2021年人教版数学七年级上册数学期末复习(有答案)
- 格式:doc
- 大小:361.50 KB
- 文档页数:5
人教版2021年七年级数学上册期末考试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图所示,点P 到直线l 的距离是( )A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.如图,下列条件:①,②,③,④,⑤中能判∠=∠∠+∠=∠=∠∠=∠∠=∠+∠13241804523623 l l的有()断直线12A.5个B.4个C.3个D.2个7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.8.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()A.120° B.130° C.60° D.150°9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l410.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.5cm B.6cm C.7cm D.8cm二、填空题(本大题共6小题,每小题3分,共18分)1.若3的整数部分是a,小数部分是b,则3a b-=________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.分解因式:32x2x x-+=_________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若一个数的平方等于5,则这个数等于________.6.已知关于x 的不等式(1﹣a )x >2的解集为x <21a -,则a 的取值范围是_______. 三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,已知AM ∥BN ,∠A=60°,点P 是射线M 上一动点(与点A 不重合),BC ,BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D,(1)∠CBD=(2)当点P 运动到某处时,∠ACB=∠ABD ,则此时∠ABC=(3)在点P 运动的过程中,∠APB 与∠ADB 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.4.如图,四边形ABCD 中,对角线AC 、BD 交于点O ,AB =AC ,点E 是BD 上一点,且AE =AD ,∠EAD =∠BAC,(1)求证:∠ABD =∠ACD ;(2)若∠ACB =65°,求∠BDC 的度数.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、B7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、60°3、()2 x x1-.4、-405、6、a>1三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、(1)3a2-ab+7;(2)12.3、(1)60°;(2)30°;(3)不变.4、(1)略;(2) 50°5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
人教版七年级数学上册 期末专项复习01—有理数一、选择题(每小题3分,共30分)1.如果气温上升5℃记为5+℃,则8-℃表示( ) A .下降3℃B .上升3℃C .下降8℃D .上升8℃2.12020的相反数是( ) A .12020-B .12020C .2020-D .20203.下列说法中,正确的是( ) A .0是最小的整数B .最大的负整数是1-C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列各组数中,相等的一组是( ) A .2-和()2--B .2--和()2--C .2和2-D .2-和2-5.若a 是有理数,则下列说法正确的是( ) A .a 一定是正数 B .a -一定是正数 C .a --一定是负数D .1a +一定是正数6.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断错误的是( )A .0a b +<B .0a b ->C .0a b ⨯>D .a b <7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片,现在中国高速铁路营运里程将达到22 000公里,将22 000用科学记数法表示应为( ) A .42.210⨯B .32210⨯C .32.210⨯D .50.2210⨯8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( ) A .它精确到千分位B .它精确到0.01C .它精确到万位D .它精确到十位9.()()1352013201524620142016+++++-+++++L L =( ) A .0B .1-C .1008D .1008-10.若()212102x y -++=,则23x y +的值是( ) A .38B .18C .18-D .38-二、填空题(每小题2分,共16分)11.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是________. 12.已知7a =,3b =,且0a b +>,则a =________. 13.有理数 3.7-,2,243,23-,0,0.83中,属于正数的有________,属于负数的有________. 14.若a 、b 互为倒数,c 、d 互为相反数,则式子()343ab c d -+=________.15.已知()23a -与1b -互为相反数,则式子a b b a ⎛⎫- ⎪⎝⎭的值为________.16.计算()()()20202019202020201101-+-++-=________.17.A 点为数轴上表示4-的对应点,B 点对应的数为1-的相反数,若固定A 点不动,将B 点________个单位后,B 与A 相距1个单位.(请填上移动方向和距离)18.用“●”“○”定义新运算:对于实数a ,b ,都有a b a =●和a b b =d .例如323=●,322=d ,则()()2200920100210009=d d ●________.三、解答题(共54分)19.(12分)计算.(尽可能用简便方法)(1)()31664 5.66577⎡⎤++--⎢⎥⎣⎦;(2)()11731348126424⎛⎫-+-⨯- ⎪⎝⎭;(3)()2413111421412⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭;(4)()()()()23220202231-----÷-20.(5分)若3x -与2y +互为相反数,求3x y ++的值.21.(6分)按下列程序进行计算(如图),如果第一次输入的数是20,而结果不大于100时,那么就把结果作为输入的数再进行第二次运算,直到符合要求为止,当输入值为20时,请计算输出结果.22.(6分)小明家与学校相距2.5千米,小华家与学校相距32千米.请你想一下,小明家和小华家处在学校什么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科学记数法表示)24.(9分)某天晚上,一辆治安巡逻车从A地出发,在东西方向的马路上巡逻,第七次巡逻到达B地后结束,如果规定向东行驶为正,向西行驶为负,七次巡逻的纪录如下:(单位:千米)(1)在第________次巡逻时离开A地最远.(2)求第七次巡逻结束时B地与A地的距离与方向.(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.25.(10分)观察下列一组有规律的数,解答下列问题.第1个数记为:1111 2122 ==-⨯;第2个数记为:1111 62323 ==-⨯;第3个数记为:1111 123434==-⨯;(1)第7个数记为________,190是第________个数;(2)计算:①1111 12233420192020 ++++⨯⨯⨯⨯L;②1111 13355720172019 ++++⨯⨯⨯⨯L;期末专项复习—有理数答案解析一、1.【答案】C 【解析】由题意,得8-℃表示下降8℃.故选C .2.【答案】A 【解析】12020的相反数是12020-.故选A . 3.【答案】B 【解析】没有最小的整数,故A 错误;B 正确;有理数包括0、正有理数和负有理数,C 错误;有理数的平方是非负数,D 错误.故选B .4.【答案】C5.【答案】D 【解析】A 选项,0a =时,0a =,不是负数,故本选项错误;B 选项,0a =时,0a -=,不是正数,故本选项错误;C 选项,0a =时,0a --=,不是正数,故本选项错误;D 选项,11a +≥,一定是正数,故本选项正确.故选D .6.【答案】C 【解析】由图可知,a ,b 异号,故0a b ⨯<,C 错误,符合题意,其他选项都正确,不符合题意.故选C .7.【答案】A 【解析】422000 2.210=⨯.故选A .8.【答案】D 【解析】4.609万中的9在原数46090中的十位上,所以4.609万精确到了十位.