2018版 章末综合测评(二) 平面解析几何初步
- 格式:doc
- 大小:115.50 KB
- 文档页数:7
2.3.1 圆的标准方程学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.圆心为(1,-2),半径为3的圆的方程是( )A.(x+1)2+(y-2)2=9B.(x-1)2+(y+2)2=3C.(x+1)2+(y-2)2=3D.(x-1)2+(y+2)2=9【解析】由圆的标准方程得(x-1)2+(y+2)2=9.【答案】 D2.若圆(x-a)2+(y-b)2=r2过原点,则( )A.a2+b2=0B.a2+b2=r2C.a2+b2+r2=0D.a=0,b=0【解析】由题意得(0-a)2+(0-b)2=r2,即a2+b2=r2.【答案】 B3.圆x2+y2=1上的点到点M(3,4)的距离的最小值是( )A.1 B.4C.5 D.6【解析】圆心(0,0)到M的距离|OM|=32+42=5,所以所求最小值为5-1=4.【答案】 B4.若直线y=ax+b通过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于( ) A.第一象限B.第二象限C.第三象限D.第四象限【解析】(-a,-b)为圆的圆心,由直线经过第一、二、四象限,得到a<0,b>0,即-a>0,-b<0,再由各象限内点的坐标的性质得解,D正确.【答案】 D5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,5为半径的圆的方程为( )A.(x-1)2+(y+2)2=5B .(x +1)2+(y +2)2=5 C .(x +1)2+(y -2)2=5 D .(x -1)2+(y -2)2=5【解析】 直线方程变为(x +1)a -x -y +1=0. 由⎩⎪⎨⎪⎧x +1=0,-x -y +1=0,得⎩⎪⎨⎪⎧x =-1,y =2,∴C (-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5.【答案】 C 二、填空题6.已知A (-1,4),B (5,-4),则以AB 为直径的圆的标准方程是________. 【解析】 由题意知圆心坐标为⎝ ⎛⎭⎪⎫-1+52,4-42,即(2,0),半径为12-1-2++2=5,故所求圆的标准方程为(x -2)2+y 2=25.【答案】 (x -2)2+y 2=257.若点P (5a +1,12a )在圆(x -1)2+y 2=1的外部,则a 的取值范围为________. 【解析】 ∵P 在圆外,∴(5a +1-1)2+(12a )2>1,169a 2>1,a 2>1169,∴|a |>113,即a >113或a <-113.【答案】 a >113或a <-1138.圆(x -1)2+(y -1)2=1上的点到直线x -y =2的距离的最大值是________. 【解析】 圆(x -1)2+(y -1)2=1的圆心为(1,1),圆心到直线x -y =2的距离为|112|1+1=2,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2.【答案】 1+ 2 三、解答题9.已知圆C 过点A (4,7),B (-3,6),且圆心C 在直线l :2x +y -5=0上,求圆C 的方程.【解】 法一 设圆C :(x -a )2+(y -b )2=r 2(r >0), ∵A ,B ∈圆C ,C ∈l ,∴⎩⎪⎨⎪⎧-a 2+-b 2=r 2,-3-a 2+-b 2=r 2,2a +b -5=0,解得⎩⎪⎨⎪⎧a =1,b =3,r =5.故圆C 的方程为(x -1)2+(y -3)2=25.法二 设圆C :(x -a )2+(y -b )2=r 2(r >0),∵C ∈l , ∴2a +b -5=0,则b =5-2a , ∴圆心为C (a,5-2a ). 由圆的定义得|AC |=|BC |, 即a -2+-2a -2=a +2+-2a -2.解得a =1,从而b =3,即圆心为C (1,3),半径r =|CA |=-2+-2=5.故圆C 的方程为(x -1)2+(y -3)2=25.10.求圆⎝ ⎛⎭⎪⎫x -122+(y +1)2=54关于直线x -y +1=0对称的圆的方程.【解】 圆⎝ ⎛⎭⎪⎫x -122+(y +1)2=54的圆心为M ⎝ ⎛⎭⎪⎫12,-1,半径r =52.设所求圆的圆心为(m ,n ),∵它与⎝ ⎛⎭⎪⎫12,-1关于直线x -y +1=0对称,∵⎩⎪⎨⎪⎧n +1m -12×1=-1,m +122-n -12+1=0,解得⎩⎪⎨⎪⎧m =-2,n =32.∴所求圆的圆心坐标为⎝⎛⎭⎪⎫-2,32,半径r =52.∴对称圆的方程是(x +2)2+⎝ ⎛⎭⎪⎫y -322=54.[能力提升]1.若直线x +y -3=0始终平分圆(x -a )2+(y -b )2=2的周长,则a +b 等于( ) A .3 B .2 C .5D .1【解析】 由题可知,圆心(a ,b )在直线x +y -3=0上,所以a +b -3=0,即a +b =3,故选A.【答案】 A2.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( )A .2,12(4-5)B.12(4+5),12(4-5) C.5,4- 5D.12(5+2),12(5-2) 【解析】 点A (-1,0),B (0,2)所在的直线方程为2x -y +2=0,圆(x -1)2+y 2=1的圆心到直线的距离为|2-0+2|22+-2=455,又|AB |=5,所以△PAB 面积的最大值为12×5×⎝⎛⎭⎪⎫455+1=12(4+5),最小值为12×5×⎝ ⎛⎭⎪⎫455-1=12(4-5),选B.【答案】 B3.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________. 【解析】 设圆C 的方程为(x -a )2+y 2=r 2(r >0),则⎩⎪⎨⎪⎧-a 2+1=r 2,-a2+9=r 2,解得⎩⎪⎨⎪⎧a =2,r 2=10.所以圆C 的方程为(x -2)2+y 2=10. 【答案】 (x -2)2+y 2=104.设P (0,0),Q (5,0),R (0,-12),求△PQR 的内切圆的方程和外接圆的方程. 【解】 |PQ |=5,|PR |=12,|QR |=13, ∴|PQ |2+|PR |2=|QR |2,∴△PQR 为直角三角形,且∠P 为直角, ∴内切圆的半径r 1=5+12-132=2,圆心为C 1(2,-2).∴内切圆的方程为(x -2)2+(y +2)2=4. ∵外接圆的半径r 2=132,圆心为C 2⎝ ⎛⎭⎪⎫52,-6, ∴外接圆的方程为⎝ ⎛⎭⎪⎫x -522+(y +6)2=1694.。
2.1.1 数轴上的基本公式学习目标 1.理解实数与数轴上的点的对应关系,理解实数运算在数轴上的几何意义.2。
掌握数轴上两点间的距离公式。
3.掌握数轴上向量加法的坐标运算.知识点一数轴(或直线坐标系)思考1数轴是怎样定义的?思考2实数集与数轴上的点有怎样的关系?梳理数轴的概念(1)数轴(直线坐标系)的定义:一条给出了________、________________和____________的直线叫做数轴,或者说在这条直线上建立了________________.(2)数轴上的点P与实数x的对应法则点P的位置原点朝正向的一侧原点原点朝负向的一侧与点P对正数0负数依据这个法则,实数集和数轴上的点之间建立了________________关系.(3)数轴上点P的坐标如果点P与实数x对应,则称点P的坐标为x,记作P(x).知识点二数轴上的向量及有关概念思考1在物理中,力、速度、加速度、位移等有何共同特征?思考2一名同学从A地直接跑到B地,用A错误!表示,你能用这种方法表示该同学从B地返回到A地吗?它们相等吗?思考3相等的向量的起点与终点相等吗?梳理数轴上的向量及有关概念(1)向量的定义如果数轴上的任意一点A沿着轴的________________移动到另一点B,则说点在轴上作了一次________,点不动则说点作了________,位移是一个既有________又有________的量,通常叫做________________,简称为________.(2)向量的描述(3)相等的向量________________________的向量叫做相等的向量.知识点三数轴上的基本公式位移的和在数轴上,如果点A作一次位移到点B,接着由点B再作一次位移到点C,则位移错误!叫做位移错误!与位移错误!的和,记作错误!=错误!+错误!向量坐标运算法则对数轴上任意三点A,B,C,都具有关系________向量坐标表示及距离公式已知数轴上两点A(x1),B(x2),则AB=________,d(A,B)=__________________类型一数轴上的点与实数的对应关系例1(1)如果点P(x)位于点M(-2),点N(3)之间,求x的取值范围;(2)试确定点A(x2+x+1)与点B错误!的位置关系.反思与感悟根据数轴上点与实数的对应关系,数轴上的点自左到右对应的实数依次增大.跟踪训练1不在数轴上画点,判断下列各组点的位置关系(主要说明哪一个点位于另一个点的右侧).(1)A(-1.5),B(-3);(2)A(a),B(a2+1);(3)A(|x|),B(x).类型二数轴上的向量和基本公式例2已知数轴上有A、B两点,A,B之间的距离为1,点A与原点O的距离为3。
