除法的估算
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
【除法的估算】三年级估算的原则课题一:除法的估算教学内容:教科书第16页例2及“做一做”,练习三第3、4题。
教学目标:1.使学生体会学习除法估算的必要,了解除数是一位数除法估算的一般方法。
2.引导学生根据具体情境合理进行估算,知道什么时候要估大些、什么时候要估小些,培养学生良好的思维品质和应用数学的能力。
教学过程:一、理解学习除法估算的必要1.看图出示以下情境和问题:①课本例2:李叔叔他们三人平均每人大约运多少箱?②从学校到仙女湖有223千米,客车行驶了4小时,平均每小时约行多少千米?③每听饮料3元,100元最多能买多少听饮料?④在一次地震中,有灾民182人,如果按每4人发一顶帐篷,最少要准备多少顶帐篷?2.请学生尝试列出解答上面各题的算式。
一般来说,学生都能根据除法的含义列出下列4个算式:124÷3≈、223÷4≈、100÷3≈182÷4≈。
3.体会除法估算是解答问题的一种工具。
请学生逐一说出上面四道算式的意思,让学生在说算式意思的过程中,体会生活中许多问题的解答要用除法估算来完成,理解除法估算是解决问题的重要工具。
二、怎样进行除法估算1.一般方法(1)从上面4个算式中抽出:124÷3≈,请学生尝试估算。
(2)展示、交流学生估算的过程和方法。
生1:124≈120生2:124=120+4120÷3=40(或3×40=120)120÷3=40每人大约运40箱。
剩下的4箱中每人还1可运1箱,每人大约运41箱。
引导学生对以上两种估算的过程和方法进行比较:①两种估算的过程和方法都是正确的。
②两种结果虽然有微小的差异,但都接近准确值,不影响对问题的合理解决,可以说,这样的差异在本题的解决中是可以忽略不计的。
(3)让学生独立估算223÷4≈。
学生估算的过程和方法与124÷3≈的估算过程方法会基本相同。
有以下几种思路:生1:223≈200生2:223=200+23 生3:223≈240200÷4=50 200÷4=50 240÷4=60平均每小时平均每小时平均每小时约行50千米。
除法估算的方法在日常生活和学习中,我们经常会遇到需要进行除法运算的情况。
有时候,我们可能没有计算器或者纸笔,需要用头脑进行估算。
那么,如何进行除法的估算呢?接下来,我们将介绍几种简单实用的方法。
首先,我们来看一下除法估算的基本原理。
在进行除法估算时,我们可以利用近似数来代替真实数,从而简化计算过程。
这样做不仅可以提高计算速度,还可以在一定程度上减小计算误差。
一种常用的除法估算方法是“倍数估算法”。
这种方法适用于除数和被除数都是较大的数的情况。
具体步骤如下:首先,将除数和被除数都变为最接近的整十数、整百数或整千数。
然后,利用这两个整数进行除法运算,得到一个估算的商。
最后,根据估算的商和原始的除数进行调整,得到最终的估算结果。
举个例子,如果我们需要计算3478除以23的结果,我们可以将3478近似为3500,将23近似为20。
然后,我们可以计算3500除以20的结果,得到175。
最后,我们可以根据原始的除数23进行调整,得到最终的估算结果。
另一种常用的除法估算方法是“小数估算法”。
这种方法适用于除数和被除数都是小数的情况。
具体步骤如下:首先,将除数和被除数都变为整数,然后进行除法运算,得到一个估算的商。
最后,根据估算的商和原始的小数进行调整,得到最终的估算结果。
举个例子,如果我们需要计算6.8除以2.3的结果,我们可以将6.8乘以10,2.3乘以10,得到68除以23的结果。
然后,我们可以计算68除以23的结果,得到2.956。
最后,我们可以根据原始的小数进行调整,得到最终的估算结果。
除了以上介绍的方法,我们还可以利用近似数的特点进行除法估算。
例如,我们可以利用除数和被除数的倍数关系,进行快速估算。