故选D . 9.【答案】D【解析】()()1352013201524620142016+++++-+++++=L L ()()()123420152016-+-++-=L()()()1111008-+-++-=-L .故选D .10.【答案】B 二、11.【答案】7-或912.【答案】713.【答案】2,243,0.83 3.7-,23- 14.【答案】3b 15.【答案】22316.【答案】117.【答案】向左移动4个单位或6个单位 18.【答案】2010 三、19.【答案】(1)31664 5.6657731664 5.665773166 5.646577512751.7⎡⎤++-⎢⎥⎣⎦⎡⎤=+--⎢⎥⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+- ⎪⎝⎭=-()- (2)117313481264241173134848484812642444+5636+262⎛⎫-+-⨯- ⎪⎝⎭=⨯-⨯-⨯-⨯-==()()-()+()-()--(3)421311142141213111014121⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭⎛⎫=---⨯ ⎪⎝⎭=-() (4)232202022314891489=3.-----÷-=--÷=+-()()()()()- 20.【答案】解:因为3x -与2y +互为相反数,所以320x y -++=.因为30x -≥,20y +≥,所以30x -=,20y +=.即30x -=,20y +=.所以3x =,2y =-.所以()33234x y ++=+-+=.21.【答案】解:当输入20时,211201044010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入40-时, 211402048010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入80时,2118040416010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入160-时,21116080432010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()>,故输出的结果为320. 22.【答案】解:当小明家和小华家处在学校两侧,且在一条直线上时相距最远,最远为()2.5 1.54+=千米;当小明家和小华家处于学校同侧,且在一条直线上时相距最近,最近为()2.5 1.51-=千米.23.【答案】解:1个草履虫每天吞食细菌:()460302443200 4.3210⨯⨯==⨯个,100个草履虫每天吞食细菌:()46100 4.3210 4.3210⨯⨯=⨯个.24.【答案】解:(1)Q 第一次:()044+-=-, 第二次:()43-=+7, 第三次:()396+-=-, 第四次:()682-=+, 第五次:268+=, 第六次:()853+-=, 第七次:()321+-=, ∴第五次巡逻时离开A 地最远.(2)第七次巡逻结束后,B 地在A 地东边1千米处.(3)()()4798652100124110012 4.92-+++-+++++-+-÷⨯=÷⨯=升,故该晚巡逻车共耗油4.92升.25.【答案】解:(1)1111567878==-⨯ 9 (2)①原式1111111111223342018201920192020111111111122334201820192019202020192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-+-+-=…+…+ ②原式11111111111123235257220172019111111111233557201720191112201910092019⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=⨯-+-+-+- ⎪⎝⎭⎛⎫=⨯- ⎪⎝⎭=…+…+人教版七年级数学上册 期末专项复习02—整式的加减一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习03—一元一次方程一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习04—几何图形初步一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .平角是一条直线 B .周角是一条射线C .用2倍的放大镜看1cm 长的线段,这条线段变成了2cmD .用2倍的放大镜看°30的角,这个角变成了°602.如图所示,在AOB ∠的内部有4条射线,则图中角的个数为( )A .10B .15C .5D .203.下面说法:①若线段AC BC =,C 是线段AB 的中点;②两点之间直线最短;③延长直线AB ;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有( ) A .0个B .1个C .2个D .3个4.如图所示,小于平角的角有( )A .9个B .8个C .7个D .6个5.如图,C ,D 是线段AB 上两点,4cm CB =,7cm DB =,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm6.小明由点A 出发向正东方向走10m 到达点B ,再由点B 向东南方向走10m 到达点C ,则下列结论正确的是( ) A .°22.5ABC ∠= B .°45ABC ∠= C .°67.5ABC ∠=D .°135ABC ∠=7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式正确的是( )A .12COD AOB ∠=∠ B .23AOD AOB ∠=∠C .13BOD AOB ∠=∠D .23BOC AOD ∠=∠8.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来9.射线OA 上有B 、C 两点,若8OB =,2BC =,线段OB 、BC 的中点分别为D 、E ,则线段DE 的长为( ) A .5B .3C .1D .5或310.如图,AOB COD ∠=∠,若°110AOD ∠=,°70BOC ∠=,则以下结论正确的有( )①°90AOC BOD ∠=∠=;②°20AOB ∠=;③AOB AOD AOC ∠=∠-∠;④211AOB BOD ∠=∠ A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:°35.12=________°________′________″. 12.已知°4231α∠=′,则α∠的余角的补角是________. 13.延长线段AB 到点C ,使12BC AB =,反向延长线段AC 到点D ,使12AD AC =.若8cm AB =,则CD =________cm .14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.15.如图所示,C 是线段AB 外一点,那么AC BC +________AB (填“>”“<”或“=”),理由是________.16.如图所示,A 、O 、B 在一条直线上,°1302AOC BOC ∠=∠+,OE 平分BOC ∠,则BOE ∠=________.17.有公共顶点的两条射线分别表示南偏东°15与北偏东°25,则这两条射线组成的角的度数为________. 18.延长线段AB 到C ,使13BC AB =,D 为AC 的中点,且6cm DC =,则AB 的长是________cm . 三、解答题(共46分)19.(8分)已知平面上的三点,如图所示. (1)按下列要求画出图形:①画直线AC ;②画射线BC ;③画线段AB .(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求x y z ++的值.21.(6分)若:::1234134:1::∠∠∠∠=,而且°1231048∠∠∠∠=+++,那么这四个角分别为多少度?22.(8分)如下图,某轮船上午8时在A 处,测得灯塔S 在北偏东°60的方向上,向东行驶至中午12时,轮船到达B 处,在B 处测得灯塔S 在北偏西°30的方向上,已知轮船行驶速度为20千米/时. (1)在图中画出灯塔S 的位置;(2)量出船在B 处时,离灯塔S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段AB 上一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果0cm 1AB =,3cm AM =,求NC 的长.(2)如果6cm MN =,求AB 的长.24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n (n 为大于等于2的整数)条射线,则会得到多少个角?如果8n =时,检验你所得的结论是否正确.期末专项复习—几何图形初步答案解析一、 1.【答案】C 2.【答案】B 3.【答案】B【解析】①如图,C 不是线段AB 的中点,故①不正确;②两点之间线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确.故选B . 4.