2017-2018学年中考数学专题复习 综合应用题(1-3)天天练(无答案)
- 格式:doc
- 大小:19.50 KB
- 文档页数:5
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191乙55 135 151 110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③【答案】D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.42【答案】B【解析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.3.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为()A .54°B .64°C .74°D .26°【答案】B【解析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数. 【详解】∵四边形ABCD 为菱形, ∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO , 在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA), ∴AO =CO , ∵AB =BC , ∴BO ⊥AC , ∴∠BOC =90°, ∵∠DAC =26°, ∴∠BCA =∠DAC =26°, ∴∠OBC =90°﹣26°=64°. 故选B . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质. 6.已知一个多边形的内角和是1080°,则这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形【答案】D【解析】根据多边形的内角和=(n ﹣2)•180°,列方程可求解. 【详解】设所求多边形边数为n , ∴(n ﹣2)•180°=1080°, 解得n =8.故选D. 【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【解析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 8.如右图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( )A .62°B .56°C .60°D .28°【答案】A【解析】连接OB .在△OAB 中,OA=OB (⊙O 的半径), ∴∠OAB=∠OBA (等边对等角); 又∵∠OAB=28°, ∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故选A9.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x【答案】B【解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.10.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【答案】B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.二、填空题(本题包括8个小题)11____.【答案】1【详解】解:∵12=21,∴,故答案为:1.【点睛】12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【答案】20【解析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.13.高速公路某收费站出城方向有编号为,,,,A B C D E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:A B C D E五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 在,,,,【答案】B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.14.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.【答案】2【解析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC 底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.15.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.【答案】(Ⅰ)AC=3(Ⅱ)33.【解析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE3=3∴AC=2AE=3;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD=CD=230COS 43,∴BD+12DC的最小值=3故答案为:43,23.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键. 16.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。
运算测试
学生做题前请先回答以下问题
问题1:试梳理初中阶段计算知识图:
问题2:分式的化简求值,书写过程一般分几步?分别是什么?
问题3:解决分式的化简求值这一类问题一般需要用到哪些数学知识?
运算测试—式的运算
一、单选题(共10道,每道10分)
1.化简的结果是( )
A. B.0
C. D.
2.计算的结果是( )
A. B.
C. D.
3.当,时,代数式的值为( )
A. B.
C. D.
4.计算:=( )
A. B.
C. D.
5.计算:( )
A. B.
C. D.
6.化简的结果为( )
A. B.
C. D.
7.化简正确的是( )
A. B.
2
2
C. D.
8.化简分式,并在的范围内选取一个你认为合适的整数x 代入,所得的结果不可能是( )
A.0
B.1
C.-2
D.2
9.已知a 是一元二次方程的实数根,则代数式的值为( )
A. B.
C. D.
10.已知x 满足,则代数式的值为( )
A.1
B.
C.-1
D.
3。
2017-2018学年中考数学专题复习实际生活应用问题(1-3)天天练(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年中考数学专题复习实际生活应用问题(1-3)天天练(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年中考数学专题复习实际生活应用问题(1-3)天天练(无答案)的全部内容。
实际生活应用问题学生做题前请先回答以下问题问题1:实际生活应用题的处理思路:1.理解题意,梳理信息结合图表理解题意,将___________与图象中轴、点、线对应起来理解分析.2.辨识类型,建立模型①将所求目标转化为函数元素,借助___________,利用_________进行求解;②将图象中的__________还原成实际场景中的数据,借助实际场景中的_________列方程求解.3.求解验证,回归实际实际生活应用问题(一)一、单选题(共4道,每道25分)1。
如图,排球运动员甲站在点O处练习发球,将球从O点正上方的A处发出,把球看成点,其运行路线是抛物线的一部分,点D为球运动的最高点.球网BC离O点的水平距离为9米,以O为坐标原点建立如图所示的坐标系,乙站立地点M的坐标为(m,0).乙原地起跳可接球的最大高度为2.4米,若乙因为接球高度不够而失球,则m的取值范围为( )A. B.C. D。
2.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),把球看成点,其运行的高度y(单位:米)与运行的水平距离x(单位:米)满足关系式.(1)当此球开出后,若飞行的最高点距离地面4米,则y与x满足的关系式为__________,足球落地点C距守门员的距离为__________米.( )(取)A. B。