又如,我们可以利用除数和被除数的乘积关系,进行快速估算。
这些方法都可以帮助我们在没有计算器或者纸笔的情况下,快速准确地进行除法估算。
总之,除法估算是一种非常实用的计算方法。
通过掌握一些简单的估算技巧,我们可以在日常生活和学习中,更加便捷地进行除法运算。
除法估算的方法除法是数学中的一种基本运算,它是指用一个数除以另一个数,求出商和余数的过程。
在日常生活和实际问题中,我们经常需要进行除法估算,以便快速得到大概的结果。
下面将介绍几种常用的除法估算方法。
一、舍位取整法。
舍位取整法是指在进行除法估算时,将被除数的各位数字从左到右逐个进行处理,每次只保留一个有效数字,其余位数全部舍去。
这样可以大大简化计算过程,快速得到估算结果。
例如,计算2345÷67≈?首先,将2345中的2保留下来,其余位数舍去,得到2000;然后,将67中的6保留下来,其余位数舍去,得到60;最后,进行估算,2000÷60≈30。
通过舍位取整法,我们可以快速得到2345÷67的估算结果为30。
二、倍数估算法。
倍数估算法是指在进行除法估算时,利用被除数和除数的倍数关系进行估算,以便快速得到结果。
例如,计算428÷7≈?首先,找到7的倍数,即7、14、21、28、35、42;然后,找到最接近428的倍数,即42;最后,进行估算,428÷7≈60。
通过倍数估算法,我们可以快速得到428÷7的估算结果为60。
三、近似估算法。
近似估算法是指在进行除法估算时,利用被除数和除数的近似值进行估算,以便快速得到结果。
例如,计算789÷13≈?首先,将789和13分别取近似值,即将789取为800,将13取为10;然后,进行估算,800÷10≈80。
通过近似估算法,我们可以快速得到789÷13的估算结果为80。
四、分部估算法。
分部估算法是指在进行除法估算时,将被除数和除数分别进行估算,然后将两者的估算结果进行相乘,以便快速得到结果。
例如,计算246÷9≈?首先,对246进行估算,将其取为250;然后,对9进行估算,将其取为10;最后,进行估算,250÷10≈25。
通过分部估算法,我们可以快速得到246÷9的估算结果为25。
估算除法总结引言在数学中,除法是一种基本操作,用于将一个数(被除数)分成若干等份(除数),求解每一份的大小(商)。
然而,在实际应用中,除法可能会涉及到较大的数值,计算起来较为繁琐。
为了简化除法的计算过程,我们可以采用估算除法的方法,通过近似计算来得到一个接近实际结果的答案。
本文将介绍估算除法的几种常见方法和应用场景。
正文1. 位数估算法位数估算法是一种简单而有效的估算除法的方法。
它适用于两个数相差较大的情况,如一个数是百位数,另一个数是个位数。
具体计算步骤如下:1.找出被除数和除数的位数差。
假设被除数有m位,除数有n位,则位数差为m - n。
2.将除数向左移动位数差的位数,得到一个近似的除数。
3.对近似的除数和被除数进行除法运算,得到商。
4.根据需要,可以进行进一步的修正和近似。
2. 数线估算法数线估算法是一种直观而简单的估算除法的方法。
它适用于整除的情况,即除数是被除数的倍数。
具体计算步骤如下:1.绘制一条数线,上面按照除数的大小划分出若干等分。
2.在数线上找到被除数所在的位置,并确定它与除数之间的差距。
3.根据差距的大小,可以估算出商的范围。
3. 近似估算法近似估算法是一种灵活而准确的估算除法的方法。
它适用于除法中的特殊情况,如小数除法和除数为小数的情况。
具体计算步骤如下:1.将被除数和除数化为相近的整数。
2.进行整数除法运算,得到一个近似的商。
3.根据余数和小数部分的大小,对近似的商进行修正和调整。
应用场景估算除法在日常生活和工作中有广泛的应用场景。
以下是几个常见的应用场景:1.财务估算:在财务计算中,除法常常用于计算销售额、成本、利润等数据。
估算除法可以帮助快速计算出一个近似的财务指标,方便经营和决策。
2.统计分析:在统计学中,除法用于计算比例、频率、概率等。