【答案】C【解析】符合条件的角中以A 为顶点的角有1个,以B 为顶点的角有2个,以C 为顶点的角有1个,以D 为顶 点的角有1个,以E 为顶点的角有2个,共有121127++++=(个)角,故选C . 5.【答案】B【解析】因为7cm DB =,4cm CB =所以743cm DC DB CB =-=-=.根据D 是AC 的中点,得2236cm AC DC ==⨯=.6.【答案】D【解析】由题意作图如下:由图可得°°°9045135ABC ∠=+=. 7.【答案】D【解析】设COD x ∠=,因为OD 平分BOC ∠, 所以BOD COD x ∠=∠=,2BOC x ∠=. 又OC 平分AOB ∠, 所以2AOC BOC x ∠=∠=,则4AOB x ∠=,所以14COD AOB ∠=∠,34AOD AOB ∠=∠,14BOD AOB ∠=∠,23BOC AOD ∠=∠,故 选D . 8.【答案】D【解析】根据正方体的表面展开图的特征,易知与“你”字所在面相对的面上标的字是“来”,与“遇” 字所在面相对的面上标的字是“的”,与“见”字所在面相对的面上标的字是“未”,故选D .9.【答案】D【解析】如图1,3DE =;如图2,5DE =.图1图210.【答案】C【解析】因为°110AOD ∠=,°70BOC ∠=,所以°40COD AOB ∠+∠=,又因为AOB COD ∠=∠,所以°20AOB COD ∠=∠=,所以°90AOC BOD ∠=∠=,故①②正确;AOD AOC COD AOB ∠-∠=∠=∠,故③正确;29AOB BOD ∠=∠,故④不正确.所以正确的有3个. 二、11.【答案】35 7 12 12.【答案】°13231′ 13.【答案】18 14.【答案】2415.【答案】>两点之间线段最短 16.【答案】°50 17.【答案】°140 18.【答案】9 三、19.【答案】解:(1)如图所示:(2)图中有3条线段,分别是线段AB 、AC 、BC .(3)图中的射线有:射线CE 、CF 、AG 、AF 、CG 、BE . (4)图中的直线有:直线AC 20.【答案】421.【答案】°120∠=,°260∠=,°380∠=,°420∠=. 22.【答案】解:(1)灯塔S 的位置如下图:(2)量得图中2cm BS =,轮船上午8时到中午12时行驶了4小时,则行驶的路程为20480⨯=(千米).而图 中AB 的距离为4cm ,故该图的比例为418010001002000000=⨯⨯.所以轮船离灯塔S 的实际距离为 20000002400000040⨯==(厘米)千米.23.【答案】(1)因为M 为AC 的中点,所以2AC AM =.因为3cm AM =,所以236cm AC =⨯=.因为10cm AB =,所以10cm 6cm 4cm BC AB AC =-=-=,又因为N 为BC 的中点,所以12cm 2NC BC ==. (2)因为M 为AC 的中点,所以12MC AC =.因为N 为CB 的中点,所以12CN CB =,所以 111222MC CN AC CB AC CB +=+=+(),即12MN AB =,而6cm MN =,所以12cm AB =. 24.【答案】解:当2n =时,角的个数为1;当3n =时,角的个数为123+=;当4n =时,角的个数为1236++=; 当5n =时,角的个数为123410+++=;当射线的条数为n 时,角的个数为112342112n n n n ++++-+-=-…()()().当8n =时,1118182822n n -=⨯-⨯=()().所以n 条射线可 得到112n n -g ()个角的结论也是正确的.。
2021-2022学年人教版七年级数学上册《3.4实际问题与一元一次方程》期末复习训练(附答案)1.某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x天完成,则可列方程为()A.+=1B.+=1C.+=1D.+=12.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.设该店有x间客房,则所列方程为()A.7x﹣7=9x+9B.7x+9=9x+7C.7x+7=9x﹣9D.7x﹣7=9x﹣9 3.某商品原价为m元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n元,则m,n的大小关系为()A.m=n B.n=0.91m C.n=m﹣30%D.n=m+30%m 4.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为()A.4x+8=4.5x B.4x﹣8=4.5xC.4x=4.5x+8D.4(x+8)=4.5x5.一艘船在静水中的速度为25千米/时,水流速度为5千米/时,这艘船从甲码头到乙码头顺流航行,再返回到甲码头共用了6个小时,求甲、乙两个码头的距离,可设甲、乙两个码头的距离是x千米,则列方程正确的是()A.(25+4)x=(25﹣4)x B.25x+5x=6C.+=6D.+=66.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套?(一个螺栓配两个螺母)设生产螺栓有m人,则可列方程为()A.12×m×2=18×(28﹣m)×2B.12×m×2=18×(28﹣m)C.12×(28﹣m)=18×m×2D.12×(28﹣m)×2=18×m7.几个人共同种一批树苗,如果每人种10棵,则剩下6颗树苗未种;如果每人种12颗,则缺6树苗,若设参与种树的有x人,则可列方程为()A.10x﹣6=12x+6B.10x+6=12x﹣6C.10+6x=12﹣6x D.10x+6=12﹣68.某地为了打造千年古镇旅游景点,将修建一条长为3600m的旅游大道.此项工程由A、B两个工程队接力完成,共用时20天.若A、B两个工程队每天分别能修建240m、160m,设A工程队修建此项工程xm,则可列方程为()A.+=20B.+=20C.﹣=20D.﹣=209.一艘轮船在A,B两个码头之间航行,顺水航行需4h,逆水航行需5h.已知水流速度为2km/h,求轮船在静水中的航行速度.若设轮船在静水中的航行速度为xkm/h,则可列一元一次方程为()A.4x+2=5x﹣2B.4(x+2)=5(x﹣2)C.4x﹣2=5x+2D.4(x﹣2)=5(x+2)10.一艘船从甲码头到乙码头顺流行驶,用2小时,从乙码头返回到甲码头逆流行驶,用2.5小时.已知水流的速度3千米/时,船在静水中的速度为x千米/时,则列方程为()A.2.5x﹣3=2x+3B.2.5(x﹣3)=2(x+3)C.=D.=11.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.B.C.D.12.某中学需要安排x名学生住宿,若8人一间则有50人无宿舍住,若12人一间则空余30张床位,求学生人数可列出方程()A.B.8x+50=12x﹣30C.8x﹣50=12x+30D.13.一列长120m的火车,以60km/h的速度通过380m长的大桥,设从火车头上桥到车尾完全通过大桥所需要的时间是x秒,则可列得方程正确的是()A.x=380+120B.60x=380+120C.x=380﹣120D.60x=380﹣12014.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.15.如图,在△ABC中,AB=24cm,AC=18cm,点P从点B出发以每秒4cm的速度向点A运动,同时点Q从点A出发以每秒3cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当AP=AQ时,点P、点Q运动的时间是()A.秒B.秒C.秒D.秒16.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.20617.将正整数1至1050按一定规律排列如下所示,从表中任取一个3×3的方框,方框中九个数的和可能是()1234567891011121314151617181920212223242526272829303132333435……A.2025B.2018C.2079D.207018.一架飞机在两城之间飞行,顺风需5小时30分,逆风需6小时.已知风速为24千米/小时,求飞机在无风时的速度.设飞机飞行无风时的速度为x千米/小时.则列方程为.19.一列火车匀速行驶,经过一条长300米的隧道,从车头开始进入隧道到车尾离开隧道一共需要20秒的时间;隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是8秒,设该火车的长度为x米,根据题意可列一元一次方程.20.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指界法统宗》是东方古代数学名著.详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个馒头,小和尚3人分1个馒头,正好分完,求大、小和尚各有多少人.设小和尚有x人,则可列方程为.21.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为22.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为,这个两位数是,根据题意得:(请完成后面的解答过程)23.一列匀速前进的火车,通过列车隧道.