2018 届湖南省中考数学总复习专题{分派类应用题 }试题及分析分派类应用问题考题1.植树节前夜,某校购进 A、B 两个品种的树苗,已知一株 A 品种树苗比一株 B 品种树苗多 20 元,买一株 A 品种树苗和 2 株 B 品种树苗共需 110 元.(1)问 A、B 两种树苗每株分别是多少元?(2)为美化校园,学校 4 月份花销 4000 元再次购入 A、B 两种树苗,已知 A 品种树苗数目许多于 B 品种树苗数目的一半,则此次至多购置 B 品种树苗多少株?2.倡议健康生活,推动全民健身,某社区要购进 A,B 两种型号的健身器械若干套,A,B 两种型号健身器械的购置单价分别为每套310 元,460 元,且每种型号健身器械一定整套购置.(1)若购置 A,B 两种型号的健身器械共 50 套,且恰巧支出 20000 元,求 A,B两种型号健身器械各购置多少套?(2)若购置 A,B 两种型号的健身器械共 50 套,且支出不超出 18000 元,求A种型号健身器械起码要购置多少套?3.(2017 南充 ) 学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量 45 人,乙种客车每辆载客量 30 人.已知 1 辆甲种客车和 3 辆乙种客车共需租金 1240 元, 3 辆甲种客车和 2 辆乙种客车共需租金 1760 元.(1)求 1 辆甲种客车和 1 辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共 8 辆,送 330 名师生集体出门活动,最节俭的租车花费是多少?4.(2017 聊城 ) 在推动城乡义务教育平衡发展工作中,我市某区政府经过公然招标的方式为辖区内所有乡镇中学采买了某型号的学生用电脑和教师用笔录本电脑.此中, A 乡镇中学更新学生用电脑 110 台和教师用笔录本电脑 32 台,共花销 30.5 万元;B 乡镇中学更新学生用电脑 55 台和教师用笔录本电脑 24 台,共花销17.65 万元.(1)求该型号的学生用电脑和教师用笔录本电脑单价分别是多少万元?(2)经统计,所有乡镇中学需要购进的教师用笔录本电脑台数比购进的学生1用电脑台数的5少 90 台,在两种电脑的总花费不超出估算438 万元的状况下,至多能购进的学生用电脑和教师用笔录本电脑各多少台?5.(2017 麓山国际实验学校一模 ) 去冬今春,某市部分地域遭到了稀有的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320 件,此中饮用水比蔬菜多 80 件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共 8 辆,一次性将这批饮用水和蔬菜所有运往该乡中小学,已知每辆甲种货车最多可装饮用水40 件和蔬菜 10 件,每辆乙种货车最多可装饮用水和蔬菜各 20 件.则运输部门安排甲、乙两种货车时有哪几种方案?请你帮助设计出来.6.(2017 绵阳 ) 江南农场收割小麦,已知 1 台大型收割机和 3 台小型收割机1 小时能够收割小麦 1.4 公顷,2 台大型收割机和 5 台小型收割机 1 小时能够收割小麦 2.5 公顷.(1)每台大型收割机和每台小型收割机 1 小时收割小麦各多少公顷?(2)大型收割机每小时花费为 300 元,小型收割机每小时花费为 200 元,两种型号的收割机一共有 10 台,要求 2 小时达成 8 公顷小麦的收割任务,且总花费不超出 5400 元,有几种方案?请指出花费最低的一种方案,并求出相应的花费.7.(2017 湖南师大附中一模 ) 长株潭城际铁路是连结长沙、株洲、湘潭三个城市的城际铁路,项目于 2010 年 6 月 30 日正式动工建设, 2016 年 12 月 26 日建成通车.星城物流企业承接 A、 B 两种资料的运输业务,已知 8 月份 A 资料运费单价为 50 元/ 吨,B 资料运费单价为 30 元/ 吨,共收运费 9500 元;9 月份因为油价上升,运费单价上升为: A 资料 70 元/ 吨, B 资料 40 元 / 吨.该物流企业 9月份承接的 A 种资料和 B 种资料数目与 8 月份同样,9 月份共收取运费 13000 元.(1)该物流企业 8 月份运输两种资料各多少吨?(2)该物流企业估计10 月份运输这两种资料共330 吨,且A 资料的数目不大于 B 资料的 2 倍,在运费单价与 9 月份同样的状况下,该物流企业 10 月份最多将收取多少运输费?8.(2017 麓山国际实验学校三模 ) 某服饰店到厂家选购 A、 B 两种服饰,若购进 A 种型号服饰 12 件,B 种型号服饰 8 件,需要 1880 元;若购进 A 种型号服饰 9 件, B 种型号服饰 10 件,需要 1810 元.(1)求 A、B 两种服饰的进价分别为多少元?(2)若销售一件 A 种服饰可赢利 18 元,销售一件 B 种服饰可赢利 30 元,根据市场需求,服饰店老板决定:购进 A 种服饰的数目比购进 B 种服饰数目的 2 倍还多 4 件,且 A 种服饰购进数目不超出28 件,并使这批服饰所有销售完成后总赢利许多于 699 元.设服饰店购进 B 种服饰 x 件,那么:①请写出 A,B 两种服饰所有销售完成后的总赢利y 元与 x 件之间的函数关系式;②请问服饰店有哪几种知足条件的进货方案?答案1.解: (1) 设 A 品种树苗每株 x 元,B 品种树苗每株 y 元,依据题意得:x-y=20 x= 50,解得.x+2y=110 y= 30答: A 品种树苗每株 50 元, B 品种树苗每株 30 元;(2)设购置 B 品种树苗 z 株,依据题意得: 4000 — 30 z ≥1 z,50 28解得 z≤7211,∵z 为整数,∴至多购置 B 品种树苗 72 株,答:此次至多购置 B 品种树苗 72 株.2.解:(1) 设购置 A 种型号健身器械 x 套, B 种型号健身器械 y 套,依据题意得:x+y=50,310x+460y=20000x=20解得,y=30答:购置 A 种型号健身器械 20 套, B 种型号健身 30 套;(2)设购置 A 种型号健身器械 z 套,依据题意得:310z+460(50 -z) ≤ 18000,1解得 z≥333,∵z 为整数,∴z 的最小值为 34,答: A 种型号健身器械起码要购置34 套.3.解:(1)设1辆甲客车需要租金x 元, 1 辆乙客车需要租金y 元,x +3y =1240依据题意得:,3x +2y = 1760x =400 解得,y =280答: 1 辆甲客车需要租金 400 元, 1 辆乙客车需要租金 280 元;(2) 设租甲车 t 辆,则租乙车为 (8 -t ) 辆,租车总花费为 w 元,45 t +30(8-t )≥ 330依据题意得:,8-t ≥0解得 6≤t ≤ 8,∴w =400 t +280(8 -t ) ,整理得 w =120 t + 2240,∵k =120> 0,w 随 t 的增大而增大,∴当 t =6 时, w 最小,最小值为 120×6+2240=2960( 元 ) ,答:最节俭的租车花费是 2960 元.4. 解:(1) 设该型号的学生用电脑和教师用笔录本电脑单价分别为x 万元和y 万元,110x +32y = 依据题意得:,55x + 24y =x = 解得,y =答:该型号的学生用电脑和教师用笔录本电脑单价分别是0.19 万元和万元;(2) 设能购进的学生用电脑 m 台,则能购进的教师用笔录本电脑 (15m - 90) 台,1依据题意得: 0.19 m +0.3 × ( 5m -90) ≤438,解得 m ≤1860,1 1∴ m -90= ×1860-90=372-90=282( 台) ,55答:至多能购进的学生用电脑1860 台,教师用笔录本电脑282 台.5.解: (1) 设饮用水有 x 件,蔬菜有 y 件,依据题意得:x+y=320 x=200,解得,x-y=80 y=120答:饮用水和蔬菜各有200 件和 120 件;(2)设租用甲种货车 m辆,则租用乙种货车 (8 -m) 辆,依据题意得:40m+20(8- m)≥ 20010m+20(8- m)≥ 120解得 2≤m≤ 4,∵m为正整数,∴ m=2 或 3 或 4,当 m= 2 时, 8-m=6;当 m= 3 时, 8-m=5;当 m= 4 时, 8-m=4,答:安排甲、乙两种货车时有 3 种方案,设计方案分别为:①甲车 2 辆,乙车 6 辆;②甲车 3 辆,乙车 5 辆;③甲车 4 辆,乙车 4 辆.6.解: (1) 设每台大型收割机 1 小时收割小麦 a 公顷,每台小型收割机 1 小时收割小麦 b 公顷,a+3b=a=依据题意得:,解得,2a+5b=b=答:每台大型收割机 1 小时收割小麦 0.5 公顷,每台小型收割机 1 小时收割小麦 0.3 公顷;(2)设需要大型收割机 x 台,则需要小型收割机 (10 -x) 台,依据题意得:300× 2x+200× 2( 10-x)≤ 5400,解得 5≤x≤7,0.5 × 2x+0.3 × 2( 10-x)≥ 8∵x取整数,∴ x= 5 或 6 或 7,共有三种方案,设总花费为 w 元,则 w=600x+400(10 -x) = 200x+ 4000,由一次函数性质知, w随 x 增大而增大,∴x=5 时, w 值最小,∴ 10-5=5( 台 ) ,即大型收割机 5 台,小此时,最低花费 w=600× 5+ 400×5=5000( 元 ) .答:有三种方案,此中当大型收割机 5 台,小型收割机 5 台时花费最低,最低花费为 5000 元.7.解: (1) 设 A 资料运输了 x 吨, B 资料运输了 y 吨,依据题意得:50x+ 30y=9500 x= 100,解得,70x+ 40y=13000 y= 150答: A 资料运输了 100 吨, B 资料运输了 150 吨;(2)设 10 月份运输 A 资料为 a 吨,则 B 资料为 (330 -a) 吨, 10 月份收取运输费为 W元,依据题意得: a≤ (330 - a) ×2,解得 a≤220,W=70a+40×(330 - a) =30a+ 13200,由一次函数性质可知, W跟着 a 的增大而增大,∴当 a=220 时, W获得最大值,最大值为30a+ 13200=30×220+13200=19800( 元 ) ,答:该物流企业 10 月份最多将收到19800 元运输费.8.解: (1) 设 A 种型号服饰进价为 x 元, B种型号服饰进价为 y 元,9x+10y=1810 x=90依据题意得:,解得,12x+ 8y=1880 y=100答: A 种型号服饰进价为90 元, B 种型号服饰进价为100 元;(2)①设购进 B 种服饰 x 件,则购进 A 种服饰的数目是 (2 x+ 4) 件,依据题意得: y=30x+(2 x+4) ×18= 66x+72;②依据题意得:18(2x+ 4)+ 30x≥699 1 2x+4≤28 ,解得 92≤x≤,12∵x是正整数,∴ x=10 或 11 或 12,∴2x+4=24 或 26 或 28,答:有三种进货方案: B 种服饰购进 10 件, A 种服饰购进 24 件; B 种服饰购进 11 件, A种服饰购进 26 件; B 种服饰购进 12 件, A 种服饰购进 28 件.。