通过估算除法,可以在大规模数据中快速估算出一个近似的统计指标,提供参考和判断依据。
3.工程计算:在工程领域,除法常用于计算速度、功率、效率等数据。
除法估算的方法在数学学习中,我们经常会遇到需要进行除法估算的情况,尤其是在没有计算器的情况下。
除法估算是一种快速估算除法运算结果的方法,可以帮助我们在日常生活和学习中更快地得到答案。
下面将介绍几种常用的除法估算方法。
首先,我们来介绍一种常用的除法估算方法——近似商法。
这种方法适用于被除数和除数都是整数的情况。
首先,我们可以先用整数去估算被除数和除数的大小关系,然后根据这个关系进行估算。
比如,如果我们需要计算48除以7的结果,我们可以先估算48和7的大小关系,然后找到一个整数来近似7,比如10。
然后我们可以计算48除以10的结果,得到4.8,再根据这个结果来近似48除以7的结果,得到约等于7。
其次,还有一种常用的除法估算方法——倍数估算法。
这种方法适用于被除数是整数,除数是小数的情况。
我们可以先将除数变为整数,然后将被除数也按照同样的倍数进行变化,最后再进行估算。
比如,如果我们需要计算36除以0.6的结果,我们可以将0.6变为整数6,然后将36也按照同样的倍数进行变化,得到360,最后再进行估算,得到60。
另外,还有一种常用的除法估算方法——小数估算法。
这种方法适用于被除数和除数都是小数的情况。
我们可以先将被除数和除数都变为整数,然后再进行估算。
比如,如果我们需要计算0.48除以0.12的结果,我们可以将被除数和除数都扩大10倍,得到48除以12,然后再进行估算,得到4。
除法估算是数学学习中的重要内容,掌握好除法估算的方法可以帮助我们更快地得到答案。
通过近似商法、倍数估算法和小数估算法等方法,我们可以在没有计算器的情况下快速估算除法运算结果,提高我们的计算能力和解决问题的能力。
希望大家能够认真学习和掌握这些方法,提高自己的数学水平。
除法的估算(一)引言除法作为数学中的一种基本运算,是我们日常生活中经常用到的。
在实际计算中,我们经常需要快速估算除法的结果,以便得到一个近似的答案。
本文将介绍一些常用的估算方法,帮助我们在日常生活和工作中快速的进行除法运算的估算。
估算方法一:近似商法近似商法是一种常用的估算除法的方法,它通过快速计算除法的近似商来得到答案。
具体步骤如下:1.找到除数最接近的整十数或整百数;2.在被除数和除数同时乘以相同的倍数,使得除数成为整数;3.计算倍数后的新除数能够被倍数后的新被除数整除的商。
示例:假设我们要计算265 ÷ 18的运算结果。
1.找到最接近的整十数或整百数,18距离20最近;2.将265和18同时乘以倍数10,得到2650 ÷180;3.计算180能够整除2650的商,得到14。
所以,265 ÷ 18的估算结果为14。
估算方法二:倍数估算法倍数估算法是另一种常用的估算除法的方法,它利用了倍数之间的关系估算除法的结果。
具体步骤如下:1.找到使得除数和倍数差距最小的整数倍数;2.对除数和被除数都采用相同的倍数进行放大;3.计算放大后的新除数能够被放大后的新被除数整除的商。
示例:假设我们要计算451 ÷ 27的运算结果。
1.找到使得除数和倍数差距最小的整数倍数,27乘以16最接近451,即27× 16 = 432;2.将451和27同时乘以倍数16,得到451 × 16 ÷ 27;3.计算432能够整除451 × 16的商,得到256。
所以,451 ÷ 27的估算结果为256。
估算方法三:分解估算法分解估算法是一种更加灵活的估算除法的方法,它将除法运算分解成多个较为简单的运算。
具体步骤如下:1.将除数和被除数分别进行分解,使得每个分解后的数都较为简单;2.根据分解后的简单数运算,并使用近似的数进行估算;3.将估算结果进行合理调整,得到最终的估算结果。
