高中物理清华学生笔记详解易错题集《超详》
- 格式:doc
- 大小:1.85 MB
- 文档页数:231
北京市海淀区清华大学附属中学高中物理电磁感应现象压轴题易错题一、高中物理解题方法:电磁感应现象的两类情况1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。
现从静止释放杆ab ,测得最大速度为v M ,改变电阻箱的阻值R ,得到v M 与R 之间的关系如图乙所示。
已知导轨间距为L =2m ,重力加速度g =10m/s 2,轨道足够长且电阻不计。
选修3—3一、物体内能理解误区理解①物体的体积越大,分子是能不一定越大,如0 ℃的水结成0 ℃的冰后体积变大,但是分子势能缺减小了。
②理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体的内能只与温度有关.③内能是对物体的大量分子而言,不存在某个分子内能的说法。
二、微观量的估算步骤①建立合适的物理模型:将题给的现象突出主要因素,忽略次要因素,用熟悉的理想模型来模拟实际的物理现象。
如常把液体分子模拟为球形,固体分子模拟为小立方体。
②根据建立的理想物理模型寻找适当的物理规律,将题中有关条件串联起来.③挖掘赖以进行估算的隐含条件。
④合理处理数据:估算的目的是获得对数量级的认识,因此为避免繁杂的运算,许多常数常取一位有效数字,最后结果也可只取一位有效数字。
有些题甚至要求最后结果的数量级正确即可。
三、理想气体三大定律比较项目(等压变化)数学表达式pV=C或p1V1=p2V2pT=C或11pT=22pT(体积不变)TV=C或11VT=22VT同一气体的图线微观解释一定质量的理想气体温度不变,分子平均动能一定,当体积减小时,分子密集程度增大,气体压强就增大一定质量的理想气体,体积保持不变时,分子密集程度一定,当温度升高时,分子平均动能增大,气体压强增大一定质量的理想气体,温度升高,分子平均动能增大,只有气体体积同时增大,分子密集程度减小,才能保持压强不变四、力学角度计算压强的方法1.平衡状态下气体压强的求法①参考液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.②力平衡法:选与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。
③等压面法:在连通器中,同一液柱(中间不间断)同一深度处压强相等。
2.加速运动系统中封闭气体压强的求法选与气体接触的液柱或活塞为研究对象,进行受力分析,利用牛顿第二定律列方程求解。
高二物理错题笔记易错题型一:静电场【典型例题】1.在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=4×10-6C,Q2=-4×10-6C,求它们在三角形另一顶点C处所产生的电场强度。
【错解】C点的电场强度为Q1,Q2各自产生的场强之和,由点电荷的场强公式,∴E=E1+E2=0【易错分析】认为C点处的场强是Q1,Q2两点电荷分别在C点的场强的代数和。
【正确答案】由场强公式得:C点的场强为E1,E2的矢量和,由图8-1可知,E,E1,E2组成一个等边三角形,大小相同,∴E2= 4×105(N/C)方向与AB边平行。
【解析】计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。
2. 如图8-4所示,Q A=3×10-8C,Q B=-3×10-8C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。
(两带电小球可看作质点)【错解】以A为研究对象,B对A的库仑力和外电场对A的电场力相等,AB中点总场强E总=E+E A+E B=E外=1.8×105(N/C),方向向左。
【易错分析】在中学阶段一般不将QB的电性符号代入公式中计算。
在求合场强时,应该对每一个场做方向分析,然后用矢量叠加来判定合场强方向,【正确答案】以A 为研究对象,B对A的库仑力和外电场对A的电场力平衡,E外方向与A受到的B的库仑力方向相反,方向向左。
在AB的连线中点处E A,E B 的方向均向右,设向右为正方向。
则有E总=E A+E B-E外。
【解析】本题检查考生的空间想象能力。
对于大多数同学来说,最可靠的办法是:按照题意作出A,B的受力图。
