海南省海口市第十四中学高中数学 2.1.2指数函数及其性质(1)导学案 新人教A版必修1
- 格式:doc
- 大小:224.00 KB
- 文档页数:4
海南省海口市第十四中学高中数学必修一 导学案 1.2.2函数的表示法(2课时)3.情态与价值 让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重点和难点教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.三.学法 学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.四.学习流程(一)、知识连线1、函数的三种表示法:__________ , __________ , __________ 。
2、什么是分段函数?分段函数表示的是_____个函数3、设A 、B 是两个非空的_____,如果按照某种确定的_________,使对于集合A 中的___________,在集合B 中都有___________和它对应,那么就称对应f :A →B 为_____________的一个映射。
(观察:映射与函数的关系)(二)、知识演练4、阅读分析课文中例3、4、5、6、75、练习课本P23第1,2,4题6、 已知f ( x )=求f {f [ f ( 31 ) ]}的值7、已知f ( x +1)=2x 2-4x ,求f ( x )x 1{2X (0<x <1) (x ≥1)8、设f ( 11+x )=112-x ,则f ( x )= __________ , f ( -3 )= _______9、若f ( x )= a x 3+cx xb +,其中a 、b 、c 都是常数,且f (1)=10,则f ( -1)= _______ 10、画出下列函数的图像:(1)(2)y=|x-2| (3)y=x|x |+x11、设集合A={a ,b ,c },B={1,0},则从A 到B 的映射共有______个12、在给定A →B 的映射f :(x ,y )→(x+y ,x-y )下,集合A 中的元素(2,1)对应着B 中的元素______(三)、知识提升13、函数y=f ( x )的图像与直线x=a 有( )个交点A 、1B 、0C 、至多有1D 、可能有214、设函数f ( x )的定义域为R ,且满足下列两个条件:①存在x 1≠ x 2,使f ( x 1 )≠ f ( x 2 );②对任意x ,y ∈R ,有f ( x+y )= f ( x ) f ( y ),求f ( 0 )的值(四)、归纳总结1、通过本节你学习了哪些知识?x 1y={x (0<x <1) (x ≥1)2、在解决分段函数时应注意什么问题?(五)、作业布置课本第24页习题1.2(A组)第6、9题。
指数函数及其性质教学设计教材:普通高中课程标准实验教科书人教社A 版,数学必修1教学内容:第二章,基本初等函课题:2.1.2指数函数及其性质(第1课时) 教学目标1.知识目标:理解指数函数的概念,初步掌握指数函数的影象和性质2.能力目标:经过定义的引入,影象特点的观察,培养先生的探求发现能力,在学习过程中领会从具体到普通及数形结合的方法3情感目标:经过先生的参与过程,培养他们手脑并用、多思勤练的良好学习习气和勇于探求、锲而不舍的治学精神。
学情分析:先生曾经学习了函数的知识,指数函数是函数知识中重要的一部分内容.但先生普遍基础不好,乃至有些先生放弃数学,对解决一些数学成绩有必然的难度。
针对这类情况,经过教师启发式与课前预习相结合,引导先生自主探求完成本节课的学习,同时浸透一些数学思想、方法,从而更好的掌握本节知识。
教学重点﹑难点重点:指数函数的概念和影象难点:用数形结合的方法从具体到普通地探求﹑概括指数函数的性质 教法:质疑探求,讲练结合。
教具:多媒体演示教学流程设计(一)指数函数概念的构建1.创设情境,引出课题先生朗读棋盘上麦粒故事,引出本节课题。
2.交流讨论,构成概念本节成绩1中函数的解析式x y 2=与成绩2中函数x y )21(=的解析式有甚么特点?设计意图:充实实例,突出底数a 的取值范围,让先生领会到数学来源于消费生活理论。
函数y =2x 、y =)21(x 分别以0<a<1或a>1的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
师生活动:教师提出成绩引导先生把对应关系概括到x a y =的方式,先生考虑归纳概括共同特点3.给出指数函数的概念普通地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R4.剖析概念(1)成绩:为甚么规定底数a 大于零且不等于1?设计意图:教师首先提出成绩:为甚么要规定底数大于0且不等于1呢?这是本节的一个难点,为打破难点,采取讨论的方式,达到互相启发,补充,活跃气氛,激发兴味的目的。