2.1.3 两条直线的平行与垂直[学业水平训练]1.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.解析:l 1⊥l 2时,k 1k 2=-1,由一元二次方程根与系数的关系得k 1k 2=-b 2,∴-b 2=-1,得b =2.l 1∥l 2时,k 1=k 2,即关于k 的二次方程2k 2-3k -b =0有两个相等的实根,∴Δ=(-3)2-4×2·(-b )=0,即b =-98. 答案:2 -982.设a ∈R ,如果直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行,那么a =________.解析:当a =0时,l 1:y =12,l 2:x +y +4=0,这两条直线不平行;当a =-1时,l 1:x -2y +1=0,l 2:x +4=0,这两条直线不平行;当a ≠0且a ≠-1时,l 1:y =-a 2x +12,l 2:y =-1a +1x -4a +1,由l 1∥l 2得-a 2=-1a +1且12≠-4a +1,解得a =-2或a =1. 答案:-2或13.如图,已知△ABC 的三个顶点坐标分别为A (-1,1),B (1,5),C (-3,2),则△ABC 的形状为________.解析:因为k AB =1-5-1-1=-4-2=2,k AC =1-2-1--=-12,所以k AB ·k AC =-1,且A 、B 、C 、D 4点不共点,所以AB ⊥AC ,即∠BAC =90°.所以△ABC 是直角三角形.答案:直角三角形4.已知A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD ,其中正确的序号为________.解析:k AB =-4-26--=-35,k CD =12-62-12=-35,且A 、B 、C 、D 4点不共线,所以AB ∥CD ,k AC =6-212--=14,k BD =12--2-6=-4, k BD ·k AC =-1,所以AC ⊥BD .答案:①④5.已知P (-2,m ),Q (m,4),M (m +2,3),N (1,1),若直线PQ ∥直线MN ,则m =________. 解析:当m =-2时,直线PQ 的斜率不存在,而直线MN 的斜率存在,MN 与PQ 不平行,不合题意;当m =-1时,直线MN 的斜率不存在,而直线PQ 的斜率存在,MN 与PQ 不平行,不合题意;当m ≠-2且m ≠-1时,k PQ =4-m m --=4-m m +2, k MN =3-1m +2-1=2m +1,因为直线PQ ∥直线MN , 所以k PQ =k MN ,即4-m m +2=2m +1,解得m =0或m =1.经检验m =0或m =1时直线MN ,PQ 都不重合.综上,m 的值为0或1.答案:0或16.已知两条直线ax +4y -2=0与直线2x -5y +c =0互相垂直,垂足为(1,b ),则a +c -b =________.解析:∵k 1k 2=-1,∴a =10.∵垂足(1,b )在直线10x +4y -2=0上,∴b =-2.将(1,-2)代入2x -5y +c =0得c =-12,故a +c -b =0.答案:07.(1)求与直线y =-2x +10平行,且在x 轴、y 轴上的截距之和为12的直线的方程;(2)求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程.解:(1)设所求直线的方程为y =-2x +λ,则它在y 轴上的截距为λ,在x 轴上的截距为12λ,则有λ+12λ=12, ∴λ=8.故所求直线的方程为y =-2x +8,即2x +y -8=0.(2)法一:由直线方程2x +3y +5=0得直线的斜率是-23, ∵所求直线与已知直线平行,∴所求直线的斜率也是-23. 根据点斜式,得所求直线的方程是y +4=-23(x -1), 即2x +3y +10=0.法二:设所求直线的方程为2x +3y +b =0,∵直线过点A (1,-4),∴2×1+3×(-4)+b =0,解得b =10.故所求直线的方程是2x +3y +10=0.8.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判断▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧ 0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧ a =-1,b =6,∴D (-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1, ∴k AC ·k BD =-1,∴AC ⊥BD .∴▱ABCD 为菱形.[高考水平训练]1.已知A (1,-1),B (2,2),C (3,0)三点,若存在点D ,使CD ⊥AB ,且BC ∥AD ,则点D 的坐标为________.解析:设点D 的坐标为(x ,y ).因为k AB =2--2-1=3,k CD =y x -3, 且CD ⊥AB ,所以k AB ·k CD =-1,即3×yx -3=-1. ①因为k BC =2-02-3=-2,k AD =y +1x -1, 且BC ∥AD ,所以k BC =k AD ,即-2=y +1x -1, ② 由①②得x =0,y =1,所以点D 的坐标为(0,1).答案:(0,1)2.△ABC 的顶点A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,则m 的值为________.解析:若∠A 为直角,则AC ⊥AB ,所以k AC ·k AB =-1,即m +12-5·1+11-5=-1,得m =-7; 若∠B 为直角,则AB ⊥BC ,所以k AB ·k BC =-1,即1+11-5·m -12-1=-1,得m =3; 若∠C 为直角,则AC ⊥BC ,所以k AC ·k BC =-1,即m +12-5·m -12-1=-1,得m =±2. 综上可知,m =-7或m =3或m =±2.答案:-7或±2或33.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值. 解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-m +, k CD =3m +2-m 3--m =m +m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.4.在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解:如图所示,由已知两个点的坐标得:k OP =t -01-0=t , k RQ =+t -2-2t --2t=t , k OR =2-0-2t -0=-1t. k PQ =t -+t 1--2t =-1t, 所以k OP =k RQ ,k OR =k PQ ,所以OP ∥RQ ,OR ∥PQ ,所以四边形OPQR 是平行四边形;又k OP ·k OR =t ·(-1t)=-1, 所以OP ⊥OR ,∠POR 是直角, 所以四边形OPQR 是矩形;过点P 作PA ⊥x 轴,垂足为A , RB ⊥x 轴,垂足为B ,那么由勾股定理得: OP 2=OA 2+AP 2=1+t 2.∴OP =1+t 2,OR 2=OB 2+BR 2=(-2t )2+22=4(1+t 2),∴OR =21+t 2.∴OP ≠OR ,所以四边形OPQR 不是正方形, 综上可知,四边形OPQR 是矩形.。
章末综合测评(二)点、直线、平面之间的位置关系(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交【解析】根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.【答案】 D2.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直【解析】A、B、C显然正确.易知过一条直线有无数个平面与已知平面垂直.选D.【答案】 D3.如图1,在四面体中,若直线EF和GH相交,则它们的交点一定()图1A.在直线DB上B.在直线AB上C.在直线CB上D.都不对【解析】∵EF与GH相交,设EF∩GH=M,∴M∈EF,M∈GH.又∵EF⊂面ABD,GH⊂面BCD,∴M∈面ABD,M∈面BCD,又∵面ABD∩面BCD=BD,∴M∈BD,故选A.【答案】 A4.设a、b为两条直线,α、β为两个平面,则正确的命题是() 【导学号:09960089】A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b【解析】A中,a、b可以平行、相交或异面;B中,a、b可以平行或异面;C中,α、β可以平行或相交.【答案】 D5.如图2,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于()图2A.45°B.60°C.90°D.120°【解析】如图,连接A1B、BC1、A1C1,则A1B=BC1=A1C1,且EF∥A1B、GH∥BC1,所以异面直线EF与GH所成的角等于60°.【答案】 B6.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β【解析】选项A,平行于同一条直线的两个平面也可能相交,故选项A 错误;选项B,垂直于同一直线的两个平面互相平行,选项B正确;选项C,由条件应得α⊥β,故选项C错误;选项D,l与β的位置不确定,故选项D错误.故选B.【答案】 B7.如图3所示,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()图3A.AC B.BDC.A1D D.A1D1【解析】CE⊂平面ACC1A1,而BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1,∴BD⊥CE.【答案】 B8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为()A.30°B.45°C .60°D .90°【解析】 由棱锥体积公式可得底面边长为23,高为3,在底面正方形的任一边上,取其中点,连接棱锥的顶点及其在底面的射影,根据二面角定义即可判定其平面角,在直角三角形中,因为tan θ=3(设θ为所求平面角),所以二面角为60°,选C.【答案】 C9.将正方形ABCD 沿BD 折成直二面角,M 为CD 的中点,则∠AMD 的大小是( )A .45°B .30°C .60°D .90°【解析】 如图,设正方形边长为a ,作AO ⊥BD , 则AM =AO 2+OM 2 =⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a ,又AD =a ,DM =a2,∴AD 2=DM 2+AM 2,∴∠AMD =90°.