从A,B的电性判断点电荷A,B的场强方向,从A或B的受力判断外加匀强电场的方向。
在求合场强的方向时,在A,B的连线中点处画出每一个场强的方向,最后再计算。
北京市海淀区清华大学附属中学高中物理质谱仪和磁流体发电机压轴题易错题一、高中物理解题方法:质谱仪和磁流体发电机1.如图所示,两平行金属板间电势差为U ,板间电场可视为匀强电场,金属板下方有一磁感应强度为B 的匀强磁场.带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求: (1)粒子从电场射出时速度v 的大小; (2)粒子在磁场中做匀速圆周运动的半径R .【答案】(12Uqm212mU B q 【解析】 【详解】(1)设带电粒子射出电场时的速度为v ,由动能定理可得:212qU mv =解得粒子射出速度2qUv m=(2)带电粒子在磁场中做匀速圆周运动,由牛顿第二定律可得:2v qvB m R=可得带电粒子圆周运动的半径212mv m Uq mU R qB qB m B q===2.如图所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场;金属板下方有一磁感应强度为B 的匀强磁场,带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动,忽略重力的影响,求:(1)匀强电场场强E 的大小; (2)粒子从电场射出时速度ν的大小; (3)粒子在磁场中做匀速圆周运动的半径R 。
【答案】(1)UE d=;(2)2Uqv m=3)12mU R B qd =【解析】 【详解】(1)根据匀强电场电势差和电场强度的关系得,匀强电场场强E 的大小U E d=(2)设带电粒子出电场时速度为v ,由动能定理得212Uq mv =解得粒子从电场射出时速度ν的大小2Uqv m=(3)带电粒子在磁场中做匀速圆周运动,由牛顿第二定律得2mv Bqv R= 联立得粒子在磁场中做匀速圆周运动的半径12mUR B q=3.如图所示,两平行金属板P 、Q 水平放置,板间存在电场强度为E 的匀强电场和磁感应强度为B 1的匀强磁场.一个带正电的粒子在两板间沿虚线所示路径做匀速直线运动.粒子通过两平行板后从O 点进入另一磁感应强度为B 2的匀强磁场中,在洛仑兹力的作用下,粒子做匀速圆周运动,经过半个圆周后打在挡板MN 上的A 点.测得O 、A 两点间的距离为L .不计粒子重力.(1)试判断P、Q间的磁场方向;(2)求粒子做匀速直线运动的速度大小v;(3)求粒子的电荷量与质量之比qm.【答案】(1)磁场方向垂直纸面向里.(2)1EvB=(3)122q Em B B L=【解析】(1)粒子做匀速运动,电场力和洛伦兹力平衡(如图所示).根据左手定则知,磁场方向垂直纸面向里.(2)电场力和洛伦兹力平衡,qE=qvB1,解得v=1EB.(3)带电粒子在磁场中做匀速圆周运动,qvB2=m2vr,又L=2r,解得122q Em LB B=.点睛:本题考查了带电粒子在复合场中的运动,解决本题的关键知道粒子在两金属板间受电场力和洛伦兹力平衡,以及知道在匀强磁场中靠洛伦兹力提供向心力,掌握轨道半径公式.4.质谱仪原理如图所示,a为粒子加速器,电压为U1,b为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d,c为偏转分离器。
第二单元:牛顿定律[内容和方法]本单元内容包括力的概念及其计算方法,重力、弹力、摩擦力的概念及其计算,牛顿运动定律,物体的平衡,失重和超重等概念和规律。
其中重点内容重力、弹力和摩擦力在牛顿第二定律中的应用,这其中要求学生要能够建立起正确的“运动和力的关系”。
因此,深刻理解牛顿第一定律,则是本单元中运用牛顿第二定律解决具体的物理问题的基础。
本单元中所涉及到的基本方法有:力的分解与合成的平行四边形法则,这是所有矢量进行加、减法运算过程的通用法则;运用牛顿第二定律解决具体实际问题时,常需要将某一个物体从众多其他物体中隔离出来进行受力分析的“隔离法”,隔离法是分析物体受力情况的基础,而对物体的受力情况进行分析又是应用牛顿第二定律的基础。
因此,这种从复杂的对象中隔离出某一孤立的物体进行研究的方法,在本单元中便显得十分重要。