(1)如果通过一个长300米的隧道AB,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;(2)如果火车以相同的速度通过了另一个隧道CD,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD的长.24.如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=,b=;(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=4.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M运动的总路程和点M停止运动时在数轴上所对应的有理数.25.列方程解应用题(1)为了积极开展校园足球活动,某校计划为学校足球队购买一批A、B两种品牌足球,现购买4个A品牌足球和2个B品牌足球共需360元;已知A品牌足球的单价比B品牌足球的单价少60元.求A,B两种品牌足球的单价分别是多少元?(2)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.①若两人同时出发,相向而行,则经过几小时两人相遇?②若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?③若两人同时出发,相向而行,则几小时后两人相距10千米?26.为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过200度,那么超过部分每度按0.75元收费.(1)若居民甲在6月份用电100度,则他这个月应缴纳电费元;若居民乙在7月份用电200度,则他这个月应缴纳电费元;若居民丙在8月份用电300度,则他这个月应缴纳电费元;(2)若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?参考答案1.解:设甲、乙一共用x天完成,则可列方程为:+=1.故选:D.2.解:设该店有x间客房,则所列方程为:7x+7=9x﹣9.故选:C.3.解:根据题意可得:(1+30%)×(1﹣30%)=130%×70%,=91%.即现价是原价的91%.故n=0.91m,故选:B.4.解:设这个车队有x辆车,由题意得,4x+8=4.5x.故选:A.5.解:设甲、乙两个码头的距离是x千米,根据题意可得:+=6.故选:D.6.解:设生产螺栓有m人,则可列方程为:12×m×2=18×(28﹣m).故选:B.7.解:设参与种树的有x人,则可列方程为:10x+6=12x﹣6.故选:B.8.解:设A工程队修建此项工程xm,则可列方程为:+=20.故选:A.9.解:设轮船在静水中的航行速度为xkm/h,则可列一元一次方程为:4(x+2)=5(x﹣2).故选:B.10.解:设船在静水中的速度是x,则顺流时的速度为(x+3)km/h,逆流时的速度为(x﹣3)km/h,由题意得:2.5(x﹣3)=2(x+3),故选:B.11.解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:=3,故选:C.12.解:设需要安排x名学生住宿,则每间宿舍的学生数为,故可列出方程.故选:A.13.解:设从火车头上桥到车尾完全通过大桥所需要的时间是x秒,根据题意得:x=120+380.故选:A.14.解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选:A.15.解:当AP=AQ时,点P、点Q运动的时间为x秒,依题意,得:24﹣4x=3x,解得:x=.故选:D.16.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.17.解:设中间的数为x,则另8个数分别为:x﹣8,x﹣7,x﹣6,x﹣1,x+1,x+6,x+7,x+8,∴x﹣8+x﹣7+x﹣6+x﹣1+x+1+x+6+x+7+x+8+x=9x.A、当9x=2025时,x=225,∵225=32×7+1,∴225是第33行第1个数,不可能为中间数,∴选项A不符合题意;B、当9x=2018时,x=224,∵224不为整数,∴选项B不符合题意;C、当9x=2079时,x=231,∵231=33×7,∴231是第33行第7个数,不可能为中间数,∴选项C不符合题意;D、当9x=2070时,x=230,∵230=32×7+6,∴230是第33行第6个数,可以为中间数,∴选项D符合题意.故选:D.18.解:设飞机在无风时的飞行速度为x千米/时,则飞机顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x﹣24)千米/时,根据题意得:5.5•(x+24)=6(x﹣24).故答案为:5.5•(x+24)=6(x﹣24).19.解:根据题意得:从车头经过灯下到车尾经过灯下火车所走的路程为x米,这段时间内火车的平均速度m/s.从车头进入隧道到车尾离开隧道火车所走的路程为(x+300)m,这段时间内火车的平均速度为m/s.列出方程得:=.故答案是:=.20.解:设小和尚有x人,则大和尚(100﹣x)人,由题意得:.故答案为:.21.解:设春游的总人数是x人.根据题意所列方程为=,故答案为:=.22.解:设原来两位数的个位数字为x,可得十位数字为2x,这个两位数是20x+x,根据题意可得:20x+x=10x+2x+27,解得:x=3,所以这个两位数是63.故答案为:2x;20x+x.23.解:(1)解:设这列火车的长度是x米.由题意得:(300+x)÷15=x÷2.5,解得:x=60.答:这列火车的长度是60米.(2)根据题意知,×20+60=540(米).所以,CD的长为540米.24.解:(1)∵AB=12,AO=2OB,∴AO=8,OB=4,∴A点所表示的实数为﹣8,B点所表示的实数为4,∴a=﹣8,b=4.故答案是:﹣8;4;(2)当0<t<4时,如图1,AP=2t,OP=8﹣2t,BQ=t,OQ=4+t,∵2OP﹣OQ=4,∴2(8﹣2t)﹣(4+t)=4,t==1.6,当点P与点Q重合时,如图2,2t=12+t,t=12,当4<t<12时,如图3,OP=2t﹣8,OQ=4+t,则2(2t﹣8)﹣(4+t)=4,t=8,综上所述,当t为1.6秒或8秒时,2OP﹣OQ=4;(3)当点P到达点O时,8÷2=4,此时,OQ=4+t=8,即点Q所表示的实数为8,如图4,设点M运动的时间为t秒,由题意得:2t﹣t=12,t=12,此时,点P表示的实数为﹣8+12×2=16,所以点M表示的实数是16,∴点M运动的总路程为:3×12=36,答:点M运动的总路程为36和点M最后位置在数轴上对应的实数为16.25.解:(1)设a品牌足球的单价为x元,则B品牌足球的单价为(x+60)元,根据题意得4x+2(x+60)=360,解得x=40,∴40+60=100(元),答:A、B两种品牌足球的单价分别是40元、100元.(2)①设经过x小时两人相遇,根据题意得15x+20x=70,解得x=2,答:经过2小时两人相遇.②设经过y小时后乙超过甲10千米,根据题意得20y=15y+70+10,解得y=16,答:经过16小时后乙超过甲10千米.③设经过z小时后两人相距10千米,根据题意得15z+20z+10=70或15z+20z﹣10=70,解得z=或z=,答:经过小时或小时后两人相距10千米.26.解:(1)居民甲在6月份用电100度,则他这个月应缴纳电费:0.50×100=50(元),居民乙在7月份用电200度,则他这个月应缴纳电费:0.50×100+0.65×(200﹣100)=115(元),居民丙在8月份用电300度,则他这个月应缴纳电费:0.50×100+0.65×(200﹣100)+0.75×(300﹣200)=190(元).故答案分别为:50、115、190;(2)设他这个月用电x度,根据题意得:0.50×100+0.65×(200﹣100)+0.75×(x﹣200)=310,解得:x=460.答:他这个月用电460度.。
人教版七年级上册数学期末考试考试试题一、选择题(10小题,每题3分,共30分)1.用一个平面截圆柱,则截面形状不可能是()A.圆B.正方形C.长方形D.梯形2.下列各图中,表示数轴的是()A.B.C.D.3.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2 B.36.1×107km2 C.0.361×109km2 D.3.61×108km24.如果A、B、C在同一条直线上,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.4cm C.8cm或4cm D.无法确定5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.6.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场8.如果一个角的补角是它的余角的3倍,那么这个角的度数是()A.30° B.45° C.60° D.90°9.如果a+b=0,那么a,b两个有理数一定是()A.一正一负B.互为倒数C.互为相反数D.无法确定10.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°二、填空题(10小题,每题3分,共30分)11.如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为cm.12.若|x﹣2|+(y+5)2=0,则y x=.13.