【答案】 D10.在矩形ABCD 中,若AB =3,BC =4,P A ⊥平面AC ,且P A =1,则点P 到对角线BD 的距离为( )A.292B.135C.175D.1195【解析】 如图,过点A 作AE ⊥BD 于点E ,连接PE . ∵P A ⊥平面ABCD ,BD ⊂平面ABCD , ∴P A ⊥BD ,∴BD ⊥平面P AE , ∴BD ⊥PE .∵AE =AB ·AD BD =125,P A =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.【答案】 B11.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )【导学号:09960090】A .75°B .60°C .45°D .30°【解析】 如图所示,P 为正三角形A1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3, 则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94,∴PO = 3. 又AO =33×3=1,∴tan ∠P AO =POAO =3,∴∠P AO =60°. 【答案】 B12.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( )A .点H 是△A 1BD 的垂心B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45° 【解析】 因为AH ⊥平面A1BD , BD ⊂平面A 1BD ,所以BD ⊥AH .又BD ⊥AA 1,且AH ∩AA 1=A . 所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H . 所以A 1H ⊥BD , 同理可证BH ⊥A 1D ,所以点H是△A1BD的垂心,A正确.因为平面A1BD∥平面CB1D1,所以AH⊥平面CB1D1,B正确.易证AC1⊥平面A1BD.因为过一点有且只有一条直线与已知平面垂直,所以AC1和AH重合.故C正确.因为AA1∥BB1,所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°,所以∠A1AH≠45°,故D错误.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.设平面α∥平面β,A、C∈α,B、D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________.【解析】由面面平行的性质得AC∥BD,ASBS=CSSD,解得SD=9.【答案】914.如图4,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,当点E满足条件:________时,SC∥平面EBD.图4【解析】当E是SA的中点时,连接EB,ED,AC.设AC与BD的交点为O,连接EO.∵四边形ABCD是平行四边形,∴点O是AC的中点.又E是SA的中点,∴OE是△SAC的中位线.∴OE∥SC.∵SC⊄平面EBD,OE⊂平面EBD,∴SC∥平面EBD.【答案】E是SA的中点15.如图5所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1和AB 上的点,若∠B1MN是直角,则∠C1MN等于________. 【导学号:97602018】图5【解析】 ∵B 1C 1⊥平面A 1ABB 1, MN ⊂平面A 1ABB 1,∴B 1C 1⊥MN ,又∠B 1MN 为直角, ∴B 1M ⊥MN ,而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1,又MC 1⊂平面MB 1C 1, ∴MN ⊥MC 1,∴∠C 1MN =90°. 【答案】 90°16.已知四棱锥P -ABCD 的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 由条件可得AB ⊥平面P AD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △P AB =12AB ·P A ,由AB =CD ,PD >P A 知③正确; 由E 、F 分别是棱PC 、PD 的中点, 可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB ,故AE 与BF 共面,④错. 【答案】 ①③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)如图6所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC,求证:AD⊥平面SBC.图6【证明】∵∠ACB=90°,∴BC⊥AC.又∵SA⊥平面ABC,∴SA⊥BC,∵SA∩AC=A,∴BC⊥平面SAC,∴BC⊥AD.又∵SC⊥AD,SC∩BC=C,∴AD ⊥平面SBC.18.(本小题满分12分)如图7,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC =9,BC=12,AB=15,AA1=12,点D是AB的中点.图7(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.【证明】(1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)某几何体的三视图如图8所示,P是正方形ABCD 对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明:PD∥平面AGC;②证明:面PBD⊥平面AGC.图8【解】(1)该几何体的直观图如图所示:(2)证明:①连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OG∥PD.②连接PO,由三视图知,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.20.(本小题满分12分)如图9,在正三棱柱ABC-A1B1C1中,F,F1分别是AC,A1C1的中点.图9求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.【证明】(1)在正三棱柱ABC-A1B1C1中,∵F,F1分别是AC,A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,B1F1⊂平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.21.(本小题满分12分)如图10,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.图10(1)求证:DC⊥平面P AC.(2)求证:平面P AB⊥平面P AC.(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.【证明】(1)因为PC⊥平面ABCD,所以PC⊥DC.又因为DC ⊥AC ,且PC ∩AC =C ,所以DC ⊥平面P AC .(2)因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB .又因为PC ∩AC =C ,所以AB ⊥平面P AC .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC .(3)棱PB 上存在点F ,使得P A ∥平面CEF .理由如下:取PB 的中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥P A .又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF .22.(本小题满分12分)如图11,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.图11(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.【解】 (1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得AE AD =CF CD ,故AC ∥EF .由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.(2)由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4.所以OH =1,D ′H =DH =3.于是OD′2+OH2=(22)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′.又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′-ABCFE的体积V=13×694×22=2322.。