[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:对物体受力情况不能进行正确的分析,其原因通常出现在对弹力和摩擦力的分析与计算方面,特别是对摩擦力(尤其是对静摩擦力)的分析;对运动和力的关系不能准确地把握,如在运用牛顿第二定律和运动学公式解决问题时,常表现出用矢量公式计算时出现正、负号的错误,其本质原因就是对运动和力的关系没能正确掌握,误以为物体受到什么方向的合外力,则物体就向那个方向运动。
例1、如图2- 1所示,一木块放在水平桌面上,在水平方向上共受三个力,F i, F2和摩擦力,处于静止状态。
其中F I=10N , F2=2N。
若撤去力F i则木块在水平方向受到的合外力为()A. 10N向左B.6N向右C.2N向左D.0【错解分析】错解:木块在三个力作用下保持静止。
当撤去F i后,另外两个力的合力与撤去力大小相等,方向相反。
故A正确。
造成上述错解的原因是不加分析生搬硬套运用“物体在几个力作用下处于平衡状态,如果某时刻去掉一个力,则其他几个力的合力大小等于去掉这个力的大小,方向与这个力的方向相反”的结论的结果。
2020年高考总复习物理易错题知识点总结(考前必备)
2020年高考虽然延期了一个月,但是备考的节奏还是需要加强。
本文提供了高中物理总复习易错题知识点总结。
该总结以知识树的形势进行了总结。
同学们可以通过对高考中物理易错知识点的熟悉进一步的解决知识欠缺的问题。
熟悉了易错的知识点,那么就会减少自己的错题,在高考中增加自己的分数。
在高考前能够总结形成这样的知识总结可以提纲挈领的帮助复习知识。
按照章节知识点的方式来总结,可以就只看这个知识总结图快速的把对应的知识复习一遍。
每一科其实都是可以参照这样的方式或思维导图的方式来总结形成自己的知识树。
有了这个知识树你就可以把整本书的知识比较有效果的记忆在大脑中。
提供这样的知识点总结图也是希望同学们可以自己总结形成每科的知识树。
形成知识树的过程是进一步熟练掌握知识的过程。
如果可以把知识树给做出来,那么对知识的掌握程度也是比较熟悉的啦。
自己可以形成知识点树也是便于我们大脑去搜索题目对应知识点,把题目跟知识点联合起来,也就可以帮助我们准确的理解题目找到解题方法,从而正确的做出题目。
本文只展示了图片,需要完整电子档打印的朋友根据说明来获取。
下载方法:
关注@改错集点击改错集头像选择私信,发生私信内容:2020高考物理易错知识总结即可自动获取打印电子档。
高考物理复习资料:高中物理易错点汇总高中物理的156条易错点,都在这里了,可以收藏慢慢看!(一)1.大的物体不一定不能看成质点,小的物体不一定能看成质点。
2.平动的物体不一定能看成质点,转动的物体不一定不能看成质点。
3.参考系不一定是不动的,只是假定为不动的物体。
4.选择不同的参考系物体运动情况可能不同,但也可能相同。
5.在时间轴上n秒时指的是n秒末。
第n秒指的是一段时间,是第n个1秒。
第n秒末和第n+1秒初是同一时刻。
6.忽视位移的矢量性,只强调大小而忽视方向。
7.物体做直线运动时,位移的大小不一定等于路程。
8.位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。
9.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
10.使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
11.释放物体前,应使物体停在靠近打点计时器的位置。
12.使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
13.“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。
平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。
14.着重理解速度的矢量性。
有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。
(二)15.平均速度不是速度的平均。
16.平均速率不是平均速度的大小。
17.物体的速度大,其加速度不一定大。
18.物体的速度为零时,其加速度不一定为零。
19.物体的速度变化大,其加速度不一定大。
20.加速度的正、负仅表示方向,不表示大小。
21.物体的加速度为负值,物体不一定做减速运动。
电场易错点一、对静电场的基本概念和性质理解不透彻对静电场基本概念和性质的理解易出现以下错误:误区01 场强越大的地方,电势就越高;场强的正、负和电势的正、负含义相同。