已知ab≠0,则+的值是.14.若x=2是方程的解,则的值是.15.李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明轮到计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,得.16.﹣的相反数是;﹣的系数是;(﹣1)101=.17.绝对值小于2008的所有整数的和为;在数轴上,到原点距离为4的数是;3600″=°.18.单项式﹣的系数是,次数是;多项式﹣﹣2xy2+1的次数.19.已知x=3是方程ax﹣6=a+10的解,则a=.20.将弯曲的河道改直,可以缩短航程,是因为:两点之间的所有连线中,最短.三、解答题21.解方程①=﹣1②x﹣=﹣3.22.计算①﹣22+(﹣2)2﹣|﹣4×5|+81÷(﹣3)3②(1.2﹣3.7)2×(﹣1)2005÷()3×0.5.23.化简:,其中x=.24.列方程解应用题:①一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?②从A地到B地,水路比公路近40km,上午9点一艘轮船从A地驶往B地,中午12点一辆汽车也从A地开往B地,它们同时到达,轮船的速度为每小时24km,汽车的速度为每小时40km,求从A地到B地的公路和水路的长.25.已知|a﹣1|+(b+2)2=0,求(a+b)2007+a2008的值.26.如图所示,O为直线AB上一点,过O点作射线OC.已知OD平分∠AOC、OE平分∠BOC,请问OD与OE有什么位置关系?并说明理由.参考答案与试题解析一、选择题(10小题,每题3分,共30分)1.用一个平面截圆柱,则截面形状不可能是()A.圆B.正方形C.长方形D.梯形考点:截一个几何体.分析:根据圆柱的特点,考虑截面从不同角度和方向截取的情况.解答:解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,如果这个圆柱特殊点,底面圆的直径等于高的话,那有可能是正方形,唯独不可能是梯形.故选D.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.2.下列各图中,表示数轴的是()A.B.C.D.考点:数轴.分析:根据数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向分析得出即可.解答:解:A、缺少原点,不表示数轴,故此选项错误;B、负数排列错误,应从原点向左依次排列,故此选项错误;C、是正确的数轴,故此选项正确;D、缺少正方向,故此选项错误.故选C.点评:此题主要考查了数轴的概念,熟练掌握数轴的定义是解题关键.3.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2 B.36.1×107km2 C.0.361×109km2 D.3.61×108km2考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:361000000=3.61×108,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如果A、B、C在同一条直线上,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.4cm C.8cm或4cm D.无法确定考点:两点间的距离.专题:计算题;分类讨论.分析:分点B在A、C之间和点C在A、B之间两种情况讨论.解答:解:(1)点B在A、C之间时,AC=AB+BC=6+2=8cm;(2)点C在A、B之间时,AC=AB﹣BC=6﹣2=4cm.所以A、C两点间的距离是8cm或4cm.故选:C.点评:本题考查的是两点间的距离,分两种情况讨论是解本题的难点也是解本题的关键.5.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选B.点评:正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.6.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元考点:一元一次方程的应用.专题:销售问题.分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解答:解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80% 解这个方程得:x=125则这种服装每件的成本是125元.故选:B.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场考点:一元一次方程的应用.专题:应用题.分析:设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.解答:解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选C.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.8.如果一个角的补角是它的余角的3倍,那么这个角的度数是()A.30° B.45° C.60° D.90°考点:余角和补角.分析:设这个角为x,则余角为90°﹣x,补角为180°﹣x,列出方程求解即可.解答:解:设这个角为x,则余角为90°﹣x,补角为180°﹣x,由题意得,180°﹣x=3(90°﹣x),解得:x=45,即这个角的度数为45°.故选B.点评:本题考查了余角和补角的知识,属于基础题,解答本题的关键是熟练掌握:互补的两角之和为180°,互余的两角之和为90°.9.如果a+b=0,那么a,b两个有理数一定是()A.一正一负B.互为倒数C.互为相反数D.无法确定考点:相反数.分析:根据有理数的加法,可得a、b的关系,可得答案.解答:解:果a+b=0,那么a,b两个有理数一定是互为相反数,故选:C.点评:本题考查了相反数,互为相反数的两个数的和为0是解题关键.10.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C. 30°D. 70°考点:角的计算;角平分线的定义.专题:计算题;压轴题.分析:先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.解答:解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选D.点评:本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.二、填空题(10小题,每题3分,共30分)11.如图,C是线段AB上任意一点,M,N分别是AC,BC的中点,如果AB=12cm,那么MN的长为6cm.考点:比较线段的长短.专题:计算题.分析:由于点M是AC中点,所以MC=AC,由于点N是BC中点,则CN=BC,而MN=MC+CN=(AC+AB)=AB,从而可以求出MN的长度.解答:解:∵点M是AC中点∴MC=AC∵点N是BC中点∴CN=BCMN=MC+CN=(AC+AB)=AB=6.所以本题应填6.点评:本题考点为:线段的中点.不管点C在哪个位置,MC始终等于AC的一半,CN 始终等于BC的一半,而MN等于MC加上CN等于AB的一半,所以不管C点在哪个位置MN始终等于AB的一半.12.若|x﹣2|+(y+5)2=0,则y x=25.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出x、y的值,进而可求出y x的值.解答:解:∵|x﹣2|+(y+5)2=0∴x﹣2=0,y+5=0,即x=2,y=﹣5.故y x=(﹣5)2=25.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.已知ab≠0,则+的值是0或±2.考点:绝对值.分析:分四种情况讨论即可求解.解答:解:①当a>0,b>0时,+=1+1=2,②当a>0,b<0时,+=1﹣1=0,③当a<0,b>0时,+=﹣1+1=0,④当a<0,b<0时,+=﹣1﹣1=﹣2,综上所述:+的值是0或±2.故答案为:0或±2.点评:本题主要考查了绝对值,解题的关键是分类讨论a,b的取值.14.若x=2是方程的解,则的值是﹣2.考点:一元一次方程的解.专题:计算题.分析:先将x=2代入方程,求得a值;然后将a值代入所求并解答.解答:解:∵x=2是方程的解,∴x=2满足方程,∴3×2﹣4=﹣a,解得a=﹣1;∴=(﹣1)2011+=﹣1﹣1=﹣2.故答案为:﹣2.点评:此题考查的是一元一次方程的解,根据a的取值,来求的值.15.李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明轮到计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,得﹣8.考点:有理数的混合运算.专题:新定义.分析:根据新定义得到=2×5﹣3×6,再进行乘法运算,然后进行减法运算即可.解答:解:=2×5﹣3×6=10﹣18=﹣8.故答案为﹣8.点评:本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.16.﹣的相反数是;﹣的系数是﹣;(﹣1)101=1.考点:相反数;有理数的乘方;单项式.