章末综合测评(二)解析几何初步(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.空间两点A(3,-2,5),B(6,0,-1)之间的距离为()A.6B.7C.8D.9【解析】|AB|=(3-6)2+(-2-0)2+(5+1)2=7,故选B.【答案】 B2.过两点A(-2,m),B(m,4)的直线倾斜角是45°,则m的值是()【导学号:39292131】A.-1B.3C.1D.-3【解析】由k AB=m-4-2-m=tan 45°=1,解得m=1.【答案】 C3.过点(-1,3)且平行于直线x-2y+3=0的直线方程为()A.x-2y+7=0B.2x+y-1=0C.x-2y-5=0D.2x+y-5=0【解析】∵直线x-2y+3=0的斜率为12,∴所求直线的方程为y-3=12(x+1),即x-2y+7=0.【答案】 A4.已知直线l1:ax-y-2=0和直线l2:(a+2)x-y+1=0互相垂直,则实数a的值为()A.-1B.0C.1D.2【解析】l1的斜率为a,l2的斜率为a+2,∵l1⊥l2,∴a(a+2)=-1,∴a2+2a+1=0即a=-1.【答案】 A5.如图1,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为( )图1A.(2,2,1)B.⎝ ⎛⎭⎪⎫2,2,23 C.⎝ ⎛⎭⎪⎫2,2,13 D.⎝ ⎛⎭⎪⎫2,2,43 【解析】 ∵|EB |=2|EB 1|,∴|EB |=23|BB 1|=43. 又E 在B 1B 上,∴E 的坐标为⎝ ⎛⎭⎪⎫2,2,43.【答案】 D6.若以点C (-1,2)为圆心的圆与直线x -2y +3=0没有公共点,则圆的半径r 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,255 B.⎝ ⎛⎭⎪⎫0,355 C.(0,5)D.(0,25)【解析】 设圆心到直线的距离为d ,则d =|-1-4+3|12+(-2)2=255.若直线与圆没有公共点,则0<r <255,故选A.【答案】 A7.已知直线l 1的方程为x +Ay +C =0,直线l 2的方程为2x -3y +4=0,若l 1,l 2的交点在x 轴上,则C 的值为( )【导学号:39292132】A.2B.-2C.±2D.与A 有关【解析】 在2x -3y +4=0中,令y =0,得x =-2,即直线2x -3y +4=0与x 轴的交点为(-2,0).∵点(-2,0)在直线x +Ay +C =0上,∴-2+A ×0+C =0,∴C =2.【答案】 A8.若a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( ) A.⎝ ⎛⎭⎪⎫-12,-16 B.⎝ ⎛⎭⎪⎫12,-16 C.⎝ ⎛⎭⎪⎫12,16 D.⎝ ⎛⎭⎪⎫-12,16 【解析】 令a =-1,b =1或a =1,b =0,得直线方程分别为-x +3y +1=0,x +3y =0,其交点为⎝ ⎛⎭⎪⎫12,-16,此即为直线所过的定点.故选B.【答案】 B9.已知平面内两点A (1,2),B (3,1)到直线l 的距离分别是2, 5-2,则满足条件的直线l 的条数为( )A.1B.2C.3D.4【解析】 由题知满足题意的直线l 在线段AB 两侧各有1条,又因为|AB |= 5,所以还有1条为过线段AB 上的一点且与AB 垂直的直线,故共3条.【答案】 C10.若圆心在x 轴上,半径为5的圆O 位于y 轴左侧,且与直线x +2y =0相切,则圆O 的方程是( )A.(x -5)2+y 2=5B.(x +5)2+y 2=5C.(x -5)2+y 2=5D.(x +5)2+y 2=5【解析】 设圆心O (a,0),(a <0),则 5=|a |1+22, ∴|a |=5, ∴a =-5,∴圆O 的方程为(x +5)2+y 2=5.【答案】 D11.直线y=kx被圆x2+y2=2截得的弦长为()A.2 2B.2C. 2D.与k的取值有关【解析】由于圆x2+y2=2的圆心在直线y=kx上,所以截得弦为圆x2+y2=2的直径,又其半径为2,故截得的弦长为2 2.【答案】 A12.已知点P(x,y)是直线y=22x-4上一动点,PM与PN是圆C:x2+(y -1)2=1的两条切线,M,N为切点,则四边形PMCN的最小面积为()【导学号:39292133】A.43 B.23C.53 D.56【解析】由题意知,圆C的圆心为C(0,1),半径为1,故|PC|2=|PN|2+1.又S四边形PMCN =2×12×|PN|×1=|PN|,故当|PN|最小时,四边形PMCN的面积最小,此时|PC|最小,又|PC|的最小值即为点C到直线的距离d=5(22)2+1=53,此时|PN|=43,故四边形PMCN面积的最小值为43,故选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.两圆x2+y2=1,(x+4)2+(y-a)2=25相切,则实数a=________.【解析】当两圆外切时,由a2+16=6,得a=±25;当两圆内切时,由a2+16=4,得a=0.【答案】0,±2 514.经过点A(1,1)且在x轴上的截距等于在y轴上的截距的直线方程为______.【导学号:39292134】【解析】当直线过原点时,满足要求,此时直线方程为x-y=0;当直线不过原点时,设直线方程为xa+ya=1,由于点(1,1)在直线上,所以a=2,此时直线方程为x+y-2=0.【答案】x-y=0或x+y-2=015.已知点M(a,b)在直线3x+4y=15上,则a2+b2的最小值为________.【解析】a2+b2的最小值为原点到直线3x+4y=15的距离d=|0+0-15|32+42=3.【答案】 316.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=23,则圆C的面积为________.【解析】圆C:x2+y2-2ay-2=0化为标准方程是C:x2+(y-a)2=a2+2,所以圆心C(0,a),半径r=a2+2.|AB|=23,点C到直线y=x+2a即x-y+2a=0的距离d=|0-a+2a|2,由勾股定理得⎝⎛⎭⎪⎫2322+⎝⎛⎭⎪⎫|0-a+2a|22=a2+2,解得a2=2,所以r=2,所以圆C的面积为π×22=4π.【答案】4π三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l平行于直线3x+4y-7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.【解】设l:3x+4y+m=0,当y=0时,x=-m 3;当x=0时,y=-m 4.∵直线l与两坐标轴围成的三角形面积为24,∴12·⎪⎪⎪⎪⎪⎪-m3·⎪⎪⎪⎪⎪⎪-m4=24,∴m=±24,∴直线l的方程为3x+4y+24=0或3x+4y-24=0.18.(本小题满分12分)如图2所示,直三棱柱ABC -A 1B 1C 1中,|C 1C |=|CB |=|CA |=2,AC ⊥CB ,D ,E 分别是棱AB ,B 1C 1的中点,F 是AC 的中点,求DE ,EF 的长度.图2【解】 以点C 为坐标原点,CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.∵|C 1C |=|CB |=|CA |=2,∴C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,2),B 1(0,2,2), 由中点坐标公式可得, D (1,1,0),E (0,1,2),F (1,0,0),∴|DE |=(1-0)2+(1-1)2+(0-2)2=5, |EF |=(0-1)2+(1-0)2+(2-0)2= 6.19.(本小题满分12分)菱形ABCD 中,A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.【解】 (1)k BC =2,∵AD ∥BC ,∴k AD =2, ∴直线AD 方程为y -7=2(x +4),即2x -y +15=0.(2)k AC =-65,∵菱形对角线互相垂直,∴BD ⊥AC ,∴k BD =56,而AC 中点(1,1),也是BD 的中点,∴直线BD 的方程为y -1=56(x -1),即5x -6y +1=0.20.(本小题满分12分)已知圆C :(x -1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,写出直线l 的方程.【解】 (1)已知圆C :(x -1)2+y 2=9的圆心为C (1,0),因直线l 过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y =2(x -1),即2x -y -2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为 y -2=-12(x -2), 即x +2y -6=0.21.(本小题满分12分)自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.【导学号:39292135】【解】 如图所示,已知圆C :x 2+y 2-4x -4y +7=0关于x 轴对称的圆为C 1:(x -2)2+(y +2)2=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切.设l 的方程为y -3=k (x +3),即kx -y +3+3k =0. 则|5k +5|1+k 2=1,即12k 2+25k +12=0,∴k 1=-43,k 2=-34. 则l 的方程为4x +3y +3=0或3x +4y -3=0.22.(本小题满分12分)已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0相交于P ,Q 两点,O 为原点,若OP ⊥OQ ,求实数m 的值.【解】 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由OP ⊥OQ 可得x 1x 2+y 1y 2=0,由⎩⎨⎧x 2+y 2+x -6y +m =0,x +2y -3=0,可得5y 2-20y +12+m =0, ①所以y 1y 2=12+m5,y 1+y 2=4.又x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2 =9-24+45(12+m ),所以x1x2+y1y2=9-24+45(12+m)+12+m5=0,解得m=3.将m=3代入方程①,可得Δ=202-4×5×15=100>0,可知m=3满足题意,即实数m的值为3.。
