2013年全国硕士研究生入学统一考试数学(一)试题及答案解析
- 格式:pdf
- 大小:193.08 KB
- 文档页数:12
2013年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan lim kx x xc x →-=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==-(B )12,2k c ==(C )13,3k c ==-(D )13,3k c ==【答案】D【解析】33300011(())arctan 133lim lim lim ,3,3k k k x x x x x x o x xx x c k c x x x →→→--+-===∴== (2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --= 【答案】A【解析】设2(,,)cos()F x y z x xy yz x =+++, 则(,,)2sin()1(0,1,1)1x x F x y z x y xy F =-+⇒-=;(,,)sin()(0,1,1)1y y F x y z x xy z F =-+⇒-=-;(,,)(0,1,1)1z z F x y z y F =⇒-=,所以该曲面在点(0,1,1)-处的切平面方程为(1)(1)0x y z --++=, 化简得2x y z -+=-,选A20132(3)设()1(),[0,1]2f x x x =-∈,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S -=( )(A )34(B )14(C )14-(D )34-【答案】C【解析】根据题意,将函数在[1,1]-上奇延拓1,012()1,102x x f x x x ⎧-<<⎪⎪=⎨⎪----<<⎪⎩,它的傅里叶级数为()S x 它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()S x f x =,因此991111()(2)()()()444444S S S S f -=-+=-=-=-=- (4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I(D )4I 【答案】D【解析】33()(2)(1,2,3,4)63i i l y x I y dx x dy i =++-=⎰22(1)2iDy x dxdy =--⎰⎰利用二重积分的几何意义,比较积分区域以及函数的正负,在区域14,D D 上函数为正值,则区域大,积分大,所以41I I >,在4D 之外函数值为负,因此4243,I I I I >>,故选D 。
2013考研数学一真题及答案解析目录第一章总论............................................................. 错误!未定义书签。
1.1项目提要........................................................... 错误!未定义书签。
1.2结论与建议....................................................... 错误!未定义书签。
1.3编制依据 .......................................................... 错误!未定义书签。
第二章项目建设背景与必要性............................. 错误!未定义书签。
2.1项目背景........................................................... 错误!未定义书签。
2.2项目建设必要性 .............................................. 错误!未定义书签。
第三章市场与需求预测......................................... 错误!未定义书签。
3.1优质粮食供求形势分析 .................................. 错误!未定义书签。
3.2本区域市场需求预测 ...................................... 错误!未定义书签。
3.3服务功能 .......................................................... 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策.............. 错误!未定义书签。
2013年考研数学一真题及答案2013年的考研数学一科目是众多考生备战考研的重要内容之一。
下面将为大家详细解析该年度的数学一真题,并提供对应的答案,帮助考生更好地复习和备考。
一、选择题1. 设函数f(x)=x^2-3,g(x)=2x+1,若f(g(x))=0,则函数g(f(x))的根是:答案:x=-2,32. 已知整数n,下列命题中正确的是:A. 若n为奇数,则n(n+1)(n+2)为偶数;B. 若n为奇数,则n^2+n为偶数;C. 若n^2+n为偶数,则n为奇数;D. 若n(n+1)(n+2)为偶数,则n为奇数。
答案:B3. 已知复数z满足|z-1+i|=2,则z可能的值为:答案:z=3, -1-i4. 设等差数列{a_n}的公差不为0,若lim(n→∞)(a_n+a_{n+1})=2,则lim(n→∞)a_n的值是:答案:15. 设函数f(x)=x^3-3x+p,若f(x)在区间[-2,2]上有且仅有一个零点,则p的值为:答案:-4二、填空题1. 已知向量a=(1,2,3),b=(4,5,6),则|a+b|的值为:答案:√992. 设随机变量X的概率密度函数为f(x)={k(x^2-x+1), 0<a≤x≤b; 0, 其他},则k的值为:答案:1/(b^2-b-a^2+a)3. 设y=f(x)是定义在R上的奇函数,若f(e^3)=2,则f(ln2)的值为:答案:-24. 设f(x)是定义在[-1,1]上的连续函数,且f(0)=0,当x≠0时,|f(x)|≤x^2,则f(x)的最大值是:答案:15. 设f(x)=a_0+a_1x+a_2x^2+…+a_nx^n,若f(1)=f'(1)=f''(1)=0,则f(0)的值为:答案:0三、解答题1. 已知数列{a_n}的通项公式为a_n=(-1)^{n+1}/n,试求其前n项和S_n。
解答:数列{a_n}的前n项和可以表示为S_n=∑_{k=1}^n a_k,代入通项公式,得到S_n=∑_{k=1}^n (-1)^(k+1)/k。
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c k x kx kx x x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( ) A .34 B. 14 C. 14- D. 34- 答案(C )01():(cos sin )2n n n a n n l f x a x b x l l ππ=++∑周期为2的函数对应的三角级数将函数在[0,1]展开成傅里叶级数(只含正弦项),做两次延拓函数后:它的傅里叶级数的和函数()s x 以2为周期的奇函数则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c x kx kx x k x ---→→→→--+-+====+ 因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan limkx x xc x→-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。
1.1项目提要......................................................... 错误!未定义书签。
1.2结论与建议..................................................... 错误!未定义书签。
1.3编制依据 ........................................................ 错误!未定义书签。
第二章项目建设背景与必要性........................... 错误!未定义书签。
2.1项目背景......................................................... 错误!未定义书签。
2.2项目建设必要性 ............................................ 错误!未定义书签。
第三章市场与需求预测....................................... 错误!未定义书签。
3.1优质粮食供求形势分析 ................................ 错误!未定义书签。
3.2本区域市场需求预测 .................................... 错误!未定义书签。
3.3服务功能 ........................................................ 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。
第四章项目承担单位情况................................... 错误!未定义书签。
2013数学一硕士研究生入学考试1.已知极限0arctan limk x x x c x→-=,其中k ,c 为常数,且0c ≠,则( ) A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c == 2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( ) A .34 B. 14 C. 14- D. 34- 4.设221:1L x y +=,222:2L x y +=,223:22L x y +=,224:22L x y +=为四条逆时针方向的平面曲线,记33()(2)(1,2,3,4)63ii L y x I y dx x dy i =++-=⎰ ,则{}1234max ,,,I I I I = A. 1I B. 2I C. 3I D 4I5.设A,B,C 均为n 阶矩阵,若AB=C ,且B 可逆,则( )A.矩阵C 的行向量组与矩阵A 的行向量组等价B 矩阵C 的列向量组与矩阵A 的列向量组等价C 矩阵C 的行向量组与矩阵B 的行向量组等价D 矩阵C 的列向量组与矩阵B 的列向量组等价6.矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的充分必要条件为( )A. 0,2a b ==B. 0,a b = 为任意常数C. 2,0a b ==D. 2,a b = 为任意常数7.设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}22(1,2,3)=-≤≤=i i P P X i ,则( ) A. 123P P P >> B. 213P P P >> C. 322P P P >> D 132P P P >>8.设随机变量()X t n ,(1,)Y F n ,给定(00.5)a a <<,常数c 满足{}P X c a >=,则{}2P Y c >=( )9.设函数y=f(x)由方程y-x=e x(1-y) 确定,则01lim [()1]n n f n→-= 。
2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=- 切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。