分析:根据只有符号不同的两个数互为相反数,可得答案;根据单项式的系数是数字因数,可得答案;根据负数的偶次幂是正数,可得答案.解答:解:﹣的相反数是;﹣的系数是﹣;(﹣1)101=1,故答案为:,﹣,1.点评:本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.17.绝对值小于2008的所有整数的和为0;在数轴上,到原点距离为4的数是±4;3600″=1°.考点:数轴;绝对值;有理数的加法;有理数的乘方.分析:利用数轴的特点及度秒的换算求解即可.解答:解:绝对值小于2008的所有整数是﹣2007,﹣2006,﹣2005,…2005,2006,2007,其和为﹣2007+(﹣2006)+(﹣2005)+…+2005+2006+2007=0.到原点距离为4的数是±4,3600″=1°.故答案为:0,±4,1.点评:本题主要考查了数轴,绝对值,有理数的加法及乘方,解题的关键是熟记数轴的特点及度秒的换算.18.单项式﹣的系数是﹣,次数是3;多项式﹣﹣2xy2+1的次数3.考点:多项式;单项式.分析:根据单项式和多项式的概念求解.解答:解:单项式﹣的系数是﹣,次数为3;多项式﹣﹣2xy2+1的次数为3次.故答案为:﹣,3;3.点评:本题考查了单项式和多项式,解答本题的关键是掌握单项式和多项式的概念.19.已知x=3是方程ax﹣6=a+10的解,则a=8.考点:一元一次方程的解.专题:计算题.分析:将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.解答:解:∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为:8.点评:本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.20.将弯曲的河道改直,可以缩短航程,是因为:两点之间的所有连线中,线段最短.考点:线段的性质:两点之间线段最短.分析:考查最短路径问题,即两点之间,线段最短.解答:解:线段;因为两点之间,线段最短.点评:掌握两点之间,线段最短的实际应用.三、解答题21.解方程①=﹣1②x﹣=﹣3.考点:解一元一次方程.专题:计算题.分析:①方程去分母,去括号,移项合并,把x系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:①去分母得:8x﹣4=3x+6﹣12,移项合并得:5x=﹣2,解得:x=﹣0.4;②去分母得:15x﹣3x+6=10x﹣25﹣45,移项合并得:2x=76,解得:x=38.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.计算①﹣22+(﹣2)2﹣|﹣4×5|+81÷(﹣3)3②(1.2﹣3.7)2×(﹣1)2005÷()3×0.5.考点:有理数的混合运算.专题:计算题.分析:①原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘除运算,即可得到结果.解答:解:①原式=﹣4+4﹣20﹣3=﹣23;②原式=6.25×(﹣1)×8×0.5=﹣25.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.化简:,其中x=.考点:整式的加减—化简求值.分析:运用整式的加减运算顺序化简后代入值计算即可.解答:解:原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,是各地中考的常考点.注意一定先化简,再求值.24.列方程解应用题:①一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?②从A地到B地,水路比公路近40km,上午9点一艘轮船从A地驶往B地,中午12点一辆汽车也从A地开往B地,它们同时到达,轮船的速度为每小时24km,汽车的速度为每小时40km,求从A地到B地的公路和水路的长.考点:一元一次方程的应用.分析:①设还需x天完成,工程总量为1,由题意可得出三人每天各自能完成的工作量,再由题意和工程总量1,可列出关于x的一元一次方程,解这个方程即可求得还需要的天数.②设水路长为x km,则公路长为(40+x)km,则依据等量关系:轮船比汽车多用了3小时,列出方程并解答.解答:解:①设还需x天完成,工程总量为1,则:∵一件工程,甲独做需10天,乙独做需12天,丙独做需15天,∴甲、乙、丙三人每天分别能完成的工程进度为、、,∵甲、乙合作3天后,甲因事离开,丙参加工作,∴由题意可得出关于x的一元一次方程为:(++)×3+(+)x=1,解得:x=3.答:还需3天完成.②解:设水路长为x km,则公路长为(40+x)km,根据题意得:﹣=3,解得:x=240,则40+x=280.答:甲地到乙地的水路路程与公路路程分别是240km、280 km.点评:此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.已知|a﹣1|+(b+2)2=0,求(a+b)2007+a2008的值.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出a与b的值,代入原式计算即可得到结果.解答:解:∵|a﹣1|+(b+2)2=0,|a﹣1|≥0,(b+2)2≥0,∴a﹣1=0且b+2=0,解得:a=1且b=﹣2,则(a+b)2007+a2008=(1﹣2)2007+12008=﹣1+1=0.故答案为0.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.26.如图所示,O为直线AB上一点,过O点作射线OC.已知OD平分∠AOC、OE平分∠BOC,请问OD与OE有什么位置关系?并说明理由.考点:角平分线的定义.分析:先根据角平分线的定义得出∠DOC=∠AOC,∠COE=∠BOC,再根据平角的定义即可得出结论.解答:解:OD⊥OE.∵OD平分∠AOC、OE平分∠BOC,∴∠DOC=∠AOC,∠COE=∠BOC,∴∠DOE=∠DOC+∠COE=(∠AOC+∠BOC)=×180°=90°,∴OD⊥OE.点评:本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.。
2021 2021新版人教版七年级数学上册期末测试题及答案2021-2021新版人教版七年级数学上册期末测试题及答案七年级第一学期末数学试卷(人教版)(试卷共4页,考试时间90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中)题号答案1234567891011121.?2等于()a、-2b。
?12c.2d.122.如果水平木条固定在墙上,钉子的数量至少为()。
a、 1,B.2,C.3。
下面的等式是一维的,并且()a.y+3=0b.x+2y=3c.x2=2xd.d、任意数1?y?2yd.-12与14.在以下组中,相互相反的数字为()a.?(?1)与1b.(-1)2与1c.?1与15.下列各组单项式中,为同类项的是()a.a 与ab.32122a和2ac。
2xy和2xD。
-3和A26。
如图所示,数字轴a和B上的两点分别对应于实数a和B,那么以下结论是正确的1111??0??0ababa.a+b>0b.ab>0c.d.7.在下图中,它可以是立方体的平面展开式()cabcdab第8题图8.把两块三角板按如图所示那样拼在一起,则∠abc等于()a、70°b.90°c.105°d.120°9。
如果在灯塔o观察到a船是西偏北54°,B船是东偏南15°,则∠ AOB更大北小为()aa.69°b.111°c.141°d.159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获如果这件夹克的成本是x元,根据问题的意思,方程式是()A(1+50%)x×80%=x-28b(1+50%)x×80%=x+28c(1+50%x)×80%=x-28d(1+50%x)×80%=x+28ob第8题图11.船舶从a港顺流而下到B港所需时间比从B港返回a港所需时间少3小时。
人教版七年级上学期期末数学考试题一、耐心填一填。
(每小题2分,共20分)1、在数轴上,点M距原点2个单位长度,且位于原点的右侧.点N表示的数是点M 所表示数的相反数.如果将点N向右移动4个单位长度,再向左移动3个单位长度,此时点N所表示的数是_______。
2、10a-5减去(-5a+7)的差是________________。
3、用一平面截一几何体所得截面图形是三角形,则这个几何体可能是____________(至少写两个)。
4、若x=2是方程2x-7=k-1的解,则k=______。
5、如果|m-1|=5,则m=_______。
6、如图,是“太阳超市”中某品牌洗发水的价格标签,请你在横线上填写它的原价________。
7、关于x的方程是一元一次方程,则a=________。
8、一个正方体的每个面分别标有数字1,2,3,4,5,6。
根据图1中该正方体A、B、C三种状态所显示的数字,可推出“?”的数字是_________。
A B C9、马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下121|a|2)x(a=--+图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. (注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.)10、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴第4个图案中有白色地面砖____________块;⑵第n个图案中有白色地面砖____________块.┅┅二、精心选一选。