<<指数函数及其性质>>导学案学习目标1.理解指数函数的概念和意义2.根据函数图象探索总结并掌握指数函数的性质3.体会从具体到一般的数学讨论方式及数形结合的思想合作学习一、指数函数的定义(自学教材P54)Rxaaay x定义域为是自变量叫做指数函数,其中且一般地,函数,)1,0(≠>=问题1:”?且规定“为什么指数函数底数要10≠>aa时,当1)1(=a时,当0)2(=a时,当0)3(<axxxxxy yy yy-+== -=⨯=+=3 )5(3)4()2( )3(32)2(13)1(1问题2:你能用自己的话总结指数函数的特点吗?例1:下列函数是指数函数的是()二、指数函数的性质(自学教材P55-56)问题3:你能类比以前研究函数性质的思路,提出研究指数函数性质的方法和内容吗?研究方法: 研究内容:定义域、值域、问题4:如何画指数函数的图象呢?画函数图像通常采用: 、 、 ,有时,也可以通过函数的相关性质画图。
xy 2=xy ⎪⎭⎫ ⎝⎛=21通过图象,分析以下问题:问题6、观察xy 2=、xy ⎪⎭⎫ ⎝⎛=21图象,并说出它们的特征(定义域、值域、单调性、特殊点、奇偶性)问题7、函数x y 2=与xy ⎪⎭⎫ ⎝⎛=21图象有什么关系?能否由xy 2=的图象得到xy ⎪⎭⎫⎝⎛=21的图象?问题8:从特殊到一般,底数a 选取若干不同的值(如3xy =、13xy ⎛⎫= ⎪⎝⎭)函数图象又会如何呢?通过比较,会发现指数函数xa y =(1,0≠>a a 且)的图像和性质如下:问题7:()图象有什么特征?且与11≠>⎪⎭⎫⎝⎛==aaayayxx三、反思小结,观点提炼本节课的目的是掌握指数函数的定义、图象和性质.在理解指数函数的定义的基础上,掌握指数函数的图象和性质是本节课的重点.1.知识点: 、和.2.研究步骤:定义→图象→性质→应用.四、作业精选,巩固提高课本P59习题2.1A组第5,7,8题;。
指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能通过观察图象得出两类指数函数图象的位置关系;在理解函数概念的基础上,能应用所学知识解决简单的数学问题;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;3.情感、态度、价值观:通过本节课自主探究研讨式教学,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。
二、【学情分析】指数函数式在学生系统学习了函数概念,基本掌握函数性质的基础上进行研究的,是学生对函数概念及其性质的第一次应用.教材在之前的学习中给出链各个实际的例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计两个看似简单的问题,但能通过得到超出想象的结果来激发学生学习新知的兴趣和欲望。
三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的应用(1)、指数函数及其性质的应用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。
2.教学难点:底数a的范围讨论,自变量的取值范围以及由函数的图象归纳指数函数的性质。
五、【教学方法】自主预习、合作探究、体验践行。
六、【教学设备】多媒体设备。
七、 【课时安排】第一课时(新知课)。
八、 【教学过程】(一) 创设情境,引出问题(约3分钟)师:观察图片,你能说出这是什么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许诺满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最后一格棋盘上的大米数就是我要的.请问:最后一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】学生会说能.也有说不能的.教师公布数据体会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,显然国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学语言来表述它的含义?生:。
最新人教版数学精品教学资料2.1.2 指数函数及其性质【学习目标】1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系.2.理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点.3.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.4.熟练掌握指数函数的图象和性质.5.会求指数型函数y =ka x (k ∈R ,a >0且a ≠1)的定义域、值域,并能判断其单调性.6.理解指数函数的简单应用模型,培养数学应用意识.【自主梳理】1.函数y =a x (a >0,且a ≠1)叫做__________,其中x 是自变量.因为指数的概念已经扩充到有理数和无理数,所以在底数a >0的前提下,x 可以是任意实数,所以指数函数的定义域为______.2.底数为什么不能是负数、零和1?(1)当a <0时,如y =(-2)x ,当x =21,41,…等时,在实数范围内函数值不存在; (2)当a =0时,若x ≤0,y =0x 无意义;(3)当a =1时,y =1x=1是一个常数,没有讨论的必要.3.在指数函数y =a x (a >0,且a ≠1)的表达式中,a x 的系数必须是1,自变量x 在指数的位置上.例如:函数y =2x ,y =(2)x 是________;但y =2·3x ,y =2x +1等不是指数函数. 答案:1.