除法的估算什么是除法的估算?除法估算是一种寻找答案大致范围的方法,根据余数的大小和区间的长度,通过不停地画图、推算、逼近,不断缩小区间,最终得到一个大约的数值。
在日常生活和工作中,我们经常会用到除法估算。
例如,如果要知道一件物品每个人分配的费用,那么我们就需要用到除法估算。
又比如,当我们需要计算一个数除以另一个数的商时,如 357÷9,那么很可能会用到除法估算来估算答案的范围。
除法估算的方法下面,我们将介绍几种除法估算的方法,这些方法对初学者或非精确计算可用。
粗略估算法这种方法非常简单,只需要观察到被除数的数量级,并在心里除以除数的数量级,再稍微调整一下,便能得到一个大约的答案。
例如:•398 ÷ 7 = > 心算得到被除数约为400,除数为7,两个数量级相差不大,因此估算值大约为57。
•1314 ÷ 17 = > 心算得到被除数约为1300,除数为17,两个数量级相差较大,因此估算值大约为70。
这种方法的优点是简单方便,不需要任何计算工具,但是其精度并不高。
实际估算法这种方法则需要在脑海中进行逐位估算,方法如下:•首先,观察被除数的最高位和除数相比的数量级,假设为m。
做法:找到最大的10的指数,不超过被除数的位数,比如,看到1314 ÷ 17,即看到有4位数,所以m=1000。
•其次,将估算值的最高位设置为答案的最高位。
做法:找到结果的最高位。
比如根据例子,17 × 6 = 102,所以估算值的最高位为6。
•再次,用估算值的最高位和除数相乘,得到一个比结果小的数p。
做法:根据上面的估算值6计算,17 × 6 = 102,所以p=100。
•接着,在被除数中减去p,以得到新的被除数R。
做法:根据例子,被除数1314 - 100 = 1214,所以R = 1214。
•然后,检查R的最高位和除数的数量级。
做法:根据=1214,其数量级为1000,与除数相同,所以继续估算。
除法的估算方法在日常生活中,我们经常会遇到需要进行除法运算的情况。
除法是一种基本的数学运算,它在我们的日常生活和工作中都有着重要的应用。
然而,有时候我们需要进行快速估算,而不是精确计算,这就需要掌握一些估算方法来帮助我们快速得到答案。
本文将介绍几种常用的除法估算方法,希望能够帮助大家更好地掌握这一技巧。
一、直接估算法。
直接估算法是最简单、最直接的估算方法。
它适用于那些除数和被除数相差较大的情况。
具体操作方法是,先将除数和被除数都取最接近的整十数,然后进行除法运算。
例如,计算48除以7,我们可以将48估算为50,7估算为10,然后进行50除以10,得到5。
这样就可以快速得到一个相对准确的估算值。
二、近似估算法。
近似估算法适用于那些除数和被除数相差不大的情况。
具体操作方法是,先将除数和被除数都取一个较接近的整数,然后进行除法运算。
例如,计算26除以4,我们可以将26估算为25,4估算为5,然后进行25除以5,得到5。
这样就可以快速得到一个近似的估算值。
三、分步估算法。
分步估算法适用于那些较为复杂的除法运算。
具体操作方法是,先将除数和被除数进行分解,然后分别进行估算,最后将结果合并得到最终的估算值。
例如,计算138除以6,我们可以先将138估算为140,6估算为5,然后进行140除以5,得到28。
这样就可以快速得到一个较为准确的估算值。
四、倍数估算法。
倍数估算法适用于那些除数是整数倍数的情况。
具体操作方法是,先找到除数的整数倍数,然后进行估算。
例如,计算96除以8,我们可以先找到96的整数倍数,如90或100,然后进行估算。
如果取90,就是90除以8,得到11;如果取100,就是100除以8,得到12.5。
这样就可以快速得到一个相对准确的估算值。
以上就是几种常用的除法估算方法,它们在不同的情况下都有着各自的适用范围。
通过掌握这些估算方法,我们可以在日常生活和工作中更快速地进行除法运算,提高工作效率。
希望本文的介绍能够帮助大家更好地掌握除法的估算方法,从而在实际应用中更加灵活和高效地运用数学知识。