(每小题2分,共20分)题号11 12 13 14 15 16 17 18 19 20选项11、你对“0”有多少了解?下列关于“0”的说法错误的是______。
A、任何数与0相乘都得0B、0是最小的有理数C、绝对值最小的有理数是0D、0没有倒数12、若(x+2)2+|y-1|=0,则-x2y2的值为________。
2021人教版七年级上册期末数学测试题(附答案)优质资料:人教版七年级上册期末数学测试题一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A。
5 B。
-5 C。
9 D。
02.整数和分数统称为()A。
有理数 B。
无理数 C。
实数 D。
虚数3.-2的相反数是()A。
0 B。
2 C。
-2 D。
44.乘积是1的两个数互为()A。
倒数 B。
相反数 C。
绝对值 D。
有理数5.单项式与多项式统称为()A。
分式 B。
整式 C。
等式 D。
方程6.用科学记数法表示9.06×10^5,则原数是()A。
9060 B。
C。
D。
xxxxxxx7.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A。
球体 B。
长方体 C。
圆锥体 D。
圆柱体8.关于直线、射线和线段的描述正确的是()A。
直线、射线和线段的长度都不确定B。
射线是直线长度的一半C。
直线最长,线段最短D。
直线没有端点,射线有一个端点,线段有两个端点二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作-5米。
10.2/3=0.…11.(-5)+(-3)=-8.12.5,因为指数是指幂运算中的指数,而不是负号。
13.3x+5y。
14.150,因为原价乘以(1-20%)等于现价,即原价乘以0.8等于120,解得原价为150.15.14,因为梯形的面积公式为s=(a+b)h/2,代入已知数据得60=(a+4)×12/2,解得a=14.16.6,因为AC=AB-BC=9-3=6.三、解答题(共72分)17.1) 11,因为18+(-7)=11.2) -6,因为3×(-2)=-6.3) -25,因为-2×3×2=-12,-32+(-12)=-44,-44-(-2)= -42,-42/2=-21.4) -x^2+3x+5,化简后展开得-x^2+2x-1.5) 6,因为2x+4=16,解得x=6.18.3x+4x+5x=24,解得x=3,因此三边长分别为9、12、15.19.根据线段中点定理,线段DB的长度等于线段BC的长度,而线段BC的长度等于线段AD的长度的一半。
2020-2021学年人教新版七年级上册数学期末复习试题2 一.选择题(共10小题,满分30分,每小题3分)1.数1,0,﹣,﹣2中最大的是()A.1B.0C.﹣D.﹣22.表示有理数a、b的点在数轴上的位置如图所示,则a+b的值为()A.正数B.负数C.非正数D.非负数3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.若a、b互为相反数,则下列式子不成立的是()A.a+b=0B.a2=b2C.a3=b3D.|a|=|b| 5.下列说法正确的是()A.bca2与﹣a2bc不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式6.下列等式变形正确的是()A.﹣2x=5,则x=﹣B.,则2x+5(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=6+8D.若7(x+1)﹣9x=1,则7x+7﹣9x=17.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆8.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°9.下列图形中不是正方体展开图的是()A.B.C.D.10.如图,是由相同大小的圆点按照一定规律摆放而成,按此规律,则第n个图形中圆点的个数为()A.n+1B.n2+n C.4n+1D.2n﹣1二.填空题(共10小题,满分30分,每小题3分)11.的倒数等于.12.已知a的相反数是2,b的绝对值是5,则a+b的值为.13.在有理数集合中,最小的正整数是a,最大的负整数是b,则a﹣|b|=.14.已知多项式3x4y a﹣6x2y+1是六次三项式,则a=.15.已知|3m﹣12|+=0,则2m﹣n=.16.如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD 的度数是度.17.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.18.已知x=3是关于x方程mx﹣8=10的解,则m=.19.已知线段AB=8,点C在直线AB上,AC=AB,则BC=.20.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为.三.解答题(共7小题,满分60分)21.计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.22.解方程:(1)3x﹣9=6x﹣1;(2)x﹣=1﹣.23.先化简,再求值:﹣xy,其中x=3,y=﹣.24.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.25.如图,已知直线AB和CD相交于点O,∠COE=90°,OF平分∠AOE.(1)写出∠BOE的余角;(2)若∠COF的度数为29°,求∠BOE的度数.26.列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?27.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣2<﹣<0<1,所以最大的是1.故选:A.2.解:由有理数a、b在数轴上的位置,得b<0,a>0,|a|<|b|.由异号两数相加取绝对值较大的加数的符号,得a+b<0,故选:B.3.解:∵530060是6位数,∴10的指数应是5,故选:B.4.解:若a、b互为相反数,则a+b=0,a2=b2,|a|=|b|,故选:C.5.解:A、bca2与﹣a2bc符合同类项的定义,是同类项,故A错误;B、分母中不含有字母,故B错误;C、单项式﹣x3y2的系数是﹣1,故C正确;D、3x2﹣y+5xy2是三次三项式,故D错误.故选:C.6.解:A.﹣2x=5,等式两边同时除以﹣2得:x=﹣,即A项错误,B.+=1,等式两边同时乘以10得:2x+5(x﹣1)=10,即B项错误,C.若5x﹣6=2x+8,移项得:5x﹣2x=8+6,即C项错误,D.7(x+1)﹣9x=1,去括号得:7x+7﹣9x=1,即D项正确,故选:D.7.解:由题意得:只有D选项符合题意.故选:D.8.解:射线OA表示的方向是南偏东65°,故选:C.9.解:选项A,B,C都可以围成正方体,只有选项D无法围成立方体.故选:D.10.解:观察图形的变化可知:第1个图形中圆点的个数为4+1=5;第2个图形中圆点的个数为4×2+1=9;第3个图形中圆点的个数为4×3+1=13;…发现规律,则第n个图形中圆点的个数为(4n+1).故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:=﹣,﹣的倒数等于﹣.故答案为:﹣.12.解:由题意得a=﹣2,b=5或﹣5,当a=﹣2,b=5 时,a+b=﹣2+5=3;当a=﹣2,b=﹣5 时,a+b=﹣7.所以a+b,的值为3或﹣7.13.解:∵最小的正整数是a,最大的负整数是b,∴a=1,b=﹣1.∴a﹣|b|=1﹣1=0.故答案为:0.14.解:∵多项式3x4y a﹣6x2y+1是六次三项式,∴4+a=6,解得:a=2,故答案为:2.15.解:∵|3m﹣12|+=0,∴|3m﹣12|=0,(+1)2=0,∴m=4,n=﹣2,∴2m﹣n=8﹣(﹣2)=10,故答案为10.16.解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故答案为:135.17.解:设小长方形长为xcm,宽为ycm,由题意得:x+3y=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.18.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:619.解:当C在线段AB上时,AC=AB=×8=4,∴BC=4;当C在线段BA的延长线上时,AC=AB=×8=4,∴BC=4+8=12;故答案为4或12.20.解:设共有客人x人,根据题意得x+x+x=65.故答案为x+x+x=65.三.解答题(共7小题,满分60分)21.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.22.解:(1)移项合并得:3x=﹣8,解得:x=﹣;(2)去分母得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.23.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.24.解:如图所示:(1)射线AC,线段BC即为所求作的图形;(2)线段AB及延长线,点D以及线段CD即为所求作的图形;(3)点E以及线段BE即为所求作的图形.25.解:(1)∵直线AB和CD相交于点O,∠COE=90°,∴∠BOD=∠AOC,∠DOE=90°,∴∠BOE+∠BOD=90°,∴∠BOE+∠AOC=90°,∴∠BOE的余角是∠BOD和∠AOC;(2)∵∠COF=29°,∠COE=90°,∴∠EOF=90°﹣29°=61°,又OF平分∠AOE,∴∠AOE=122°,∵∠BOE+∠AOE=180°,∴∠BOE=180°﹣∠AOE=58°.26.解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.27.解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.。