2018年数学中考应用题专题复习1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升,今年5月份每升汽油的价格是多少呢?2.(本题满分9分)某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?4.(本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱3倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府(含冰柜)数量是彩电数量的2补贴分别为多少万元?为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?6.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y=198-6x(6≤x<8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y(元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.8.(本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.2017年数学中考应用题答案1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升,今年5月份每升汽油的价格是多少呢?解:设去年5月份汽油价格为x 元/升,则今年5月份的汽油价格为1.6x 元/升, ········· 1分 根据题意,得15015018.751.6x x -=. ··································································· 5分整理,得15093.7518.75x -=.解这个方程,得3x =. ·················································································· 8分经检验,3x =是原方程的解. ········································································· 9分所以1.6 4.8x =.答:今年5月份的汽油价格为4.8元/升. ···························································· 10分 2.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)解:(1)由图10可得,当030t ≤≤时,设市场的日销售量y kt =.点(3060),心图象上,6030k ∴=.2k ∴=.即2y t =. ···························· 2分 当3040t ≤≤时,设市场的日销售量1y k t b =+.点(3060),和(400),在图象上,∴116030040k b k b=+⎧⎨=+⎩ 解得16240k b =-=,. 6240y t ∴=-+. ··················································································· 4分综上可知,当030t ≤≤时,市场的日销售量2y t =;当3040t ≤≤时,市场的日销售量6240y t =-+. ······································ 6分(2)方法一:由图10知,当30t =(天)时,市场的日销售量达到最大60万件;又由图11知,当30t =(天)时产品的日销售利润达到最大60万元/件,所以当30t =(天)时,市场的日销售利润最大,最大值为3600万元. ·················································································································· 9分方法二:由图11得,当020t ≤≤时,每件产品的日销售利润为3y t =;当2040t ≤≤时,每件产品的日销售利润为60y =. ①当020t ≤≤时,产品的日销售利润2326y t t t =+=;∴当20t =时,产品的日销售利润y 最大等于2400万元.②当2030t ≤≤时,产品的日销售利润602120y t t =⨯=.∴当30t =时,产品的日销售利润y 最大等于3600万元;③当3040t ≤≤时,产品的日销售利润60(6240)y t =⨯-+;∴当30t =时,产品的日销售利润y 最大等于3600万元. 综合①,②,③可知,当30t =天时,这家公司市场的日销售利润最大为3600万元.(9分)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x ……………………………………………2分①×2-②得:5x =10000. ∴ x =2000. ………………………………………………………………6分把x =2000代入①得:5y =12000.∴ y =2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.………8分4. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). ……………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分 解得x =88. ………………………………………………………7分∴ 31322x =,53501302x -=. 所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分5. (本题满分10分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?解:(1)由题意可知,当x ≤100时,购买一个需5000元,故15000y x =;-------------------1分当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤1035005000-+100=250. ------------------------2分 即100≤x ≤250时,购买一个需5000-10(x -100)元,故y 1=6000x -10x 2;----------4分当x >250时,购买一个需3500元,故13500y x =; ----------------5分所以,⎪⎩⎪⎨⎧-=x x x x y 3500106000500021 ).250()250100()1000(>≤<≤≤x x x ,, 2500080%4000y x x =⨯=. ---------------------7分(2) 当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x -10x 2=-10(x -300)2+900000<1400000;所以,由35001400000x =,得400x =; -------------------------------8分由40001400000x =,得350x =. -------------------------------9分故选择甲商家,最多能购买400个路灯.-----------------------------10分 6.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?(1)设一次函数的关系式为y kx b =+,根据题意得300070100090k b k b =+⎧⎨=+⎩.............................................2分 解得 100,10000k b =-= ∴一次关系式为y = -100x +10000.....................5分(2)由题意得 (x -60)(-100x +10000)=40000.即216064000x x -+=,解得,1280x x ==.答:当定价为80元时,才能使工艺品厂每天的利润为40000元.........................10分7.(本题满分10分)某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y =198-6x (6≤x <8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y (元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.解:(1)当售价为7元/件时,利润y =198-42=156(元),此时销售7857156=-(件);…2分 (2)据题意,得 ⎩⎨⎧<≤---<≤-=)138)(5)](8(1050[)86(6198x x x x x y =⎩⎨⎧<≤-+-<≤-)138(65018010)86(61982x x x x x .…6分 (3)由(2)得:当6≤x <8时,y =198-6x ,所以当x =6时,y 最大=162;当x ≥8时,y =-10(x -9)2+160,所以当x =9时,y 极大=160;综上可知,当当x =6时,y 最大=162.………………10分8. (本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x +25)天.…………1分根据题意得:3030125x x +=+. ………………………………3分 方程两边同乘以x (x +25),得 30(x +25)+30x = x (x +25),即 x 2-35x -750=0. 解之,得x 1=50,x 2=-15. ………………………………5分经检验,x 1=50,x 2=-15都是原方程的解.但x 2=-15不符合题意,应舍去. …………………6分∴ 当x =50时,x +25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天. ……………………7分(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.………………………………8分所需费用为:2500×50=125000(元).………………………………10分方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).……………………10分其它方案略.。