三年级数学除法估算怎么估才正确1、估算方法:2、四舍五入:0,1,2,3,4,均不进位,5,6,7,8,9,进位。
3、进一法:进一法是去掉多余部分的数字后,在保留部分的最后一个数字上加这样得到的近似值为过剩近似值(即比准确值大)。
4、例如,一条麻袋能装小麦200斤,现有880斤小麦,需要几条麻袋才能装完?用880除以200,商为4,余数为80,即使用4条麻袋不可能装完,因此必须采用进一法用5条麻袋才能装完。
5、去尾法:去尾法是去掉数字的小数部分,取其整数部分的常用的数学取值方法,其取的值为近似值(即比准确值小),这种方法常常被用在生活之中。
6、数量单位估计法:用实际生活中的物体去感知数量单位,实际体验数据的大小多少。
7、扩展资料:8、相关例题:9、一套车票和门票 49 元,四年级一共需要 104 套票,需要准备多少钱呢?方法一:49×104≈5000(元) 50*100方法二:49×104≈5500(元) 50 *110方法三:49×104≈5250(元) 50 *10510、第一种估算方法,因为把 49 看成是 50,把 104 看成 100,50×100 等于5000,计算很方便。
11、第二种估算方法,因为把 49 看成是 50,把 104 看成 110两个数都看大了,这样估算出来的结果 50×110 等于 5500,肯定大于 49×104 的结果,还有多余的一点钱,可以防止有什么意外发生。
12、第三种估算方法,因为把 49 看成是 50,把 104 看成 105,两个数都看大了一点点,这样估算出来的结果 50×105 等于 5250,与准确值很接近。
三年级下册除法估算一、除法估算的意义。
1. 在日常生活中,有时候我们不需要精确地计算除法的结果,只需要知道大概是多少就可以了,这时候就要用到除法估算。
- 例如,我们去商店买东西,知道商品的总价和大概的单价,想快速知道能买多少个商品的时候,除法估算就能帮助我们快速得到一个近似的答案。
2. 除法估算可以帮助我们检验除法计算结果的合理性。
- 如果我们精确计算出一个除法算式的结果,通过估算可以大致判断这个结果是否在合理的范围之内。
1. 除数是一位数的除法估算。
- 例如:估算243÷ 6。
- 方法一:把被除数看成整十数。
- 把243看成240,因为240÷6 = 40,所以243÷6≈40。
- 方法二:把被除数看成整百数。
- 把243看成300(这种方法相对误差可能会大一些),300÷6 = 50,所以243÷6≈50。
一般来说,把被除数看成与它接近的整十数估算更准确。
2. 除数是两位数的除法估算。
- 例如:估算321÷ 80。
- 把321看成320,因为320÷80 = 4,所以321÷80≈4。
- 又如:估算478÷ 62。
- 把478看成480,把62看成60,480÷60 = 8,所以478÷62≈8。
三、除法估算的应用。
1. 解决购物问题。
- 例:一个书包82元,妈妈带了400元,大约能买几个书包?- 把82看成80,400÷80 = 5(个),所以大约能买5个书包。
2. 解决行程问题。
- 例:一辆汽车每小时行驶78千米,行驶480千米大约需要多少小时?- 把78看成80,480÷80 = 6(小时),所以行驶480千米大约需要6小时。
除法估算的方法在数学中,除法是一种常见的运算方法,用来求解两个数的商。
在日常生活和工作中,我们经常需要对数字进行估算,而对于除法的估算方法也是非常重要的。
本文将介绍几种常见的除法估算方法,希望能够帮助大家更好地掌握这一技巧。
首先,我们来介绍一种常见的除法估算方法——近似除法。
这种方法适用于当被除数和除数都是较大的数时,我们可以先将这两个数进行四舍五入,然后再进行除法运算。
例如,如果我们需要计算487除以23的商,我们可以将487四舍五入为490,将23四舍五入为20,然后计算490除以20,得到近似的商。