指数函数R3.指数函数【重点领悟】4.指数函数y =a x (a >0,且a ≠1)的图象和性质:(1)图象(2)性质5.将函数y=2x的图象向右平移一个单位即可得到函数____________的图象.6.设f(x)=a x(a>0且a≠1),则有:①f(0)=______,f(1)=______;②若x≠0,则__________________;③若x≠1,则__________________;④f(x)取遍所有正数当且仅当:________.7.指数函数增长模型:设原有量为N,年平均增长率为p,则经过时间x年后的总量y=__________.答案:5.y=2x-16.①1 a②f(x)>0且f(x)≠1③f(x)>0且f(x)≠a④x∈R7.N(1+p)x y【探究提升】1).如何判断指数函数?指数函数的定义域是什么?解析:形如y=x a(a>0且a≠1)的函数叫指数函数,它是一种形式定义.因为a>0,x是任意一个实数时,x a是确定的实数,所以函数的定义域为实数集R.2).指数函数中,规定底数a大于零且不等于1的理由?解析:①如果a=0,②如果a<0,比如y=()x4-,这里对于x=41,x=21,…,在实数范围内函数值不存在.③如果a=1,比如y=x a=1,是一个常量,对他就没有研究必要.为避免上述情况,所以规定a>0且a≠1.3).指数函数的图象变化与底数大小的关系是什么?解析:底数越大,函数的图象在y轴右侧部分越远离x轴,此性质可通过x=1的函数值大小去理解.4).指数函数y=x2的函数值域为[1,+∞),则x的范围是多少?[0,+∞)5).指数函数y=x2的函数值能否为负值?不能【学法引领】【例1】函数y=(a-2)2a x是指数函数,则( ) A.a=1或a=3B.a=1C.a=3D.a>0且a≠1解析:由指数函数定义知2(2)1,0,1,aa a⎧-=⎨>≠⎩且所以解得a=3.答案:C【例2】下列函数中是指数函数的是__________(填序号).①yx;②y=2x-1;③y=π2x⎛⎫⎪⎝⎭;④y=x x;⑤y=13x-;⑥y=13x.解析:答案:③【例3】函数y=1)x在R上是( )A.增函数B.奇函数C.偶函数D.减函数解析:由于01<1,所以函数y=1)x在R上是减函数.因为f(-1)=1)-1 f(1)1,则f(-1)≠f(1),且f(-1)≠-f(1),所以函数y=1)x不具有奇偶性.答案:D【例4】如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d 与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c解析:(方法一)在①②中底数小于1且大于零,在y轴右边,底数越小,图象越靠近x 轴,故有b<a.在③④中底数大于1,底数越大,图象越靠近y轴,故有d<c.故选B.(方法二)设x=1与①②③④的图象分别交于点A,B,C,D,如图,则其坐标依次为(1,a),(1,b),(1,c),(1,d),由图象观察可得c>d>1>a>b.故选B.答案:B析规律底数的变化对函数图象的影响当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于y轴,当底数大于0小于1时,图象下降,底数越小,图象向下越靠近于x轴,简称x>0时,底大图象高.【例5】某乡镇现在人均一年占有粮食360 kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y kg粮食,求y关于x的函数解析式.分析:在此增长模型中,基数是360,人口的平均增长率为1.2%,粮食总产量的平均增长率为4%,由此可列出1,2,3,…年后的人均一年占有量,观察得到所求的函数解析式.解:设该乡镇现在人口数量为M,则该乡镇现在一年的粮食总产量为360M kg.1年后,该乡镇粮食总产量为360M(1+4%) kg,人口数量为M(1+1.2%),则人均一年占有粮食为360(14%)(1 1.2%)MM++kg,2年后,人均一年占有粮食为22360(14%)(1 1.2%)MM++kg,……x年后,人均一年占有粮食为y=360(14%)(1 1.2%)xxMM++kg,即所求函数解析式为1.043601.012xy⎛⎫= ⎪⎝⎭(x∈N*).点技巧指数增长模型的计算公式在实际问题中,经常会遇到指数增长模型:设基数为N,平均增长率为p,则对于经过时间x后的总量y可以用y=N(1+p)x来表示.这是非常有用的函数模型.【巩固训练】1.函数f(x)=1-2x的定义域是( )A.(-∞,0) B.[0,+∞)C.(-∞,0] D.(-∞,+∞)解析:由1-2x≥0,得2x≤1,由指数函数y=2x的性质可知x≤0.答案:C2.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个,……每天分裂一次,现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器的一半时需要的天数是( )A.5天B.6天C.8天D.9天答案:D3.若0<a<1,b<-2,则函数y=a x+b的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A3.