综合应用题创作人:历恰面日期:2020年1月1日学生做题前请先答复以下问题问题1:应用题的处理思路:1.理解题意,梳理信息综合类应用题信息的呈现形式:①__________——要清楚变量含义、变量间关系;②__________、__________——明确文字信息与图象、表格中量的对应关系;③__________——抓取关键词、关键语句、量与量之间关系.如:×××与×××成正比例;售价每上涨××元,每个月少卖××件.④__________如:自变量、因变量的范围限制,整数、正数等.2.辨识类型,建立模型3.求解验证,回归实际综合应用题〔一〕一、单项选择题(一共5道,每道20分)1.某公司消费的某种产品每件本钱为40元,经场调查整理出如下信息:①该产品90天内日销售量〔m件〕与时间是〔第x天〕满足一次函数关系,局部数据如下表:②该产品90天内每天的销售价格与时间是〔第x天〕的关系如下表:〔1〕m关于x的一次函数表达式为( )A. B.C. D.〔2〕设销售该产品每天的利润为y元,那么y关于x的函数表达式为________;2.〔上接第1题〕在90天内该产品第_______天的销售利润最大;最大利润是_______元.( )A.;20;12800B.;50;10000C.;40;7200D.;50;60003.某企业接到一批粽子消费任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第天消费的粽子数量为只,与满足如下关系式:.〔1〕李明第_______天消费的粽子数量为450只.( )A.9B.11C.12D.154.〔上接第3题〕〔2〕如图,设第天每只粽子的本钱是元,与之间的关系可用图中的函数图象来刻画.假设李明第天创造的利润为元,那么与之间的函数关系式为_______,第_______天的利润最大,最大值是_______元〔利润=出厂价-本钱〕.( )A.;9;741B.;15;2679C.;9;741D.;12;7685.〔上接第3,4题〕〔3〕设〔2〕小题中第m天利润到达最大值,假设要使第〔m+1〕天的利润比第m天的利润至少多48元,那么第〔m+1〕天每只粽子至少应提价( )元.B.0.1C.1.7D.0.2学生做题前请先答复以下问题问题1:应用题的处理思路:1.理解题意,梳理信息综合类应用题信息的呈现形式:①__________——要清楚变量含义、变量间关系;②__________、__________——明确文字信息与图象、表格中量的对应关系;③__________——抓取关键词、关键语句、量与量之间关系.如:×××与×××成正比例;售价每上涨××元,每个月少卖××件.④__________如:自变量、因变量的范围限制,整数、正数等.2.辨识类型,建立模型3.求解验证,回归实际综合应用题〔二〕一、单项选择题(一共4道,每道25分)1.奇异果是新西兰的特产,其实它的祖籍在中国,又名“猕猴桃〞.奇异果除了富含维他命C,A,E以及钾、镁、纤维素外,还含有其他水果中很少见的营养成分—叶酸、胡萝卜素、钙、黄体素、氨基酸,因此被营养师称之为“营养活力的来源〞.2021年1月份至6月份某大型超新西兰品种的奇异果销售价格〔元/盒〕与月份之间的函数关系如下表:7月份至12月份奇异果的销售价格〔元/盒〕与月份x之间满足函数关系式:.该超去年奇异果销售数量z〔盒〕与月份之间存在如下图的变化趋势.假设去年该超奇异果的进价为每盒20元,销售奇异果需要一名超员工,该员工每月固定人工费用为1500元.〔1〕观察题中的表格,用所学过的一次函数、反比例函数以及二次函数的有关知识可知,2021年1月份至6月份销售价格与x之间的函数关系式为________;根据如下图的变化趋势,去年每月销售数量z与x之间满足的函数关系式为________.( )A.B.C.D.2.〔上接第1题〕〔2〕去年该超每月的利润W〔元〕与月份x之间满足的函数关系式为( )A.B.C.D.3.〔上接第1,2题〕〔3〕去年该超的最大月销售利润为( )A.14400元B.10400元C.元D.12900元4.〔上接第1,2,3题〕〔4〕从今年1月份开场,为了调发动工的积极性,超决定每卖出一盒奇异果,该员工还可提成2元.奇异果今年的进价为每盒26元,虽然今年1月份奇异果每盒的销售价格比去年12月份增加4元,但1月份销售数量仍比去年12月份增加了%;2月份销售价格在1月份的根底上增加了%,由于其他水果陆续上,2月份的销售量与1月份持平,这样2月份的利润到达了15780元.参考以下数据,可求出整数a的值是( ) 〔参考数据:〕A.1B.25C.29D.125学生做题前请先答复以下问题问题1:应用题的处理思路:1.理解题意,梳理信息综合类应用题信息的呈现形式:①__________——要清楚变量含义、变量间关系;②__________、__________——明确文字信息与图象、表格中量的对应关系;③__________——抓取关键词、关键语句、量与量之间关系.如:×××与×××成正比例;售价每上涨××元,每个月少卖××件.④__________如:自变量、因变量的范围限制,整数、正数等.2.辨识类型,建立模型3.求解验证,回归实际综合应用题〔三〕一、单项选择题(一共5道,每道20分)1.“低碳生活〞作为一种安康、环保、平安的生活方式,受到越来越多人的关注.某公司消费的健身自行车在场上受到普遍欢送,在国内场和国外场畅销,消费的产品可以全部售出,在国内场每辆的利润〔元〕与销量〔万辆〕的关系如下图;在国外场每辆的利润〔元〕与销量〔万辆〕的关系为:.〔1〕求国内场的销售总利润〔万元〕关于销售量〔万辆〕的函数关系式,并指出自变量的取值范围( )A. B.C. D.2.〔上接第1题〕〔2〕该公司的年消费才能为10万辆,请帮助该公司确定国内、国外场的销量各为多少时,公司的年利润最大?( )万辆,国外万辆,最大年利润3168万元D.国内6万辆,国外4万辆,最大年利润3160万元3.某企业消费的一批产品上后30天内全部售完,调查发现,国内场的日销售量〔吨〕与时间是t〔t为整数,单位:天〕的关系如图1所示的抛物线的一局部,而国外场的日销售量〔吨〕与时间是t〔t为整数,单位:天〕的关系如图2所示.〔1〕求与时间是t的函数关系式及自变量t的取值范围,与时间是t的函数关系式及自变量t的取值范围( )A.B.C.D.4.〔上接第3题〕〔2〕设国内、国外场的日销售总量为y吨,直接写出y与时间是t的函数关系式,当销售第几天时,国内、国外场的日销售总量最早到达75吨?( )A.创作人:历恰面日期:2020年1月1日B.C.D.5.〔上接第3题,第4题〕〔3〕判断上第几天国内、国外场的日销售总量最大,并求出此时的最大值.( )A.第25天,最大值为85吨B.第15天,最大值为85吨C.第25天,最大值为80吨D.第20天,最大值为80吨创作人:历恰面日期:2020年1月1日创作人:历恰面日期:2020年1月1日。
2017-2018年中考数学专题复习题:三角形一、选择题1.如图,是的外接圆,的半径为3,,则弧BC的长是A.B.C.D.2.如图所示,▱ABCD的对角线AC,BD相交于点O,,,,▱ABCD的周长A. 11B. 13C. 16D. 223.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知,现添加以下的哪个条件仍不能判定≌A.B.C.D.4.下列各组数能构成勾股数的是A. 2,,B. 12,16,20C. ,,D. ,,5.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当的周长最小时,P点的位置在A. 的重心处B. AD的中点处C. A点处D. D点处6.已知a,b,c是的三条边长,化简的结果为A. B. C. 2c D. 07.如图,直线AB、CD交于点O,,,OB平分,则下列结论:图中,的余角有四个;的补角有2个;为的角平分线;其中正确的是A.B.C.D.8.如图,在中,,AB的垂直平分线MN分别交AC,AB于点D,若::1,则为A.B.C.D.9.下列说法中,不正确的是全等形的面积相等;形状相同的两个三角形是全等三角形;全等三角形的对应边,对应角相等;若两个三角形全等,则其中一个三角形一定是由另一个三角形旋转得到的.A. 与B. 与C. 与D. 与10.正方形ABCD的边长为1,其面积记为,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为,按此规律继续下去,则的值为A. B. C. D.二、填空题11.已知等腰三角形的一边长为9,另一边长为方程的根,则该等腰三角形的周长为______ .12.如图,D是的边BC上任意一点,E、F分别是线段AD、CE的中点若的面积为m,则的面积为______ .13.