不清楚场强的正、负表示方向,而电势的正、负表示大小。
误区02 正、负电荷在电势越高的地方,电势能都越大。
误区03 处于静电平衡状态的导体内部场强处处为零,电势也处处为零。
误区04 沿处于静电平衡状态的导体表面移动电荷时,电场力可以做功。
水平面上有一边长为L的正方形,其a、b、c三个顶点上分别固定了三个等量的正点电荷Q,将一个电荷量为+q的点电荷分别放在正方形中心点O点和正方形的另一个顶点d点处,两处相比,下列说法正确的是A.q在d点所受的电场力较大B.q在d点所具有的电势能较大C.d点的电势高于O点的电势D.q在两点所受的电场力方向相同【错因分析】对于场强的比较,不少同学由对称性直接得出a 、b 、c 、d 四点的相关物理量的关系,而忽视了题中给出的是a 、b 、c 三个顶点上分别固定了三个等量的正点电荷Q ,并不是在O 点固定一个点电荷。
【正确解析】由点电荷的电场及场的叠加可知,在O 点b 、c 两处的点电荷产生的电场相互抵消,O 点处的场强等于a 处点电荷所产生的场强,即02222()2kQ kQ E L L ==,方向由a 指向O ;而在d 点处221cos 452(2)22d kQ kQ kQ E L L L =︒⨯+=+,方向也沿aO 方向,选项A 错误,选项D 正确。
ad 是b 、c 两处点电荷连线的中垂线,由两等量正电荷的电场中电势分布可知在b 、c 两点电荷的电场中O 点电势高于d 点电势,而在点电荷a 的电场中O 点电势也高于d 点电势,再由电势叠加可知O 点电势高,而正电荷在电势越高处电势能越大,选项B 、C 皆错误.1.(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示.c 是两负电荷连线的中点,d 点在正电荷的正上方,c 、d 到正电荷的距离相等,则( )A .a 点的电场强度比b 点的大B .a 点的电势比b 点的高C.c点的电场强度比d点的大D.c点的电势比d点的低2.如图所示,a、b是两个点电荷,它们的电荷量分别为Q1、Q2,MN是ab连线的中垂线,P是中垂线上的一点.下列哪种情况能使P点电场强度方向指向MN的右侧A.Q1、Q2都是正电荷,且Q1<Q2B.Q1是正电荷,Q2是负电荷,且Q1>|Q2|C.Q1是负电荷,Q2是正电荷,且|Q1|〈Q2D.Q1、Q2都是负电荷,且|Q1|>|Q2|二、对影响库仑力大小的因素理解不透彻对库仑定律的应用易出现以下错误:误区01 库仑定律的适用条件是真空中的点电荷,对不能看成点电荷的带电体误用库仑定律公式计算;误区02 对不能看成点电荷的均匀带电球体也可以使用库仑定律计算库仑力的大小,但易错误地将球体表面的距离当作r代入,实际上r应为球心距离;误区03 计算库仑力时,弄错电荷量的正负号,根据正负号确定库仑力的方向。
专题二:相互作用易错综述1.在弹力的有无判断和大小计算中易出现的错误有(1)易错误地将跨过光滑滑轮、杆、挂钩的同一段绳当两段绳处理,认为张力不同;易错误地将跨过不光滑滑轮、杆、挂钩的绳子当成同一段绳子处理,认为张力处处相等。
(2)易错误地将平衡条件下弹力的大小推广到一般情况下。
(3)易错误地认为任何情况下杆的弹力一定沿杆。
注意:杆的弹力可以沿杆的方向,也可以不沿杆的方向。
对于一端有铰链的轻杆,其提供的弹力方向一定沿杆着轻杆的方向;对于一端“插入”墙壁或固定的轻杆,只能根据具体情况进行受力分析,根据平衡条件或牛顿第二定律来确定杆中的弹力的大小和方向。
2.在摩擦力的有无判断及大小计算中易出现的错误有(1)易误认为区分静摩擦力和滑动摩擦力的标准是“动”和“静”,而不是接触面之间的“相对运动”和“相对运动趋势”。
(2)易误认为摩擦力总是阻碍物体的运动。
(3)易误认为摩擦力的方向一定与物体运动的方向在同一直线上。
(4)易误认为接触面越大或速度越大,摩擦力越大。
(5)易错误地直接利用公式f N F F μ=计算摩擦力的大小而不区分静摩擦力和滑动摩擦力。
注意:摩擦力的大小不一定与正压力成正比,由滑动摩擦力的计算公式f N F F μ=可知滑动摩擦力的大小与正压力成正比;最大静摩擦力的大小也与正压力成正比;而静摩擦力的大小与正压力没有直接联系。
3.在解答平衡问题中易出现以下错误(1)误认为速度为零时,加速度一定为零,故合外力为零,物体一定处于平衡状态; (2)误认为物体处于平衡状态时,合外力为零,速度也一定为零;(3)定性分析多个力的动态平衡时常采用图解法,但有时易误认为“变量”是“不变量”。