2021年部编人教版七年级数学上册期末考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥32.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.计算22222100-9998-972-1++⋅⋅⋅+的值为()A.5048 B.50 C.4950 D.5050 6.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x﹣1)2+4C.y=(x+1)2+2 D.y=(x﹣1)2+27.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[1]+[2]+[3]+…+[36]=()A.132 B.146 C.161 D.6669.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题(本大题共6小题,每小题3分,共18分)+=__________.1.已知a、b为两个连续的整数,且11a b<<,则a b2.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.3.在关于x、y的方程组2728x y mx y m+=+⎧⎨+=-⎩中,未知数满足x≥0,y>0,那么m的取值范围是_________________.4.有理数a,b,c在数轴上的对应点如图所示,化简:|b|-|c+b|+|b-a|=________.5.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程组(1)532321x yx y+=⎧⎨+=⎩(2)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩(3)2311632x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图,在四边形OBCA中,OA∥BC,∠B=90°,OA=3,OB=4.(1)若S四边形AOBC=18,求BC的长;(2)如图1,设D为边OB上一个动点,当AD⊥AC时,过点A的直线PF与∠ODA 的角平分线交于点P,∠APD=90°,问AF平分∠CAE吗?并说明理由;(3)如图2,当点D在线段OB上运动时,∠ADM=100°,M在线段BC上,∠DAO 和∠BMD的平分线交于H点,则点D在运动过程中,∠H的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、C5、D6、D7、C8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、72、10.3、-2≤m<34、a-b+c5、126、±3三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)23xy=⎧⎨=⎩;(3)123xyz⎧⎪⎨⎪⎩===.2、x=10;a=-4;11.3、(1)6;(2)略;(3)略.4、证明略5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
人教版七年级上册数学期末复习
一、选择。
1、 6的相反数是( ) A. 61 B. -61 C. 6 D. -6
2、已知15a -=,则a 的值为( )
A. 6
B. -4
C. 6或-4
D. -6或4 3、三棱柱的顶点个数是( )
A. 3
B. 4
C. 5
D. 6
4、若2x =是关于x 的方程23x a +=的解,则a 的值为( )
A. 1
B. -1
C. 7
D. -7
5、在海面上,灯塔位于船的北偏东50︒,那么这艘船位于这个灯塔的( )
A 北偏东40︒
B. 南偏西40︒
C. 北偏东50︒
D. 南偏西50︒
6、把方程1123
--=x x 去分母后,正确的是( ). A. 32(1)1x x --=
B. 3226x x +-=
C. 3226x x --=
D. 32(1)6x x --= 7、如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O ,∠EOD=30°,则∠BOC=( )
A. 150°
B. 140°
C. 130°
D. 120°
8、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实 “两点之间,线段最短”来解释的现象有( )
A. ①②
B. ①③
C. ②④
D. ③④
9、如果在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是()
A. 100°
B. 70°
C. 180°
D. 140°
10、如图是某一立方体的侧面展开图,则该立方体是()
A. B.
C. D.
二、填空。
11、两点整,时针与分针所成角的度数为__________.
5xy的次数是_________.
12、单项式3
13、若单项式﹣2x3y n与4x m y5合并后的结果还是单项式,则m﹣n=_____.
14、如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东60°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是__________
15、由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).
三、解答。
16、计算。
(1)6322111(0.5)[2(3)]0.5338
---÷⨯----- (2)()23112264
⎛⎫-÷--⨯- ⎪⎝⎭ 17、解方程。
(1)y -
12y -=3-25y + (2)(2)332164
x x ++=- 18、 将直尺与三角尺按如图所示的方式叠放在一起.在图中标记的角中,写出所有与1∠互余的角.
19、如图,直线EF 分别与直线AB CD 、交于,M N 两点,155,2125∠=︒∠=︒,
求证:
//AB CD 【要求写出每一步的理论依据】
20、 为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下: 档次 每户每月用电量(度) 执行电价(元/
度)
第一档 小于或等于200
0.5 第二档 大于200且小于或等于450时,超出200
的部分
0.7 第三档 大于450时,超出450的部分 1
(1)一户居民七月份用电300度,则需缴电费__________元.
(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.
①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由. ②求该户居民五、六月份分别用电多少度?
21、 已知,M N 两点在数轴上所表示的数分别为,m n 且满足212(3)0m n -++=.
(1)则m = ,=n ;
(2)若点P 从N 点出发,以每秒1个单位长度的速度向右.
运动,同时点Q 从M 点出发,以每秒1个单位长度的速度向左.
运动,经过多长时间后,P Q 两点相距7个单位长度?
(3)若,A B 为线段MN 上的两点,且NA AB BM ==,点P 从点N 出发,以每秒2个单位长度的速度向左.
运动,点Q 从M 点出发,以每秒4个单位长度的速度向右.运动,点R 从B 点出发,以每秒3个单位长度的速度向右.
运动,P,Q,R 同时出发,是否存在常数k ,使得PQ kAR -的值与它们的运动时间无关,为定值。
若
存在,请求出k 和这个定值;若不存在,请说明理由.
答案
1-5:DCDBD 6-10:DDDAD
11、60° 12、4 13、-2 14、82 15、()31-n
16(1)918
(2)47. 17、(1)y=3. (2)38
x =-. 18、234∠∠∠,,.
19、证明:155∠=(已知)
55CNM ∴∠=(对顶角相等)
2125∠=(已知)
2180CNM ∴∠+∠=(等式的性质)
//AB CD ∴(同旁内角互补,两直线平行)
20、(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设
五、六月份分别用电100度、400度.
21、(1)m=12,n=-3; (2)4t =或11;(3)存在,k=2,定值为5.。