法国艾菲尔铁塔的塔身是由许多三角形构成的,设计师这样做是利用了三角形的______ 性14.如图,已知等边的边长为8,P是内一点,,,,点D,E,F分别在AB,BC,AC上,则 ______ .15.如图,,AD、BD、CD分别平分的外角、内角、外角以下结论:;;;平分;.其中正确的结论有______填序号16.如图,在中,,AD是的平分线,,则CD: ______ .17.在中,边AB与BC的中点分别是D,E,连接AE,CD交于点连接BG交边AC于点若,,,则线段FC的长度是______.18.如图,在中,,,分别过点B,C作过点A的直线的垂线BD,CE,若,,则 ______ cm.19.如图,点P是等边内一点,连接PA,PB,PC,PA:PB::4:5,以AC为边作≌,连接,则有以下结论:是等边三角形;是直角三角形;;其中一定正确的是______ 把所有正确答案的序号都填在横线上如图所示,以的斜边BC为一边在的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果,,那么______.三、计算题20.如图是屋架设计图的一部分,其中,点D是斜梁AB的中点,BC、DE垂直于横梁AC,,则立柱BC,DE要多长?21.如图,在中,BD平分,作图:作BC边的垂直平分线分别交BC,BD于点E,用尺规作图法,保留作图痕迹,不要求写作法;在的条件下,连接CF,若,,求的度数.22.在中,,,F为AB延长线上一点,点E在BC上,且.求证:≌;若,求度数.23.如图,在等腰中,,以AB为直径作交边BC于点D,过点D作交AC于点E,延长ED交AB的延长线于点F.求证:DE是的切线;若,,求BF的长.答案和解析【答案】1. B2. D3. D4. B5. A6. D7. C8. C9. D10. B11. 19或21或2312.13. 稳定14. 815.16. 1:或:17. 418. 719.20. 1621. 解:,,,、DE垂直于横梁AC,,又D是AB的中点,,答:立柱BC要4m,DE要2m.22. 解:边的垂直平分线EF如图所示;平分,,,垂直平分BC,,,在中,,,.23. 证明:,,在和中,,≌;,,,,,≌,,.24. 证明:连接OD,,,,,,,又,,是的切线;解:,∽,,即,解得,.。
2018中考数学专题训练应用题(大全5篇)第一篇:2018中考数学专题训练应用题一次方程(组)、分式方程、不等式组应用题中考数学专题训练:1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?2、3、自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:职工甲乙 200 180 月销售件数(件)1800 1700 月工资(元)(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?4、5、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.6、2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?7、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?8、在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.9、为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过 2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?10、李明到离家2.1千米的学校参加联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否12、某学校将周三“阳光体育”项目定为跳绳活动,为在联欢会开始前赶到学校?11、此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?第二篇:一年级数学应用题专题训练一年级数学应用题专题训练1、同学们要做10个灯笼,已做好8个,还要做多少个?2、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?3、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?4、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?5、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?6、小强家有10个苹果,吃了7个,还有多少个?7、汽车总站有13辆汽车,开走了3辆,还有几辆?8、小朋友做剪纸,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?9、马场上有9匹马,又来了5匹,现在马场上有多少匹?10、商店有15把扇,卖去5把,现在有多少把?11、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?12、小青两次画了17个,第一次画了9个,第二次画了多少个?13、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?14、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?15、家有11棵白菜,吃了5棵,还有几棵?16、一条马路两旁各种上48棵树,一共种树多少棵?17、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?18、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?19、学校体育室有6个足球,又买来20个,现在有多少个?20、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅21、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?22、图书室里有20个女同学,有10个男同学,男同学比女同学少多少个?23、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?24、学校有10个足球,16个篮球,足球比篮球少多少个?25、花园里有兰花40盆,菊花60盆,兰花再种多少盆就和菊花同样多?26、妈妈买红扣子18个,白扣子10个,黑扣子8个。
综合题综合题是初中数学中涵盖广、综合性最强的题型,它可以包含初中阶段所学的代数、平面几何、解析几何、统计概率的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力。
前面专题已对代数之方程和不等式综合问题、函数之一次函数和反比例函数综合问题、函数之一次函数、反比例函数和二次函数综合问题、代数和函数综合问题、静态几何之综合问题等有过介绍,本专题主要原创编写代数和平面几何的综合问题、代数和统计概率的综合问题、平面几何和统计概率的综合问题、解析几何和统计概率的综合问题、平面几何和解析几何的综合问题模拟题。
1.已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为。
【答案】4【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系,勾股定理,分类思想的应用。
1.已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。
【答案】解:∵此方程的一个根是1,∴12-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3。
①该直角三角形的两直角边是1、3时,该直角三角形的面积为131322⋅⋅=。
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为112⋅⋅综上所述,该直角三角形的面积为32。
【考点】一元二次方程的解,勾股定理,分类思想的应用。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =330【答案】D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x=1.故选D .2.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 【答案】B【解析】0.056用科学记数法表示为:0.056=-25.610 ,故选B.3.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .1326【答案】C 【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510, 故选:C .点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.4.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°【答案】D 【解析】试题分析:过C 作CD ∥直线m ,∵m ∥n ,∴CD ∥m ∥n ,∴∠DCA=∠FAC=52°,∠α=∠DCB ,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a 的余角是52°.故选D .