2.1.3 两条直线的位置关系[A.基础达标]1.下列说法正确的是( )A .如果两条直线平行,则它们的斜率相等B .如果两条直线垂直,则它们的斜率互为负倒数C .如果两条直线斜率之积为-1,则这两条直线互相垂直D .如果直线的斜率不存在,则这条直线一定平行于y 轴解析:选C.不论两直线平行还是垂直都要考虑两直线斜率不存在的情况,A 、B 忽略斜率不存在,D 忽略了直线与y 轴重合.2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解析:选A.直线x -2y -2=0的斜率为12,所以所求直线的斜率为12.故所求直线方程为y -0=12(x -1),即x -2y -1=0. 3.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0解析:选B.因为k AB =2-11-3=-12, 所以所求直线的斜率为2.又线段AB 的中点为⎝ ⎛⎭⎪⎫2,32, 故线段AB 的垂直平分线方程为y -32=2(x -2), 即4x -2y -5=0.4.已知点A (m ,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( )A .1B .0C .0或2D .0或1解析:选D.因为AB ∥CD ,所以m +4-32m -m =2-0m +1-1, 解得m =1.当m =0时,直线AB 为y 轴,直线CD 为x =1,两直线平行,故若两直线平行则m =0或1.5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( )A .梯形B .平行四边形C .菱形D .矩形解析:选B.如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-316, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直.所以四边形ABCD 为平行四边形.6.已知直线l 1:2x +(λ+1)y -2=0,l 2:λx +y -1=0,若l 1∥l 2,则λ的值是________. 解析:因为l 1∥l 2,所以2×1-(λ+1)λ=0,即λ2+λ-2=0,解得λ=-2或λ=1.当λ=1时,l 1与l 2重合,不符合题意.所以λ=-2.答案:-27.已知直线l 1过点A (-2,3),B (4,m ),直线l 2过点M (1,0),N (0,m -4),若l 1⊥l 2,则常数m 的值是________.解析:由已知得k AB =m -34-(-2)=m -36, k MN =m -4-1=4-m . 因为AB ⊥MN ,所以m -36×(4-m )=-1, 即m 2-7m +6=0,解得m =1或m =6,经检验m =1或m =6适合题意.答案:1或68.已知点P (0,-1),点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标是________.解析:依题意设点Q 的坐标为(a ,b ),则有⎩⎪⎨⎪⎧a -b +1=0,b +1a·⎝ ⎛⎭⎪⎫-12=-1, 解得⎩⎪⎨⎪⎧a =2,b =3.故点Q 的坐标为(2,3). 答案:(2,3)9.已知定点A (-1,3),B (4,2),以A ,B 为直径作圆与x 轴有交点C ,求交点C 的坐标.解:因为以线段AB 为直径的圆与x 轴相交于点C ,所以AC ⊥CB .据题设条件可知AC 与BC 的斜率均存在(如图),设C (x ,0),则k AC =-3x +1,k BC =-2x -4. 所以-3x +1·-2x -4=-1,解得x =1或2. 所以C (1,0)或C (2,0).10.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧0-25-1=b -4a -3,b -2a -1=4-03-5.解得⎩⎪⎨⎪⎧a =-1,b =6.所以D (-1,6). (2)因为k AC =4-23-1=1,k BD =6-0-1-5=-1, 所以k AC ·k BD =-1.所以AC ⊥BD .所以▱ABCD 为菱形.[B.能力提升]1.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C.由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 故y +52·⎝⎛⎭⎪⎫-y -66=-1, 解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).2.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)四点所组成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对解析:选B.观察知连接后各边所在直线斜率都存在.因为k AB =5-32-(-4)=13,k CD =0-3-3-6=13,所以AB ∥CD .又k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12,所以AD 与BC 不平行,且AD ⊥CD .所以四边形ABCD 为直角梯形.3.若直线l 经过点(a -2,-1)和(-a -2,1)且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值为________.解析:由题意知两直线的斜率均存在,且直线l 与斜率为-23的直线垂直,则直线l 的斜率为32,于是32=1-(-1)(-a -2)-(a -2)=2-2a =-1a ,解得a =-23. 答案:-234.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析:由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时k =18. 答案:185.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4-(-m -3)=2-(m +1), k CD =3m +2-m 3-(-m )=2(m +1)m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.6.(选做题)直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,且直线l 1与l 2平行,l 2是线段AB 的垂直平分线,A (1,m -1),B (m ,2),试求m 的值.解:因为直线l 1的倾斜角为30°+30°=60°,所以直线l 1的斜率k 1=tan 60°= 3.又直线AB 的斜率为m -1-21-m =m -31-m, 所以AB 的垂直平分线l 2的斜率k 2=m -1m -3. 因为直线l 1与l 2平行,所以k 1=k 2, 即3=m -1m -3,解得m =4+ 3.。
2018版高中数学第二章平面解析几何初步章末综合测评苏教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章平面解析几何初步章末综合测评苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章平面解析几何初步章末综合测评苏教版必修2的全部内容。
(二) 平面解析几何初步(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.直线l:x-错误!y+1=0的倾斜角为________.【解析】l:y=错误!x+错误!,k=错误!,∴α=30°。
【答案】30°2.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为________.【解析】直线方程为y=错误!x, 圆的方程化为x2+(y-2)2=22,∴r=2,圆心(0,2)到直线y=3x的距离为d=1,∴半弦长为错误!=错误!,∴弦长为2错误!。
【答案】2错误!3.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=1的位置关系是__________.【解析】圆心(0,1)到直线l的距离d=错误!=错误!<1=r。
故直线l与圆C相交.【答案】相交4.关于x的方程错误!=错误!(x-2)+3解的个数为________个.【解析】作出y=错误!和y=错误!(x-2)+3=错误!x+2的图象(略).可看出直线与半圆有两个公共点.【答案】25.若直线l与直线3x+y-1=0垂直,且它在x轴上的截距为-2,则直线l的方程为________.【解析】因为直线3x+y-1=0的斜率为-3,所以直线l的斜率为错误!.又直线在x轴上的截距为-2,即直线l与x轴的交点为(-2,0),所以直线l的方程为y-0=错误!(x+2),即x-3y+2=0.【答案】x-3y+2=06.若曲线(x-1)2+(y-2)2=4上相异两点P,Q关于直线kx-y-2=0对称,则k 的值为__________.【解析】依题意得,圆心(1,2)在直线kx-y-2=0上,于是有k-4=0,解得k=4。