注意:处于平衡状态的物体,若再对其施加一个力F 后而物体仍然处于平衡状态,则必定哟啊引起运来所受力中的被动力发生变化,以保持合力为零,常见典型的被动力为摩擦力。
所施加的力F 若为动力,则力F 必须是滑动摩擦力同时增大,因此F 应斜向下,这样,自然会联想到若力F 为阻力,则力F 必须同时使滑动摩擦力减小,因此力F 斜向上。
机械能守恒定律一、对功的判断和计算易出现以下错误1.对功的概念理解不透,误认为有力,有位移就有功;2.判断功的正负可根据力和位移的夹角,也可根据力和速度的夹角,还可根据能量的变化,常错误地认为某一力做的功的大小与物体受到的其他力的大小有关,与物体的运动状态有关;3.易误认为摩擦力总是做负功,一对滑动摩擦力大小相等,方向相反,做的总功为零;4.功的计算公式中,s为力的作用点移动的位移,它是一个相对量,与参考系选取有关,通常都取地球为参考系,这一点也是学生常常忽视的,要引起注意.二、求解变力功求解变力做功时,容易把变力当成恒力来计算。
直接求解变力做功通常都比较复杂,但若通过转换研究对象,有时可转化为恒力做功,然后用W=Fs cos α求解.此法常常应用于轻绳通过定滑轮拉物体的问题中,采用本法解题的关键是根据题设情景,发现将变力转化为恒力的等效替代关系,然后再根据几何知识求出恒力的位移大小,从而求出变力所做的功。
三、对于机车启动过程的求解1.易误将机车的功率当成合力功率;2.易误将匀加速启动过程的末速度当成机车能达到的最大速度;3.机车启动分两种方式,而以恒定加速度启动过程又分为两个阶段,因为有时易将P=Fv中的常量和变量弄混。
四、对动能定理的理解和应用易出现以下错误1.易误将相对其他非惯性系的速度当作对地速度代入动能定理公式中;2.动能定理中的功是合力做的功,易误将某个力的功当作合力的功或者将研究对象对外做的功也算入总功之中;3.易错误地将动能定理当成矢量式,列分方向的动能定理;4.利用动能定理解决多过程问题时,常常使合力做功对应的过程和初末动能对应的过程不统一造成错误.五、重力势能的相对性与其变化的绝对性理解1.重力势能是一个相对量,它的参数值与参考平面的选择有关。
在参考平面上,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值.2.重力势能变化的不变性(绝对性)尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量却与参考平面的选择无关,这体现了它的不变性(绝对性)。
第一章质点的运动错题集一、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。
在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。
二、基本方法本章中所涉及到的基本方法有:利用运动合成与分解的方法研究平抛运动的问题,这是将复杂的问题利用分解的方法将其划分为若干个简单问题的基本方法;利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。
这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。
因此,在学习过程中要特别加以体会。
三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。
例1汽车以10 m/s的速度行使5分钟后突然刹车。
如刹车过程是做匀变速运动,加速度大小为5m/s2,则刹车后3秒钟内汽车所走的距离是多少?【错解】因为汽车刹车过程做匀减速直线运动,初速v=10 m/s加速度【错解原因】出现以上错误有两个原因。
一是对刹车的物理过程不清楚。
当速度减为零时,车与地面无相对运动,滑动摩擦力变为零。
二是对位移公式的物理意义理解不深刻。
位移S对应时间t,这段时间内a必须存在,而当a不存在时,求出的位移则无意义。
由于第一点的不理解以致认为a永远地存在;由于第二点的不理解以致有思考a什么时候不存在。
【分析解答】依题意画出运动草图1-1。
设经时间t1速度减为零。
据匀减速直线运动速度公式v1=v0-at则有0=10-5t解得t=2S由于汽车在2S时【评析】物理问题不是简单的计算问题,当得出结果后,应思考是否与s=-30m的结果,这个结果是与实际不相符的。
