以AC ⊥CD ,又因为PA ⊥底面ABCD ,所以PA ⊥CD , 因为AC ∩PA =A ,所以CD ⊥平面PAC .(2)如图,建立空间直角坐标系A xyz ,则A (0,0,0),P (0,0,2),B (2,0,0),C (0,2,0),D (-2,2,0),因为点M 是棱PD 的中点,所以M (-1,1,1),所以AM →=(-1,1,1),AB →=(2,0,0), 设n =(x ,y ,z )为平面MAB 的法向量,所以⎩⎪⎨⎪⎧n ·AM →=0n ·AB →=0,即⎩⎪⎨⎪⎧-x +y +z =02x =0.令y =1,则⎩⎪⎨⎪⎧x =0y =1z =-1,所以平面MAB 的法向量n =(0,1,-1). 因为PA ⊥平面ABCD ,所以AP →=(0,0,2)是平面ABC 的一个法向量. 所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-22×2=-22.因为二面角M AB C 为锐二面角, 所以二面角M AB C 的大小为π4.(3)因为N 是棱AB 上一点,所以设N (x ,0,0),NC →=(-x ,2,0), 设直线与平面MAB 所成角为α, 因为平面MAB 的法向量n =(0,1,-1), 所以sin α=|cos 〈NC →,n 〉|=22×x 2+4=105, 解得x =1,即AN =1,NB =1,所以ANNB=1.2.(2020·某某市第三次调研考试)如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,点G 是DP 的中点,圆柱OQ 的底面圆的半径OA =2,侧面积为83π,∠AOP =120°.(1)求证:AG ⊥BD ;(2)求二面角P AG B 的平面角的余弦值. 解:建立如图所示的空间直角坐标系A xyz ,由题意可知83π=2×2π×AD ,解得AD =2 3.则A (0,0,0),B (0,4,0),D (0,0,23),P (3,3,0), 因为G 是DP 的中点,所以可求得G ⎝⎛⎭⎪⎫32,32,3. (1)证明:BD →=(0,-4,23),AG →=⎝ ⎛⎭⎪⎫32,32,3.所以AG →·BD →=⎝ ⎛⎭⎪⎫32,32,3·(0,-4,23)=0,所以AG ⊥BD . (2)BP →=(3,-1,0),AG →=⎝ ⎛⎭⎪⎫32,32,3,PG →=⎝ ⎛⎭⎪⎫-32,-32,3,BG →=⎝ ⎛⎭⎪⎫32,-52,3,因为BP →·PG →=0,AG →·BP →=0,所以BP →是平面APG 的法向量.设n =(x ,y ,1)是平面ABG 的法向量,由n ·AG →=0,n ·BG →=0.解得n =(-2,0,1), cos 〈BP →,n 〉=BP →·n |BP →|·|n |=-2325=-155.结合图形得,二面角P AG B 的平面角的余弦值为155. 3.(2020·某某十五校联考)已知菱形ABCD 中,对角线AC 与BD 相交于一点O ,∠BAD =60°,将△BDC 沿着BD 折起得△BDC ′,连接AC ′.(1)求证:平面AOC ′⊥平面ABD ;(2)若点C ′在平面ABD 上的投影恰好是△ABD 的重心,求直线CD 与底面ADC ′所成角的正弦值.解:(1)证明:因为C ′O ⊥BD ,AO ⊥BD ,C ′O ∩AO =O ,所以BD ⊥平面C ′OA ,又因为BD ⊂平面ABD ,所以平面AOC ′⊥平面ABD .(2)如图建系O xyz ,令AB =a ,则A ⎝⎛⎭⎪⎫32a ,0,0, B ⎝⎛⎭⎪⎫0,12a ,0,D ⎝⎛⎭⎪⎫0,-12a ,0,C ′⎝ ⎛⎭⎪⎫36a ,0,63a ,所以DC →=AB →=⎝ ⎛⎭⎪⎫-32a ,12a ,0,平面ADC ′的法向量为m =⎝ ⎛⎭⎪⎫1,-3,22,设直线CD 与底面ADC ′所成角为θ,则sin θ=|cos 〈DC →,m 〉|=|DC →·m ||DC →||m |=3a a ·32=63, 故直线CD 与底面ADC ′所成角的正弦值为63. 4.如图,在四棱锥PABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,PA ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q AC D 的余弦值为63?若存在,求出PQ QD的值;若不存在,请说明理由.解:(1)在△PAD 中,PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD ,所以PO ⊥平面ABCD .在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,直线OC 为x 轴,直线OD 为y 轴,直线OP 为z 轴可建立空间直角坐标系Q xyz (OC →、OD →、OP →的方向分别为x 轴、y 轴、z 轴的正方向),则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),所以PB →=(1,-1,-1).易证OA ⊥平面POC ,所以OA →=(0,-1,0)是平面POC 的一个法向量, 又cos 〈PB →,OA →〉=PB →·OA →|PB →||OA →|=33,所以直线PB 与平面POC 所成角的余弦值为63. (2)PD →=(0,1,-1),CP →=(-1,0,1),设平面PCD 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CP →=-x +z =0,u ·PD →=y -z =0,取z =1,得u =(1,1,1).