函数f(x)=a x(a>0且a≠1),对于任意实数x,y都有( )A.f(xy)=f(x)f(y)B.f(xy)=f(x)+f(y)C.f(x+y)=f(x)f(y)D.f(x+y)=f(x)+f(y)解析:f(x+y)=a x+y=a x a y=f(x)f(y).故选C.答案:C4.将函数y=2x的图象先向右平移1个单位,再向上平移2个单位可得到函数__________的图象.答案:y=2x-1+25.函数y =⎝ ⎛⎭⎪⎫13x -2x 在区间[-1, 1]上的最大值为________.解析:∵y =⎝ ⎛⎭⎪⎫13x -2x 在区间[-1,1]上是单调减函数,∴当x =-1时,有最大值为52. 答案:52【知识网络】1.根式的定义:n a 叫做根式 n 叫做根指数,a 叫做被开方数.2.根式的性质:(1)当n 为奇数时,a a a n n n n ==)(,(R a ∈);(2)当n 为偶数时,||a a n n =,(R a ∈); a a n n =)(,(0≥a ).注意:当n 为偶数时,n a 包含两个隐含条件①0≥a ;②0≥n a .3.根式与指数幂的转化:(1)分数指数幂:n m n m a a=; (2)0指数幂:10=a ,)0(≠a ;(3)负指数幂:nn a a 1=-,)0(≠a . 4.幂运算法则: (1)s r s r aa a +=⋅,s r s r a a a -=÷; (2)sr s r a a ⋅=)(,s r s r a a =; (3)r rr ba b a =)(. 【学习反思】1.熟记整数幂的运算性质.2.理解n 次方根与根式的概念.3.掌握根式运算性质.进行指数幂的运算时,一般将指数化为正指数,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.。
必修1高一数学第一章§ 2.1.2 指数函数及其性质一、学习目标1.会判断给定的函数是不是指数函数;2.会画指数函数的图象;会从图象中得出指数函数的性质; 二、学习重点难点学习重点:指数函数的图象和性质;学习难点:从指数函数的图象得出指数函数的性质以及对底数a 的讨论。
三、教学过程:(一)引入课题 1. 阅读课本48页问题1和问题2,回答问题:问题(1)中时间x 与GDP 值中的*1.073(,20)xy x N x =∈≤,问题(2)中的t 和14C -含量()15730573011022tt P t ⎡⎤⎛⎫⎛⎫⎢⎥==≥⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,请问这两个函数有什么共同特征? 小结:两个关系式中底数都是正数,自变量为指数,即都可用()0,1xy aa a =>≠且表示。
(二)新课教学(Ⅰ)指数函数的概念: ,其中x 是自变量,函数的定义域是R .注:(1)规定0,1a a >≠且?(2)函数)10(≠>=a a a y x 且中,x a 前面的系数为1. 变式训练1:指出下列哪些是指数函数?( )(1)x y 4=;(2)4x y =;(3)x y 4-=;(4)x y )4(-=;(5)x y π=;(6)24x y =;(7)xx y =;(8))121()12(≠>-=a a a y x 且. (Ⅱ)指数函数的图象和性质研究:1.在同一坐标系中画出下列函数的图象:(2x y =,x )21(y =;3xy =,13xy ⎛⎫= ⎪⎝⎭,x 5y =2.从画出的图象中你能发现函数x2y =的图象和函数x )21(y =的图象有什么关系?可否利用x 2y =的图象画出x )21(y =的图象?3.从画出的图象(x 2y =、x 3y =和x5y =)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?例1:已知指数函数的图象过点(3,π),求(0),(1),(3)f f f -的值.变式训练:若指数函数的图象经过点()3,27,则a 的值为例2:比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-; (3)3.07.1,1.39.0.变式训练:比较下列各题中两个值的大小:(1)0.60.522,; (2)2 1.50.90.9--,; (3)0.5 2.12.10.5,例3:求下列函数的定义域、值域:⑴114.0-=x y ⑵153-=x y ⑶12+=xy解(1)由x-1≠0得x ≠1, 所以,所求函数定义域为{x|x ≠1}由 ,得y ≠1,所以,所求函数值域为{y|y>0且y ≠1}说明:对于值域的求解,可以令11t x =-,考察指数函数y=t 4.0,并结合图象直观地得到,以下两题可作类似处理。
高中数学 2.1.2-1指数函数及其性质导学案 新人教A 版必修1学习目标:1、理解指数函数的定义 2、掌握指数函数的图象和性质 学习重点:指数函数性质的应用 学习过程:一、情景体验、获得新知1、一张纸对折1次,厚度变为原来的2倍;对折2次,厚度变为原来的 倍;对折3次,厚度变为原来的2倍;对折4次,厚度变为原来的____ 倍;对折次,厚度变为原来的______倍。