应思考在运用规律中是否出现与实际不符的问题。
本题还可以利用图像求解。
汽车刹车过程是匀减速直线运动。
据v0,a由此可知三角形v0Ot所包围的面积即为刹车3s内的位移。
例2气球以10m/s的速度匀速竖直上升,从气球上掉下一个物体,经17s到达地面。
求物体刚脱离气球时气球的高度。
(g=10m/s2)【错解】物体从气球上掉下来到达地面这段距离即为物体脱离气球时,气球的高度。
所以物体刚脱离气球时,气球的高度为 1445m。
【错解原因】由于学生对惯性定律理解不深刻,导致对题中的隐含条件即物体离开气球时具有向上的初速度视而不见。
误认为v0=0。
实际物体随气球匀速上升时,物体具有向上10m/s的速度当物体离开气球时,由于惯性物体继续向上运动一段距离,在重力作用下做匀变速直线运动。
【分析解答】本题既可以用整体处理的方法也可以分段处理。
方法一:可将物体的运动过程视为匀变速直线运动。
根据题意画出运动草图如图1-3所示。
规定向下方向为正,则V0=-10m/sg=10m/s2据h=v0t+∴物体刚掉下时离地1275m。
方法二:如图1-3将物体的运动过程分为A→B→C和C→D两段来处理。
A→B→C为竖直上抛运动,C→D为竖直下抛运动。
在A→B→C段,据竖直上抛规律可知此阶段运动时间为由题意知t CD=17-2=15(s)=1275(m)方法三:根据题意作出物体脱离气球到落地这段时间的V-t图(如图1-4所示)。
其中△v0ot B的面积为A→B的位移△t B t c v c的面积大小为B→C的位移梯形t C t D v D v C的面积大小为C→D的位移即物体离开气球时距地的高度。
则t B=1s根据竖直上抛的规律tc=2s t B t D=17-1=16(s)在△t B v D t D中则可求v D=160(m/s)【评析】在解决运动学的问题过程中,画运动草图很重要。
解题前应根据题意画出运动草图。
草图上一定要有规定的正方向,否则矢量方程解决问题就会出现错误。
如分析解答方法一中不规定正方向,就会出现例3经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后40s 停下来。
现A在平直公路上以20m/s的速度行使发现前方180m处有一货车B以6m/s的速度同向匀速行使,司机立即制动,能否发生撞车事故?【错解】设汽车A制动后40s的位移为s1,货车B在这段时间内的位S2=v2t=6×40=240(m)两车位移差为400-240=160(m)因为两车刚开始相距180m>160m所以两车不相撞。
【错解原因】这是典型的追击问题。
关键是要弄清不相撞的条件。
汽车A与货车B同速时,两车位移差和初始时刻两车距离关系是判断两车能否相撞的依据。
当两车同速时,两车位移差大于初始时刻的距离时,两车相撞;小于、等于时,则不相撞。
而错解中的判据条件错误导致错解。
【分析解答】如图1-5汽车A以v0=20m/s的初速做匀减速直线运动经40s停下来。
据加速度公式可求出a=-0.5m/s2当A车减为与B车同速时是A车逼近B车距离最多的时刻,这时若能超过B车则相撞,反之则不能相撞。
(m)△S=364-168=196>180(m)所以两车相撞。
【评析】分析追击问题应把两物体的位置关系图画好。
如图1.5,通过此图理解物理情景。
本题也可以借图像帮助理解图1-6中。
阴影区是A车比B车多通过的最多距离,这段距离若能大于两车初始时刻的距离则两车必相撞。
小于、等于则不相撞。
从图中也可以看出A 车速度成为零时,不是A车比B车多走距离最多的时刻,因此不能作为临界条件分析。
例4如图1-7所示,一人站在岸上,利用绳和定滑轮,拉船靠岸,在某一时刻绳的速度为v,绳AO段与水平面夹角为θ,不计摩擦和轮的质量,则此时小船的水平速度多大?【错解】将绳的速度按图1-8所示的方法分解,则v1即为船的水平速度v1=v·cosθ。
【错解原因】上述错误的原因是没有弄清船的运动情况。
实际上船是在做平动,每一时刻船上各点都有相同的水平速度。
而AO绳上各点运动比较复杂,既有平动又有转动。
以连接船上的A点来说,它有沿绳的平动分速度v,也有与v垂直的法向速度v n,即转动分速度,A点的合速度v A即为两个分速度的合。
v A=v/cosθ【分析解答】方法一:小船的运动为平动,而绳AO上各点的运动是平动+转动。