所以B 点到平面PCD 的距离为d =|BP →·u ||u |=33.(3)存在.设PQ →=λPD →(0≤λ<1),因为PD →=(0,1,-1),所以PQ →=(0,λ,-λ)=OQ →-OP →, 所以OQ →=(0,λ,1-λ),所以Q (0,λ,1-λ). 设平面CAQ 的法向量为m =(x ′,y ′,z ′), 则⎩⎪⎨⎪⎧m ·AC →=x ′+y ′=0,m ·AQ →=(λ+1)y ′+(1-λ)z ′=0.取z ′=λ+1,得m =(1-λ,λ-1,λ+1), 易知平面CAD 的一个法向量为n =(0,0,1), 因为二面角Q AC D 的余弦值为63, 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0, 解得λ=13或λ=3(舍去),所以存在点Q ,使得二面角Q AC D 的余弦值为63,且PQ QD =12.。
2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。
第7讲立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=01.判断正误(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.( )(3)若两平面的法向量平行,则两平面平行或重合.( )(4)若空间向量a平行于平面α,则a所在直线与平面α平行.( )答案(1)×(2)√(3)√(4)×2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β不平行,也不垂直.答案 C3.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33 D.⎝⎛⎭⎪⎫33,33,-33 解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .答案 C4.(2017·青岛月考)所图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设|AD |=2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →=(-2,0,1),ON →=(1,0,2),因此AM →·ON →=-2+0+2=0,故AM ⊥ON .答案 垂直5.(2017·杭州调研)设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________. 解析 当a =(1,1,2)时,a =12n ,则l ⊥α;当a =(-1,-1,1)时,a ·n =(-1,-1,1)·(2,2,4)=0,则l ∥α或l ⊂α. 答案 l ⊥α l ∥α或l ⊂α6.(2017·绍兴月考)设α,β为两个不同的平面,u =(-2,2,5),v =(1,-1,x )分别为平面α,β的法向量.(1)若α⊥β,则x =________; (2)若α∥β,则x =________.解析 (1)由α⊥β,得u ·v =0,即-2-2+5x =0,x =45;(2)由α∥β,得u ∥v ,即-21=2-1=5x ,x =-52.答案 (1)45 (2)-52考点一 利用空间向量证明平行问题【例1】 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz . 由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0,∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →, 又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P , ∴DM ⊥平面PAB .∵DM ⊂平面PAD , ∴平面PAD ⊥平面PAB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,故AB 1⊥平面A 1BD . 法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三 利用空间向量解决探索性问题【例3】 (2017·湖州调研)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .规律方法 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. 【训练3】 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说明理由.(1)证明 由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,从而得EF ⊥CD . (2)解 假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即存在满足条件的点G ,且点G 为AD 的中点.[思想方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直. [易错防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.。