这种方法简单快捷,适用范围广,是日常生活中常用的一种估算方法。
其次,我们可以利用倍数进行除法估算。
当被除数和除数都是较大的数时,我们可以找到它们的公约数或公倍数,然后利用这些数进行估算。
例如,如果我们需要计算648除以36的商,我们可以发现36是648的约数,因此我们可以将648除以36的商等于648除以36的倍数的商。
这种方法可以减小被除数和除数的数值,使得计算更加简便。
另外,我们还可以利用近似数进行除法估算。
当被除数和除数的数值较大时,我们可以将它们分别用近似数替代,然后进行除法运算。
例如,如果我们需要计算736除以28的商,我们可以将736近似为700,将28近似为30,然后计算700除以30的商。
这种方法在实际应用中非常方便,可以大大简化计算过程。
除了以上介绍的方法,我们还可以利用小数进行除法估算。
当被除数和除数都是小数时,我们可以将它们转化为整数,然后再进行估算。
例如,如果我们需要计算3.6除以0.8的商,我们可以将3.6乘以10得到36,将0.8乘以10得到8,然后计算36除以8的商。
这种方法可以避免小数除法运算的复杂性,使得计算更加简单直观。
总的来说,除法估算是数学中一项非常重要的技巧,它在日常生活和工作中都有着广泛的应用。
通过掌握各种不同的估算方法,我们可以更加灵活地进行数值计算,提高工作效率,减少错误发生。
除法估算的方法在日常生活和工作中,我们经常需要进行数学计算,而除法是其中一种基本的运算方式。
在进行除法计算时,有时候我们需要快速估算出结果,而不是进行精确的计算。
本文将介绍一些常用的除法估算方法,帮助大家在实际应用中更加便捷地进行数学计算。
一、近似数法。
近似数法是一种简单的估算方法,它适用于除数和被除数都是整数的情况。
具体步骤如下:1. 将除数和被除数都取最接近的整数;2. 进行除法运算,得到的商即为估算结果。
例如,对于除数23和被除数7,我们可以取最接近的整数,即20和7,然后进行除法运算,得到的商为2.86。
这样就可以快速估算出结果。
二、位数调整法。
位数调整法适用于除数和被除数都是小数的情况,它通过调整小数点位置来进行估算。
具体步骤如下:1. 将除数和被除数都扩大或缩小相同的倍数,使得除数成为整数;2. 进行除法运算,得到的商即为估算结果。
例如,对于除数2.3和被除数0.07,我们可以将小数点向右移动一位,得到新的除数23和被除数0.7,然后进行除法运算,得到的商为3.28。
这样就可以快速估算出结果。
三、倍数估算法。
倍数估算法适用于被除数是整数,除数是小数的情况,它通过将除数扩大为整数来进行估算。
具体步骤如下:1. 将除数扩大为整数,得到一个近似的整数;2. 进行除法运算,得到的商即为估算结果。
例如,对于除数0.4和被除数25,我们可以将除数扩大为1,然后进行除法运算,得到的商为25。
这样就可以快速估算出结果。
四、分解估算法。
分解估算法适用于较大的除数和被除数,它通过分解除数和被除数来进行估算。
具体步骤如下:1. 将除数和被除数分解为较小的数,使得计算更加简便;2. 进行估算运算,得到的结果即为估算结果。
例如,对于除数365和被除数13,我们可以将除数365分解为300和60,被除数13分解为10和3,然后进行估算运算,得到的结果为30。
这样就可以快速估算出结果。
以上就是一些常用的除法估算方法,它们可以帮助我们在实际应用中更加便捷地进行数学计算。
除法的估算方法点拨(1)除数是一位数的除法估算,可以把被除数估成整百、整十或几百几十的数,再进行口算,有时也要看被除数想口诀,把被除数看作是乘法口诀中的积来估算比较简便;(2)除数是两位数的除法估算:先求除数的近似数省略除数十位后面的尾数,再去除被除数的近似数—被除数最高位如果比除数的最高位上的数大,则省略被除数最高位后面的尾数;如果比除数最高位上的数小,则省略被除数前两位后面的尾数。
除数是一位数除法的估算教案【教学目标】使学生体会学习除法估算的必要性,了解除数是一位数除法估算的一般方法。