以连接船上的A点为研究对象,如图1-9,A的平动速度为v,转动速度为v n,合速度v A即与船的平动速度相同。
则由图可以看出v A=v/cosθ。
【评析】方法二:我们可以把绳子和滑轮看作理想机械。
人对绳子做的功等于绳子对船做的功。
我们所研究的绳子都是轻质绳,绳上的张力相等。
对于绳上的C点来说即时功率P人绳=F·v。
对于船上A点来说P绳船=Fv A·cos解答的方法一,也许学生不易理解绳上各点的运动。
从能量角度来讲也可以得到同样的结论。
还应指出的是要有实际力、实际加速度、实际速度才可分解。
例5一条宽为L的河流,河水流速为v1,船在静水中的速度为v2,要使船划到对岸时航程最短,船头应指向什么方向?最短航程是多少?【错解】要使航程最短船头应指向与岸垂直的方向。
最短航程为L。
【错解原因】上而错解的原因是对运动的合成不理解。
船在水中航行并不是船头指向什么方向就向什么方向运动。
它的运动方向是船在静水中的速度方向与水流方向共同决定的。
要使航程最短应是合速度垂直于岸。
【分析解答】题中没有给出v1与v2的大小关系,所以应考虑以下可能情况。
此种情况下航程最短为L。
②当v2<v1时,如图1-11船头斜向上游,与岸夹角为θ时,用三角形法则分析当它的方向与圆相切时,航程最短,设为S,由几何关系可知此时v2⊥v(合速度)(θ≠0)③当v2=v1时,如图1-12,θ越小航程越短。
(θ≠ 0)【评析】航程最短与时间最短是两个不同概念。
航程最短是指合位移最小。
时间最短是指用最大垂直河岸的速度过河的时间。
解决这类问题的依据就是合运动与分运动的等时性及两个方向运动的独立性。
例6有一个物体在h高处,以水平初速度v0抛出,落地时的速度为v1,竖直分速度为v y,下列公式能用来计算该物体在空中运动时间的是()故B正确。
【错解原因】形成以上错误有两个原因。
第一是模型与规律配套。
V t=v0+gt是匀加速直线运动的速度公式,而平抛运动是曲线运动,不能用此公式。
第二不理解运动的合成与分解。
平抛运动可分解为水平的匀速直线运动和竖直的自由落体运动。
每个分运动都对应自身运动规律。
【分析解答】本题的正确选项为A,C,D。
平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体,分运动与合运动时间具有等时性。
水平方向:x=v0t①据式①~⑤知A,C,D正确。
【评析】选择运动公式首先要判断物体的运动性质。
运动性质确定了,模型确定了,运动规律就确定了。
判断运动性要根据合外力和初速度的关系。
当合外力与初速度共线时,物体做直线运动,当合外力与v不共线时,物体做曲线运动。
当合外力与v0垂直且恒定时,物体做平抛运动。
当物体总与v垂直时,物体做圆运动。
例7一个物体从塔顶落下,在到达地面前最后一秒内通过的位移为整个位移的9/25,求塔高(g=10m/s2)。
【错解】因为物体从塔顶落下,做自由落体运动。
解得H=13.9m【错解原因】物体从塔顶落下时,对整个过程而言是初速为零的匀加速直线运动。
而对部分最后一秒内物体的运动则不能视为初速为零的匀加速直线运动。
因为最后一秒内的初始时刻物体具有一定的初速,由于对整体和部分的关系不清,导致物理规律用错,形成错解。
【分析解得】根据题意画出运动草图,如图1-13所示。
物体从塔顶落到地面所经历时间为t,通过的位移为H物体在t—1秒内的位移为h。
因为V0=0由①②③解得H=125m【评析】解决匀变速直线运动问题时,对整体与局部,局部与局部过程相互关系的分析,是解题的重要环节。
如本题初位置记为A位置,t—1秒时记为B位置,落地点为C位置(如图1-13所示)。
不难看出既可以把BC段看成整体过程AC与局部过程AB的差值,也可以把BC段看做是物体以初速度V B和加速度g向下做为时1s的匀加速运动,而v B可看成是局部过程AB的末速度。
这样分析就会发现其中一些隐含条件。
使得求解方便。
另外值得一提的是匀变速直线运动的问题有很多题通过v-t图求解既直观又方便简洁。
如本题依题意可以做出v-t图(如图1-14),由题意例8正在与Rm高空水平匀速飞行的飞机,每隔1s释放一个小球,先后共释放5个,不计空气阻力,则()A.这5个小球在空中排成一条直线B.这5个小球在空中处在同一抛物线上C.在空中,第1,2两个球间的距离保持不变D.相邻两球的落地间距相等【错解】因为5个球先后释放,所以5个球在空中处在同一抛物线上,又因为小球都做自由落体运动,所以C选项正确。