章末综合测评(一)立体几何初步(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.给出下列命题:(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.其中真命题的序号为__________.【解析】(1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,由直线与平面平行的判定定理可得直线与该平面平行,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行.综上:(1)(2)为真命题.【答案】(1)(2)2.在直四棱柱ABCD-A1B1C1D1中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种即可,不必考虑所有可能的情形).【解析】若有AC⊥BD,则A1C1⊥B1D1.又∵CC1⊥B1D1,A1C1∩CC1=C1,∴B1D1⊥平面A1C1C,∴B1D1⊥A1C,故条件可填AC⊥BD.【答案】AC⊥BD(答案不唯一)3.棱长为1的正四面体内有一点P ,由点P 向各个面引垂线,垂线段分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为________.【解析】 设四面体的高为h , 则h =12-⎝ ⎛⎭⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4), ∴d 1+d 2+d 3+d 4=h =63. 【答案】 634.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积为__________.【解析】 设圆锥的体积为x ,则x -52x =⎝ ⎛⎭⎪⎫133,解得x =54.【答案】 545.已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.【导学号:41292058】【解析】 V 四棱锥O -ABCD =13×3×3h =322,得h =322, ∴OA 2=h 2+⎝ ⎛⎭⎪⎫AC 22=184+64=6.∴S 球=4πOA 2=24π. 【答案】 24π6.若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的________条件.【解析】 ∵m ⊥α,若l ∥α,则必有l ⊥m ,即l ∥α⇒l ⊥m . 但l ⊥mD ⇒/l ∥α,∵l ⊥m 时,l 可能在α内. 故“l ⊥m ”是“l ∥α”的必要而不充分条件. 【答案】 必要不充分7.如图1所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB上的点,若∠B1MN是直角,则∠C1MN等于________.图1【解析】∵B1C1⊥平面A1ABB1,MN⊂平面A1ABB1,∴B1C1⊥MN,又∠B1MN为直角.∴B1M⊥MN,而B1M∩B1C1=B1.∴MN⊥平面MB1C1.又MC1⊂平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.【答案】90°8.设l为直线,α,β是两个不同的平面.下列命题中正确的是________.①若l∥α,l∥β,则α∥β;②若l⊥α,l⊥β,则α∥β;③若l⊥α,l∥β,则α∥β;④若α⊥β,l∥α,则l⊥β.【解析】对于①,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;对于②,若l⊥α,l⊥β,则α∥β,故正确;对于③,若l⊥α,l∥β,则α⊥β,故错误;对于④,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,l⊂β,故错误.故选②.【答案】②9.如图2,在空间四边形ABCD中,E,H分别是AB,AD的中点,F,G分别是CB,CD上的点,且CFCB=CGCD=23,若BD=6 cm,梯形EFGH的面积为28 cm2,则平行线EH,FG间的距离为__________cm.图2【解析】由题知,EH=12BD=3 cm,FG=23BD=4 cm.设平行线EH,FG之间距离为d,则12×(3+4)×d=28,解得d=8 cm.【答案】810.在四棱锥P-ABCD中,P A⊥平面ABCD,且P A=AD,四边形ABCD 是正方形,E是PD的中点,则AE与PC的位置关系为________.【解析】易知CD⊥AE,AE⊥PD,则AE⊥平面PCD,所以AE⊥PC.【答案】垂直11.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是________.①点H是△A1BD的垂心;②AH⊥平面CB1D1;③AH的延长线经过点C1;④直线AH和BB1所成的角为45°.【解析】因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,①正确.因为平面A1BD∥平面CB1D1,所以AH⊥平面CB1D1,②正确.易证AC1⊥平面A1BD.因为过一点有且只有一条直线与已知平面垂直,所以AC1和AH重合.故③正确.因为AA1∥BB1,所以∠A1AH为直线AH和BB1所成的角.因为∠A1AH≠45°,故④错误.【答案】④12.如图3所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:图3①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的序号是________.【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC.又PC⊂平面P AC,∴BC⊥PC,故①正确;对于②,∵点M为线段PB的中点,∴OM∥P A.∵P A⊂平面P AC,∴OM∥平面P AC,故②正确;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故③正确.【答案】①②③13.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③二面角A-BC-D的度数为60°;④AB与CD所成的角是60°.其中正确结论的序号是________.【解析】如图(1)(2)所示,取BD的中点O,连结AO,OC,易知AO⊥BD且CO⊥BD,AO∩OC=O,故BD⊥平面AOC,∴BD⊥AC,故①正确.设正方形ABCD的边长为1,易知AO=OC=22.又由题意可知∠AOC=90°,故AC=1.所以AC=AD=DC,所以△ACD是等边三角形,故②正确.取BC的中点E,连结OE,AE,则∠AEO即为二面角A-BC-D的平面角,∴tan∠AEO=AOOE=2,(3)故③不正确.对于④,如图(3)所示,取AC的中点F,连结OF,EF,OE,则OE∥CD,EF∥AB,则∠FEO即为异面直线AB与CD所成的角.又在△AOC中,OF=12,故EF=OE=OF,∴AB与CD所成的角为60°,故④正确.综上可知①②④正确.【答案】①②④14.如图4所示,三棱锥A-BCD的底面是等腰直角三角形,AB⊥平面BCD,AB=BC=BD=2,E是棱CD上的任意一点,F,G分别是AC,BC的中点,则在下面命题中:①平面ABE⊥平面BCD;②平面EFG∥平面ABD;③四面体FECG体积的最大值是1 3.其中为真命题的是__________.(填序号)【导学号:41292059】图4【解析】①正确,因为AB⊥平面BCD,且AB⊂平面ABE,由面面垂直的判定定理可知平面ABE⊥平面BCD;②错,若两平面平行,则必有AD∥EF,而点E是棱CD上任意一点,故该命题为假命题;③正确,由已知易得GF⊥平面GCE,且GF=12AB=1,而S△GCE=12GC·CE·sin 45°=24CE≤1,故V F-GCE=13S△GCE·FG≤13.故正确的命题为①③.【答案】①③二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)图515.(本小题满分14分)如图5,正方体ABCD-A′B′C′D′的棱长为a,连结A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.【解】(1)∵ABCD-A′B′C′D′是正方体,∴六个面是互相全等的正方形,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a , ∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的,∴V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =13a 3.16.(本小题满分14分)如图6所示,长方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,并说明理由.图6【解】 直线MN ∥平面A 1BC 1. 证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1. ∴MN ⊄平面A 1BC 1. 如图,取A 1C 1的中点O 1, 连结NO 1,BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB , ∴四边形NO 1BM 为平行四边形, ∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1, ∴MN ∥平面A 1BC 1.17.(本小题满分14分)如图7,圆锥的轴截面SAB 为等腰直角三角形,Q为底面圆周上一点.图7(1)若QB的中点为C,求证:平面SOC⊥平面SBQ;(2)若∠AOQ=120°,QB=3,求圆锥的表面积.【解】(1)∵SQ=SB,OQ=OB,C为QB的中点,∴QB⊥SC,QB⊥OC.∵SC∩OC=C,∴QB⊥平面SOC.又∵QB⊂平面SBQ,∴平面SOC⊥平面SBQ.(2)∵∠AOQ=120°,QB=3,∴∠BOQ=60°,即△OBQ为等边三角形,∴OB= 3.∵△SAB为等腰直角三角形,∴SB=6,∴S侧=3·6π=32π,∴S表=S侧+S底=32π+3π=(3+32)π.图818.(本小题满分16分)如图8所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.【解】 (1)证明:连结OE ,如图所示.∵O ,E 分别为AC ,PC 的中点, ∴OE ∥P A .∵OE ⊂平面BDE ,P A ⊄平面BDE ,∴P A ∥平面BDE . (2)证明:∵PO ⊥平面ABCD ,∴PO ⊥BD . 在正方形ABCD 中,BD ⊥AC . 又∵PO ∩AC =O ,∴BD ⊥平面P AC .又∵BD ⊂平面BDE ,∴平面P AC ⊥平面BDE . (3)取OC 中点F ,连结EF .