引导学生根据具体情境合理进行估算,培养学生良好的'思维品质和应用数学的能力。
【教学重、难点】在具体的情境中进行除法估算,表达估算的思路。
【教学过程】复习旧知,巩固技能:师出示口算卡片:1800÷3 2400÷6 250÷5 420÷62700÷9 140÷7 120÷6 5400÷6学生直接说得数。
看哪一组开得又对又快。
同桌一人说算式一人回答,答对的就坐下。
(二)引入情境,激发兴趣:出示教学挂图,呈现农贸市场的情境图师:上一节课我们共同为赵伯伯、李阿姨和王叔叔解决了难题,这节课我们继续为李叔叔他们三人解决困难,好吗?他们遇到了什么难题呢?我们一起来看看吧。
2、呈现李叔叔三人的情境图:师:你们看,李叔叔他们三人想怎么把蔬菜运走呀?(用三辆车一次把这124箱蔬菜全部运完。
)课件演示:小精灵聪聪出现了:你们能提出什么问题吗?同桌交流、讨论。
请学生提出问题,老师板书:李叔叔他们三人平均每人大约运多少箱?师:这道题该怎么解决呢?(让学生讨论)(二)自主探索,学习新知:师引导:你能大概猜一下他们每一个人运了多少箱吗?可以用什么方法快速地解决它呢?生讨论后反馈结果。
请一学生叙述估算的过程。
可能出现以下几种情况:把124看成120,120÷3=40(箱)把124拆成120和4,再分别和3除,每人平均分了40箱,还剩4箱,又分了一次,最后还剩下一箱,每个人大约运了41箱。
除法的估算一、教学内容人教版《义务教育课程标准实验教科书数学》三年级下册P16除法的估算。
二、教学准备:课件三、教学目标与策略选择1、目标确定学情分析:本课是在学生已经学习了“近似数”“加减法估算”“因数是一位数的乘法估算”的基础上进行教学的。
但它与“加、减、乘法估算”又有所不同,后者一般都运用“四舍五入”(学生有所感悟)法取出近似数再计算,而除法的估算要根据除数来选择被除数的近似数,不一定用“四舍五入”法,所以教学中,我们要引导学生紧紧抓住估算的本质轻松地算,合理地算。
教学目标:①经历估算的过程,探索并总结估算的一般方法,并能根据具体情境合理估算。
②会表达估算的思路,在解决实际问题的过程中体会估算的价值,培养初步的估算意识。
③感受数学与生活的密切联系,渗透思想品德教育。
2、教学策略选择设计意图:估算教学的意图简而言之不外乎两个方面:学会估算方法,培养估算意识。
本课中,我创设了“走进校园”的情景串,让学生围绕校园里发生的人、事等问题展开有层次的讨论,在估算方法得到拓展提高的过程中,实现估算意识的积累发展。
教学策略:①从已知中学。
虽然除法的估算方法与已学的加、减乘法有些不同,但教学中,我没有另立门户,而把它放入估算大系统中,引导学生紧紧抓住估算的本质,探索、感悟除法估算的方法。
②在生活中学。
创设体现需要估算的现实背景,让学生从中体验价值,感悟方法,提高能力。
③在思考、讨论、反省中学。
在独立思考和小组交流的基础上组织讨论,分析、反思、比较各种算法,使学生能为每个问题提供最适宜的解决方案。
四、教学流程设计及意图五、教学片段实录[片段一]组织讨论,总结方法。
(学生自主探索250÷6的估算方法,巡视中发现所有学生都能估算。
汇报中只出现了教学设计中的1、2、4三种方法。
)师:这三种方法你最喜欢哪种方法?为什么?生1:第一种,因为它很好算。
师:这是聪明人的选择。
生2:第二种,因为它不仅好算,而且与实际结果非常接近。
除法估算的方法首先,我们可以利用近似数进行除法估算。
所谓近似数,即指与给定数最接近的一个数。
例如,当我们需要计算48除以7时,我们可以先找到与48最接近的倍数,即49。
然后,再计算49除以7得到7,这样我们就得到了一个较为接近的商,即7。
通过利用近似数进行除法估算,我们可以快速地得到一个大致正确的结果。
其次,我们可以利用分数进行除法估算。
有时候,我们需要计算的数并不是整数,而是一个分数。