2、指数函数的概念____________________ 练习:1、下列函数中是指数函数的是________ ① ② ③ ④ ⑤ ⑥2、函数是指数函数,则a=_________二、指数函数的图象与性质1、图象:在直角坐标系中作出下列函数的图象(1)(2)2、指数函数的图象和性质练习:1、 若a>1,-1<b<0,则函数的图象一定在第_____象限 2、 比较大小(1) ,(2),(3) ,一、选择题(每小题5分,共20分)1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 22.若⎝ ⎛⎭⎪⎫142a +1<⎝ ⎛⎭⎪⎫143-2a,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B.()1,+∞C .(-∞,1) D.⎝⎛⎭⎪⎫-∞,123.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)5.已知集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x +1<4,x∈Z,则M∩N 等于( )A .{-1,1}B .{-1}C .{0}D .{-1,0} 6.设14<⎝ ⎛⎭⎪⎫14b <⎝ ⎛⎭⎪⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a二、填空题(每小题5分,共10分)7.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =____8.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.9.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.10.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.三、解答题(每小题10分,共20分)11.根据下列条件确定实数x 的取值范围:a<⎝ ⎛⎭⎪⎫1a 1-2x(a >0且a ≠1).12.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性...13.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.。
2.1.2指数函数及其性质(2个课时)一. 教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质. 二.重、难点重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.第一课时一.教学设想:1. 情境设置①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)xy x x =∈≤与问题(2)]t 51301中时间t和C-14含量P的对应关系P=[()2,请问这两个函数有什么共同特征.②这两个函数有什么共同特征157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).二.讲授新课 指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2xy =-(4)xy π= (5)2y x = (6)24y x = (7)xy x = (8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足(0,1)xy a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)xy a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50- 1.00-0.00 0.50 1.00 1.50 2.002x y =18-1412124再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00-1.50- 1.00-0.00 1.00 1.50 2.00 2.501()2x y =14121 2 4- --- - ---------xyy =2x-12x y ⎛⎫= ⎪⎝⎭ --- ---------xy 0从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.8642-2-4-6-8-5510问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征.8642-2-4-6-8-10-5510问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.图象特征函数性质a >1 0<a <1a >1 0<a <1向x 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数函数图象都在x 轴上方函数的值域为R +3x y = 5xy = 13xy ⎛⎫= ⎪⎝⎭15xy ⎛⎫= ⎪⎝⎭(1)x y a a =>(01)x y a a =<<函数图象都过定点(0,1) 0a =1自左向右, 图象逐渐上升 自左向右, 图象逐渐下降 增函数减函数在第一象限内的图 象纵坐标都大于1 在第一象限内的图 象纵坐标都小于1 x >0,x a >1 x >0,x a <1 在第二象限内的图 象纵坐标都小于1在第二象限内的图 象纵坐标都大于1x <0,x a <1x <0,x a >15.