∵E 为PC 中点, ∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD , ∴EF ⊥BD ,∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO , ∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角, ∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a , ∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a . ∴V P -ABCD =13×a 2×66a =618a 3.19.(本小题满分16分)如图9,在四棱锥P -ABCD 中,底面ABCD 是正方形,P A ⊥平面ABCD ,E 是PC 的中点,F 为线段AC 上一点.【导学号:41292060】(1)求证:BD ⊥EF ;(2)若EF ∥平面PBD ,求AFFC 的值.图9【解】(1)因为P A⊥平面ABCD,BD⊂平面ABCD,所以P A⊥BD.又四边形ABCD是正方形,所以AC⊥BD.又P A∩AC=A,所以BD⊥平面P AC.又EF⊂平面P AC,所以BD⊥EF.(2)设AC与BD交于点O,连结PO.因为EF∥平面PBD,平面P AC∩平面PBD=PO,且EF⊂平面P AC,所以EF∥PO.又E是PC的中点,所以OF=FC,所以AF=3FC,即AFFC=3.20.(本小题满分16分)如图10(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE 的位置,使A1F⊥CD,如图10(2).(1)(2)图10(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.【解】(1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC. 又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.。
章末综合测评(二)(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图1所示,质量为m的物体P放在光滑的倾角为θ的斜面体上,同时用力F向右推斜面体,使P与斜面体保持相对静止.在前进水平位移为s的过程中,斜面体对P做功为()图1A.θ·sC.θ·s D.θ·s【解析】斜面对P的作用力垂直于斜面,其竖直分量为,所以水平分量为θ,做功为水平分量的力乘以水平位移.【答案】 D2.一小石子从高为10 m处自由下落,不计空气阻力,经一段时间后小石子的动能恰等于它的重力势能(以地面为参考平面),g取10 2,则该时刻小石子的速度大小为()【导学号:45732064】A.5 B.10C.15 D.20【解析】设小石子的动能等于它的重力势能时速度为v,根据机械能守恒定律得=′+2由题意知′=2,所以=2故v==10 ,B正确.【答案】 B3.质量为2 t的汽车,发动机的牵引力功率为30 ,在水平公路上,能达到的最大速度为15 ,当汽车的速度为10 时的加速度大小为() A.0.5 2B.1 2C.1.5 2D.2 2【解析】当汽车达到最大速度时,即牵引力等于阻力时,则有P==f==N=2×103 N当v=10 时,F==N=3×103 N所以a==2=0.5 2.【答案】 A4.在光滑的地板上,用水平拉力分别使两个物块由静止获得相同的动能,那么可以肯定()A.水平拉力相等B.两物块质量相等C.两物块速度变化相等D.水平拉力对两物块做功相等【解析】两物块动能的改变量相等,根据动能定理可知,水平力对两物块做的功相等,选项D正确,其他选项均不能肯定.【答案】 D5.如图2所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h处的雪道上由静止开始匀加速下滑,加速度为g.在他从上向下滑到底端的过程中,下列说法正确的是()【导学号:45732065】图2A.运动员减少的重力势能全部转化为动能B.运动员获得的动能为C.运动员克服摩擦力做功为D.下滑过程中系统减少的机械能为【解析】运动员的加速度为g,沿斜面:-f=m·g,f=,=·2h=,所以A、C项错误,D项正确;=-=,B项错误.【答案】 D6.质量为m的物体由固定在地面上的斜面顶端匀速滑到斜面底端,斜面倾角为θ,物体下滑速度为v,如图3所示,以下说法中正确的是()图3A.重力对物体做功的功率为θB.重力对物体做功的功率为C.物体克服摩擦力做功的功率为θD.物体克服摩擦力做功的功率为【解析】物体沿斜面匀速下滑,说明沿斜面方向的摩擦力f=θ,根据功率公式P=α(式中α是F与v的夹角),则重力的功率=(90°-θ)=θ,A对,B 错;物体克服摩擦力做功的功率=f·v=θ,C对,D错.【答案】7.如图4是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()【导学号:45732066】图4A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为弹性势能和内能D.弹簧的弹性势能全部转化为动能【解析】在弹簧压缩过程中,由于摩擦力做功消耗机械能,因此机械能不守恒,选项A错,B对;垫板的动能转化为弹性势能和内能,选项C对,D错.【答案】8.如图5所示,传送带与水平地面的夹角为θ,传送带以速度v匀速运动,在传送带底端无初速地放置一个质量为m的物体,当物体上升高度为h时,物体已经相对传送带静止,在这个过程中对物体分析正确的是()图5A.动能增加B.动能增加2C.机械能增加-2D.重力势能增加【解析】当物体相对传送带静止时,物体的速度与传送带的速度相等,物体的动能增加了2,选项A错误,B正确;物体升高了h,物体的重力势能增加了,选项D正确;在该过程中物体的机械能增加了+2,选项C错误.【答案】二、实验题(共2小题,共18分)9.(8分)使用如图6甲所示的装置验证机械能守恒定律,打出一条纸带如图乙所示.图乙中O是打出的第一个点迹,A、B、C、D、E、F、…是依次打出的点迹,量出间的距离为l,间的距离为s,已知打点计时器打点的周期是T=0.02 s.图6(1)上述物理量如果在实验误差允许的范围内满足关系式,即验证了重物下落过程中机械能是守恒的.(2)如果发现图乙中距离大约是4 ,则出现这种情况的原因可能是,如果出现这种情况,上述的各物理量间满足的关系式可能是.【解析】(1)由纸带上数据=,则===,故关系式为=.(2)若=4 ,则O点不是重物开始下落打出的点.说明是先释放纸带,后接通电源,故得到的关系式为<,即<.【答案】(1)=(2)先释放纸带,后接通电源<10.(10分)某同学为探究“恒力做功与物体动能改变的关系”,设计了如下实验,他的操作步骤是:图7①摆好实验装置如图7所示.②将质量为200 g的小车拉到打点计时器附近,并按住小车.③在质量为10 g、30 g、50 g的三种钩码中,他挑选了一个质量为50 g的钩码挂在拉线P上.④释放小车,打开打点计时器的电源,打出一条纸带.(1)在多次重复实验得到的纸带中取出较为满意的一条,经测量、计算,得到如下数据:①第一个点到第N个点的距离为40.0 .②打下第N点时小车的速度大小为1.00 .该同学将钩码的重力当作小车所受的拉力,算出拉力对小车做的功为,小车动能的增量为.(2)此次实验探究结果,他没能得到“恒力对物体做的功,等于物体动能的增量”,且误差很大,显然,在实验探究过程中忽视了各种产生误差的因素.请你根据该同学的实验操作过程帮助分析一下,造成较大误差的主要原因是(至少说出两种可能):.【导学号:45732067】【解析】(1)拉力对小车做的功W=·s=0.196 N.小车动能的增量Δ=2=0.1 J.(2)①小车的质量不是远大于钩码质量;②没有平衡摩擦力;③操作错误,实验时先放开小车,后接通电源.【答案】(1)0.1960.1(2)①小车质量没有远大于钩码质量;②没有平衡摩擦力;③错误操作:先放小车,后开电源三、计算题(共2小题,共34分)11. (16分)在世界锦标赛中,冰壶运动引起了人们的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如图8所示,运动员将静止于O点的冰壶(视为质点)沿直线′推到A点放手,此后冰壶沿′滑行,最后停于C点.已知冰面与各冰壶间的动摩擦因数为μ,冰壶质量为m,=L,′=r,重力加速度为g.【导学号:45732068】图8(1)求冰壶在A点的速率;(2)若将′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C点的冰壶能停于O′点,求A点与B点之间的距离.【解析】(1)从A到C,由动能定理有-μ=0-得=.(2)从A到O′,由动能定理有-μ-0.8μ(L+r-s)=0-得s=L-4r.【答案】(1)(2)L-4r12.(18分)如图9所示,质量为m的物体从倾角为θ的斜面上的A点以速度v0沿斜面上滑,由于μθ< θ,所以它滑到最高点后又滑下来,当它下滑到B 点时,速度大小恰好也是v0,设物体与斜面间的动摩擦因数为μ,求A、B间的距离.图9【解析】设物体m从A点到最高点的位移为s,对此过程由动能定理得-( θ+μθ)·s=0-对全过程由动能定理得θ·-μθ·(2s+)=0由以上两式联立得=θ(2θ-μ22θ)).【答案】θ(2θ-μ22θ))。