考点:平行线的性质;余角和补角.5.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .10 【答案】C【解析】 ∵∠ACB=90°,D 为AB 的中点,AB=6,∴CD=12AB=1.又CE=13CD ,∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .6.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-【答案】A【解析】y=(x+2)2的对称轴为x=–2,A 正确;y=2x 2–2的对称轴为x=0,B 错误;y=–2x 2–2的对称轴为x=0,C 错误;y=2(x –2)2的对称轴为x=2,D 错误.故选A .1.7.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.8.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90D.绕原点顺时针旋转90【答案】C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.9.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A .1个B .2个C .3个D .4个【答案】D 【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0,对称轴为x=2b a- <1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac , ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.10.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A .–999×(52+49)=–999×101=–100899B .–999×(52+49–1)=–999×100=–99900C .–999×(52+49+1)=–999×102=–101898D .–999×(52+49–99)=–999×2=–1998【答案】B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B .【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题(本题包括8个小题)11.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.【答案】1.【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星.∴第10个图形有112-1=1个小五角星.12.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元.【答案】3【解析】试题分析:设最大利润为w 元,则w=(x ﹣30)(30﹣x )=﹣(x ﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.14.如图,在平面直角坐标系中,已知点A (﹣4,0)、B (0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.【答案】(1645,125)(806845,125)【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB=2243=5,∴第(2)个三角形的直角顶点的坐标是(445,125);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(806845,125).故答案为:(1645,125);(806845,125)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环. 15.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为【答案】7 2°或144°【解析】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°16.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.【答案】1【解析】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=1°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=1°;故答案是1.17.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.【答案】2或14【解析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.18.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲(结果保留π).【答案】1 33π-【解析】过D点作DF⊥AB于点F.∵AD=1,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=1.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-.故答案为:133π-.三、解答题(本题包括8个小题)19.如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=34,求线段CD的长.【答案】(1)DE与⊙O相切;理由见解析;(2)92.【解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.【详解】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB 是⊙O 直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD ⊥DE∴DE 与⊙O 相切;(2)∵R=5,∴AB=10,在Rt △ABC 中∵tanA=34BC AB = ∴BC=AB•tanA=10×31542=, ∴AC=2222152510()22AB BC +=+=, ∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD ∽△ACB∴CD CB CB CA= ∴CD=2215()922522CB CA ==. 【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.20.如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当1y>2y>0时,x的取值范围.【答案】(1)y1=2x;y2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.21.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?【答案】(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.22.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.【答案】(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.23.如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.【答案】8+63.【解析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH=22BC CH-=63,在Rt△ACH中,tanA=34=CHAH,∴AH=8,∴AC=22AH CH+=10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【答案】20°【解析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE 平分∠FGD ,AB ∥CD ,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG 是△EFH 的外角,∴∠EFB=55°﹣35°=20°.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”思想求方程23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.【答案】 (1)-2,1;(2)x=3;(3)4m.【解析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(2)x =,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-11==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.26.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.【答案】绳索长为20尺,竿长为15尺.【解析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的【答案】C 【解析】试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .2.