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:(P 56 例6)已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,xf f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.提问:要求出指数函数,需要几个条件? 课堂练习:P 58 练习:第1,2,3题补充练习:1、函数1()()2xf x =的定义域和值域分别是多少? 2、当[1,1],()32xx f x ∈-=-时函数的值域是多少? 解(1),0x R y ∈> (2)(-53,1)例2:求下列函数的定义域: (1)442x y -= (2)||2()3x y =分析:类为(1,0)xy a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .3.归纳小结作业:P 59 习题2.1 A 组第5、6题1、理解指数函数(0),101xy a a a a =>><<注意与两种情况。
2.1.2指数函数及其性质(1)
★学习目标
1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;
2. 理解指数函数的概念和意义;
3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). ★学习过程 一、新课导学
探究任务一:指数函数模型思想及指数函数概念
实例:细胞分裂时,第 1 次由1个分裂成 2 个,第 2 次由2个分裂成 4 个,第 3 次由4个分裂成 8 个,如此下去,如果第 x 次分裂得到 y 个细胞,那么细胞个数 y 与次数x 的关系式是什么?
_________________________________.
【讨论】:(1)这个关系式是否构成函数?
(2)是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?
新知:一般地,函数)1,0(≠>=a a a y x
且叫做________函数,其中x 是自变量,函数的定义域是R .
反思1:为什么规定10≠>a a 且呢?否则会出现什么情况呢? 【讨论】:则若,0=a _______________________________________. 则若,0<a _______________________________________.
则若,1=a _______________________________________.
反思2:函数x
y 32⨯=是指数函数吗? 《学生活动》下列函数哪些是指数函数?
(1)x
y 3= (2)x
y 1
2= (3)x y )2(-= (4)13+=x
y
(5)x y 23= (6)x y π= (7)2
4x y = (8))12
1
()12(≠>
-=a a a y x
且 ____________________________.
探究任务二:指数函数的图象和性质
引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?
回顾:
(1)研究方法:画出函数图象,结合图象研究函数性质.
(2)研究内容:定义域、值域、特殊点、单调性、最大(小)值等等.
《作图》:在同一坐标系中画出下列函数图象:
x
y 2= x
y )
1(=
《练习》在上面的坐标系中继续作出x
x
y y )3
1(3==与的图像
新知:根据图象归纳指数函数的性质
《巩固训练》
1. 函数x
a y =中,无论10,0<<>a a 还是,都经过______________. 2. 指数函数x
a y =中,x a 和的取值范围分别是_________________________. 3. 若函数x a y )12(+=是减函数,则a 的取值范围是__________________. 二、典型例题
例1:求下列函数的定义域:
(1)2
3-=x y (2)x y 1
)2
1(=
例2:已知指数函数x
a x f =)((1,0≠>a a 且)的图象经过点),3(π,求)3(),1(),0(-f f f 的值.
例3:比较下列各题中两个值的大小: (1) 35
.27.1 ,7
.1 (2) 2.01
.08.0 ,8.0--
(3) 1.33
.09.0 ,7
.1
(4) 比较2
13
1a a 与的大小,)1,0(≠>a a 且
《练习》
1. 求下列函数的定义域: (1)x
y -=32
(2)1
23
+=x y (3)x
y 5)2
1(= (4)x y 1
7.0=
2. 比较下列各题中两个数的大小: (1) 7
.08
.03 ,3 (2) 1.01
.075.0 ,75
.0-
(3) 5
.37
.201.1 ,01.1
(4)已知的大小关系是则c b a c b a ,,,2.1,8.0,8.08.09.07
.0===_____________________.
《课后探究》 1. 求函数1
5
11-=
-x
x y 的定义域?
2. 在上,
],[n m )1,0()(≠>=a a a x f x
且的值域?。