章末综合测评(二)平面解析几何初步(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.直线l:x-3y+1=0的倾斜角为________.【解析】l:y=33x+33,k=33,∴α=30°.【答案】30°2.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为________.【解析】直线方程为y=3x, 圆的方程化为x2+(y-2)2=22,∴r=2,圆心(0,2)到直线y=3x的距离为d=1,∴半弦长为22-1=3,∴弦长为2 3.【答案】2 33.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=1的位置关系是__________.【解析】圆心(0,1)到直线l的距离d=|-1-m+1|m2+1=|m|m2+1<1=r.故直线l与圆C相交.【答案】相交4.关于x的方程4-x2=12(x-2)+3解的个数为________个.【导学号:41292128】【解析】作出y=4-x2和y=12(x-2)+3=12x+2的图象(略).可看出直线与半圆有两个公共点.【答案】 25.若直线l与直线3x+y-1=0垂直,且它在x轴上的截距为-2,则直线l的方程为________.【解析】 因为直线3x +y -1=0的斜率为-3,所以直线l 的斜率为13.又直线在x 轴上的截距为-2,即直线l 与x 轴的交点为(-2,0),所以直线l 的方程为y -0=13(x +2),即x -3y +2=0.【答案】 x -3y +2=06.若曲线(x -1)2+(y -2)2=4上相异两点P ,Q 关于直线kx -y -2=0对称,则k 的值为__________.【解析】 依题意得,圆心(1,2)在直线kx -y -2=0上,于是有k -4=0,解得k =4.【答案】 47.已知点M (a ,b )在直线3x +4y =15上,则a 2+b 2的最小值为________. 【解析】 a 2+b 2的最小值为原点到直线3x +4y =15的距离:d =|0+0-15|32+42=3.【答案】 38.空间直角坐标系中,点A (-3,4,0)和B (x ,-1,6)的距离为86,则x 的值为________.【解析】 (x +3)2+(-1-4)2+(6-0)2=86, 解得x =2或-8. 【答案】 2或-89.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.【解析】 依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,则∠AOB =90°.如图,此时a =1,b =-1.满足题意,所以a 2+b 2=2. 【答案】 210.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.【解析】 设平面上的点为P ,易知ABCD 为凸四边形,设对角线AC 与BD 的交点为P ′,则|P A |+|PC |≥|AC |=|AP ′|+|P ′C |,|PB |+|PD |≥|BD |=|BP ′|+|P ′D |,当且仅当P 与P ′重合时,上面两式等号同时成立,由AC 和BD 的方程解得P ′(2,4).【答案】 (2,4)11.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0平行,则l 1与l 2距离为________.【解析】 由l 1∥l 2可知a 2=3a +1≠11,解得a =-3或a =2(舍), ∴a =-3.∴l 1:-3x +3y +1=0,即x -y -13=0, l 2:2x -2y +1=0,即x -y +12=0, ∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪-13-122=5212.【答案】 521212.若圆O :x 2+y 2=4与圆C :x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是__________.【解析】 由圆C 的方程x 2+y 2+4x -4y +4=0可得圆心C (-2,2),由题意知直线l 过OC 的中点(-1,1),又直线OC 的斜率为-1,故直线l 的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0.【答案】 x -y +2=013.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为________.【解析】 设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54,①圆C :(x -1)2+y 2=1,②①-②得2x +y -3=0,此即为直线AB 的方程. 【答案】 2x +y -3=014.设集合A ={(x ,y )|x 2+y 2≤4},B ={(x ,y )|(x -1)2+(y -1)2≤r 2(r >0)},当A ∩B =B 时,r 的取值范围是________.【导学号:41292129】【解析】 ∵A ={(x ,y )|x 2+y 2≤4},B ={(x ,y )|(x -1)2+(y -1)2≤r 2(r >0)}均表示圆及其内部的点,由A ∩B =B 可知两圆内含或内切.∴2≤2-r ,即0<r ≤2- 2.【答案】 (0,2-2]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知圆C 的方程为:x 2+y 2-2x -4y +m =0, (1)求m 的取值范围;(2)若直线x -2y -1=0与圆C 相切,求m 的值.【解】 (1)由圆的方程的要求可得,22+42-4m >0,∴m <5. (2)圆心(1,2),半径r =5-m , 因为圆和直线相切,所以有|1-4-1|12+(-2)2=5-m ,所以m =95.16.(本小题满分14分) 直线l 在两坐标轴上的截距相等,且P (4,3)到直线l 的距离为32,求直线l 的方程.【解】 若l 在两坐标轴上截距为0, 设l :y =kx ,即kx -y =0,则|4k -3|1+k2=3 2. 解得k =-6±3214.此时l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x ; 若l 在两坐标轴上截距不为0,设l :x a +ya =1, 即x +y -a =0,则|4+3-a |12+12=3 2. 解得a =1或13.此时l 的方程为x +y -1=0或x +y -13=0.综上,直线l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x 或x +y -1=0或x +y -13=0. 17.(本小题满分14分)一个长方体的8个顶点坐标分别为(0,0,0),(0,1,0),(3,0,0),(3,1,0),(3,1,9),(3,0,9),(0,0,9),(0,1,9).(1)在空间直角坐标系中画出这个长方体; (2)求这个长方体外接球的球心坐标; (3)求这个长方体外接球的体积. 【解】 (1)如图.(2)因为长方体的体对角线长是其外接球的直径, 所以球心坐标为⎝ ⎛⎭⎪⎫3+02,0+12,0+92,即⎝ ⎛⎭⎪⎫32,12,92. (3)因为长方体的体对角线长d =(-3)2+12+92=91, 所以其外接球的半径r =d 2=912.所以其外接球的体积V 球=43πr 3=43π⎝⎛⎭⎪⎫9123=91π691. 18.(本小题满分16分)已知圆C 的圆心与P (0,1)关于直线y =x +1对称,直线3x +4y +1=0与圆C 相交于E ,F 两点,且|EF |=4.(1)求圆C 的标准方程;(2)设直线l :mx -y +1-m =0(m ∈R )与圆C 的交点A ,B ,求弦AB 的中点M 的轨迹方程.【解】 (1)点P (0,1)关于直线y =x +1的对称点,即圆心C 的坐标为(0,1),圆心C 到直线3x +4y +1=0的距离为d =|0+4+1|5=1. 所以r 2=12+22=5,得圆C 的方程为x 2+(y -1)2=5. (2)联立得⎩⎨⎧y =m (x -1)+1,x 2+(y -1)2=5,消去y ,得(1+m 2)x 2-2m 2x +m 2-5=0.由于Δ=4m 4-4(1+m 2)(m 2-5)=16m 2+20>0,故l 与圆C 必交于两点.设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎨⎧x 0=x 1+x 22=m 21+m 2,y 0=m (x 0-1)+1.消去m ,得⎝ ⎛⎭⎪⎫x 0-122+(y 0-1)2=14.∴M 点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+(y -1)2=14.19.(本小题满分16分)已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值; (2)若M (m ,n ),求n -3m +2的最大值和最小值. 【解】 (1)由题意知,圆C 的标准方程为(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2.又|QC |=[2-(-2)]2+(7-3)2=42>22,∴|MQ |max =42+22=62,|MQ |min =42-22=2 2. (2)因为n -3m +2表示直线MQ 的斜率,所以设直线MQ 的方程为y -3=k (x +2)⎝ ⎛⎭⎪⎫k =n -3m +2, 即kx -y +2k +3=0.由题意知直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22,解得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.20.(本小题满分16分)如图1,已知△ABC 中A (-8,2),AB 边上的中线CE 所在直线的方程为x +2y -5=0,AC 边上的中线BD 所在直线的方程为2x -5y +8=0,求直线BC 的方程.【导学号:41292130】图1【解】 设B (x 0,y 0),则AB 中点E 的坐标为⎝ ⎛⎭⎪⎫x 0-82,y 0+22,由条件可得:⎩⎪⎨⎪⎧2x 0-5y 0+8=0,x 0-82+2·y 0+22-5=0,得⎩⎨⎧2x 0-5y 0+8=0,x 0+2y 0-14=0, 解得⎩⎨⎧x 0=6,y 0=4,即B (6,4),同理可求得C 点的坐标为(5,0). 故所求直线BC 的方程为y -04-0=x -56-5,即4x -y -20=0.。