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A .1201806x x =+B .1201806x x =-C .1201806x x =+D .1201806x x=- 【答案】C【解析】解:因为设小明打字速度为x 个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等, 可列方程得1201806x x =+, 故选C .【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.3.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.4.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【答案】A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B5C.33D25【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=255,故选D.6.4-的相反数是()A.4 B.4-C.14-D.14【答案】A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.7.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【答案】C【解析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.8.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.9.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差【答案】D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-【答案】C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x =+, 故选C . 【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大. 二、填空题(本题包括8个小题)11.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________. 【答案】0<x<4【解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2, 所以,x=4时,y=5,所以,y<5时,x 的取值范围为0<x<4. 故答案为0<x<4. 【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.12.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要_____cm .【答案】1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果. 【详解】解:将长方体展开,连接A 、B′, ∵AA′=1+3+1+3=8(cm ),A′B′=6cm ,根据两点之间线段最短,2286+. 故答案为1.考点:平面展开-最短路径问题.13.对于二次函数y =x 2﹣4x+4,当自变量x 满足a≤x≤3时,函数值y 的取值范围为0≤y≤1,则a 的取值范围为__. 【答案】1≤a≤1【解析】根据y 的取值范围可以求得相应的x 的取值范围. 【详解】解:∵二次函数y =x 1﹣4x+4=(x ﹣1)1, ∴该函数的顶点坐标为(1,0),对称轴为:x =﹣4222b a -=-=, 把y =0代入解析式可得:x =1, 把y =1代入解析式可得:x 1=3,x 1=1,所以函数值y 的取值范围为0≤y≤1时,自变量x 的范围为1≤x≤3, 故可得:1≤a≤1, 故答案为:1≤a≤1. 【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 14.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为 . 【答案】1【解析】试题分析:先求出m 2﹣2m 的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m 2﹣2m ﹣1=0得m 2﹣2m=1,所以,2m 2﹣4m+3=2(m 2﹣2m )+3=2×1+3=1. 故答案为1. 考点:代数式求值.15.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 【答案】1.【解析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1.故答案为1. 【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a+=-,12cx x a=. 16.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =12x x ,连接CE ,CF ,则△CEF 周长的最小值为_____.【答案】22+45【解析】如图作CH ∥BD ,使得CH =EF =22,连接AH 交BD 由F ,则△CEF 的周长最小. 【详解】如图作CH ∥BD ,使得CH =EF =22,连接AH 交BD 由F ,则△CEF 的周长最小. ∵CH =EF ,CH ∥EF ,∴四边形EFHC 是平行四边形, ∴EC =FH , ∵FA =FC ,∴EC+CF =FH+AF =AH , ∵四边形ABCD 是正方形, ∴AC ⊥BD ,∵CH ∥DB , ∴AC ⊥CH , ∴∠ACH =90°, 在Rt △ACH 中,AH =22AC CH +=45,∴△EFC 的周长的最小值=22+45, 故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.【答案】1【解析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=2,3∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.18.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.【答案】3【解析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2 cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=323⨯=(cm)故答案为3.三、解答题(本题包括8个小题)19.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.【答案】(1)证明见解析;(2)阴影部分的面积为8833π-. 【解析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案. 【详解】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA , ∵AC 平分∠BAE , ∴∠OAC=∠CAE ,∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E , ∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD , ∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线; (2)在Rt △AED 中, ∵∠D=30°,AE=6, ∴AD=2AE=12, 在Rt △OCD 中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC , ∴DB=OB=OC=AD=4,DO=8, ∴CD=22228443-=-=DO OC∴S △OCD =43422⋅⨯=CD OC =83, ∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =16×π×OC 2=83π,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=83﹣83π,∴阴影部分的面积为83﹣83π.20.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x (x >10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【答案】(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;△A2B2C2的面积是平方单位.。
综合应用题
学生做题前请先回答以下问题
问题1:应用题的处理思路:
1.理解题意,梳理信息
综合类应用题信息的呈现形式:
①__________——要清楚变量含义、变量间关系;
②__________、__________——明确文字信息与图象、表格中量的对应关系;
③__________——抓取关键词、关键语句、量与量之间关系.
如:×××与×××成正比例;
售价每上涨××元,每个月少卖××件.
④__________
如:自变量、因变量的范围限制,整数、正数等.
2.辨识类型,建立模型
3.求解验证,回归实际
综合应用题(一)
一、单选题(共5道,每道20分)
1.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)m关于x的一次函数表达式为( )
A. B.
C. D.
2.(上接第1题)(2)设销售该产品每天的利润为y元,则y关于x的函数表达式为________;在90天内该产品第_______天的销售利润最大;最大利润是_______元.( )
A.;20;12800
B.;50;10000
C.;40;7200
D.;50;6000
3.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第天生产的粽子数量为只,与满足如下关系式:.
(1)李明第_______天生产的粽子数量为450只.( )
A.9
B.11
C.12
D.15
4.(上接第3题)(2)如图,设第天每只粽子的成本是元,与之间的关系可用图中的函数图象来刻画.若李明第天创造的利润为元,则与之间的函数关系式为_______,第_______天的利润最大,最大值是_______元(利润=出厂价-成本).( )
A.;9;741
B.;15;2679
C.;9;741
D.;12;768
5.(上接第3,4题)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价( )元.
A.1.6
B.0.1
C.1.7
D.0.2
学生做题前请先回答以下问题
问题1:应用题的处理思路:
1.理解题意,梳理信息
综合类应用题信息的呈现形式:
①__________——要清楚变量含义、变量间关系;
②__________、__________——明确文字信息与图象、表格中量的对应关系;
③__________——抓取关键词、关键语句、量与量之间关系.
如:×××与×××成正比例;
售价每上涨××元,每个月少卖××件.
④__________
如:自变量、因变量的范围限制,整数、正数等.
2.辨识类型,建立模型
3.求解验证,回归实际
综合应用题(二)
一、单选题(共4道,每道25分)
1.奇异果是新西兰的特产,其实它的祖籍在中国,又名“猕猴桃”.奇异果除了富含维他命C,A,E以及钾、镁、纤维素外,还含有其他水果中很少见的营养成分—叶酸、胡萝卜素、钙、黄体素、氨基酸,因而被营养师称之为“营养活力的来源”.2014年1月份至6月份某大型超市新西兰品种的奇异果销售价格(元/盒)与月份之间的函数关系如下表:
7月份至12月份奇异果的销售价格(元/盒)与月份x之间满足函数关系式:.该超市去年奇异果销售数量z(盒)与月份之间存在如图所示的变化趋势.若去年该超市奇异果的进价为每盒20元,销售奇异果需要一名超市员工,该员工每月固定人工费用为1500元.
(1)观察题中的表格,用所学过的一次函数、反比例函数以及二次函数的有关知识可知,2014年1月份至6月份销售价格与x之间的函数关系式为________;根据如图所示的变化趋势,去年每月销售数量z与x之间满足的函数关系式为________.( )
A.
B.
C.
D.
2.(上接第1题)(2)去年该超市每月的利润W(元)与月份x之间满足的函数关系式为( )
A.
B.
C.
D.
3.(上接第1,2题)(3)去年该超市的最大月销售利润为( )
A.14400元
B.10400元
C.元
D.12900元
4.(上接第1,2,3题)(4)从今年1月份开始,为了调动员工的积极性,超市决定每卖出一盒奇异果,该员工还可提成2元.奇异果今年的进价为每盒26元,虽然今年1月份奇异果每盒的销售价格比去年12月份增加4元,但1月份销售数量仍比去年12月份增加了0.4a%;2月份销售价格在1月份的基础上增加了0.5a%,由于其他水果陆续上市,2月份的销售量与1月份持平,这样2月份的利润达到了15780元.参考以下数据,可求出整数a 的值为( )
(参考数据:)
A.1
B.25
C.29
D.125
学生做题前请先回答以下问题
问题1:应用题的处理思路:
1.理解题意,梳理信息
综合类应用题信息的呈现形式:
①__________——要清楚变量含义、变量间关系;
②__________、__________——明确文字信息与图象、表格中量的对应关系;
③__________——抓取关键词、关键语句、量与量之间关系.
如:×××与×××成正比例;
售价每上涨××元,每个月少卖××件.
④__________
如:自变量、因变量的范围限制,整数、正数等.
2.辨识类型,建立模型
3.求解验证,回归实际
综合应用题(三)
一、单选题(共5道,每道20分)
1.“低碳生活”作为一种健康、环保、安全的生活方式,受到越来越多人的关注.某公司生产的健身自行车在市场上受到普遍欢迎,在国内市场和国外市场畅销,生产的产品可以全部售出,在国内市场每辆的利润(元)与销量(万辆)的关系如图所示;在国外市场每辆的利润(元)与销量(万辆)的关系为:.
(1)求国内市场的销售总利润(万元)关于销售量(万辆)的函数关系式,并指出自变量的取值范围( )
A. B.
C. D.
2.(上接第1题)(2)该公司的年生产能力为10万辆,请帮助该公司确定国内、国外市场的销量各为多少时,公司的年利润最大?( )
A.国内4万辆,国外6万辆,最大年利润3040万元
B.国内6万辆,国外4万辆,最大年利润3360万元
C.国内万辆,国外万辆,最大年利润3168万元
D.国内6万辆,国外4万辆,最大年利润3160万元
3.某企业生产的一批产品上市后30天内全部售完,调查发现,国内市场的日销售量(吨)与时间t(t为整数,单位:天)的关系如图1所示的抛物线的一部分,而国外市场的日销售量(吨)与时间t(t为整数,单位:天)的关系如图2所示.
(1)求与时间t的函数关系式及自变量t的取值范围,与时间t的函数关系式及自变量t 的取值范围( )
A.
B.
C.
D.
4.(上接第3题)(2)设国内、国外市场的日销售总量为y吨,直接写出y与时间t的函数关系式,当销售第几天时,国内、国外市场的日销售总量最早达到75吨?( )
A.
B.
C.
D.
5.(上接第3题,第4题)(3)判断上市第几天国内、国外市场的日销售总量最大,并求出此时的最大值.( )
A.第25天,最大值为85吨
B.第15天,最大值为85吨
C.第25天,最大值为80吨
D.第20天,最大值为80吨。