在这种情况下,我们可以将分数进行化简,然后再进行除法估算。
例如,当我们需要计算2/3除以4/5时,我们可以先将这两个分数化简为最简分数,即10/15除以12/15。
然后,我们可以将被除数和除数的分子相乘,分母相乘,得到一个新的分数,再进行估算得到结果。
此外,我们还可以利用近似商进行除法估算。
有时候,我们并不需要得到一个精确的商,只需要一个大致的结果即可。
在这种情况下,我们可以利用近似商进行除法估算。
例如,当我们需要计算135除以8时,我们可以先估算出135大约是8的多少倍,然后得到一个近似的商。
这样一来,我们可以在不需要精确结果的情况下,快速地得到一个估算值。
最后,我们还可以利用除法的性质进行估算。
除法有着许多性质,例如乘除法逆运算性质、除法分配律等。
利用这些性质,我们可以将一个复杂的除法问题转化为若干个简单的除法问题,再进行估算得到结果。
这样一来,我们可以在不失准确性的前提下,更快地完成除法运算。
总的来说,除法估算是一种非常实用的技能,它能够帮助我们快速、准确地进行数学计算。
通过利用近似数、分数、近似商和除法的性质等方法,我们可以在日常生活和工作中更好地应用除法估算,提高工作效率和生活质量。
希望通过本文的介绍,大家能够更好地掌握除法估算的方法,从而在实际应用中更加游刃有余。
除法估算总结1. 引言除法是数学中的基本运算之一,是指将一个数(被除数)分成若干等份的过程。
在实际生活中,我们经常需要进行除法运算的估算,以快速得到一个近似的结果。
本文将总结几种常用的除法估算方法,帮助大家更好地进行除法运算。
2. 调整被除数当被除数过大或过小时,我们可以通过调整被除数,使得计算更加方便。
下面介绍两种常见的被除数的调整方法。
2.1 移动小数点当被除数较大时,可以通过移动小数点,将除法运算转化为整数的乘法运算。
具体步骤如下:1.将被除数小数点向左移动,使得小数部分变为整数。
2.将除数的小数点向左移动相同的位数。
3.将移动后的被除数和除数进行整数相除。
4.最后将商的小数点向右移动相同的位数,得到最终结果。
注意:移动小数点的位数应当根据具体问题来决定,以保证计算结果的准确性。
2.2 调整为整数当被除数和除数都是小数时,可以通过扩大倍数,将小数转化为整数,从而进行计算。
具体步骤如下:1.将被除数和除数都乘以10的适当次方,使得小数点后面没有数字。
2.将调整后的被除数和除数进行整数相除。
3.最后将商除以10的适当次方,得到最终结果。
3. 估算商的大小为了更快地得到估算的结果,我们可以先估算商的大小,再进行精确的计算。
下面介绍两种常用的估算商的方法。
3.1 精确估算精确估算是指在进行除法运算时,使用精确的数值进行计算。
这种方法适用于需要较高精度的计算场景。
具体步骤如下:1.将被除数和除数进行精确计算,得到精确的商。
2.进行进一步的运算,求得更精确的结果。
3.2 快速估算快速估算是指通过一定的规则,快速得到商的近似值。
这种方法适用于需要快速估算的场景。
下面介绍两种常见的快速估算方法。
3.2.1 除数放大在除法运算中,如果除数放大了n倍,那么商也会放大n倍。
因此,我们可以通过放大除数,得到一个更大的商的估计值。
具体步骤如下:1.将除数乘以一个整数,使得计算更加方便。
2.将调整后的被除数和除数进行整数相除。
多位数除法的估算技巧在进行多位数除法计算时,估算技巧可以帮助我们快速得到近似答案,极大提高计算效率。
本文将为您详细介绍多位数除法的估算技巧。
一、将除数调整为整十、整百或整千的数在进行多位数除法计算时,我们首先可以将除数调整为最接近它的整十、整百或整千的数。
这样可以简化计算过程,同时使估算结果更加准确。
例1:计算432 ÷ 58将除数58调整为60,然后进行计算。
432 ÷ 60 ≈ 7.2二、利用倍数关系进行估算当除数和被除数之间存在倍数关系时,我们可以利用这一关系进行估算。
例2:计算756 ÷ 18我们可以将除数18调整为被除数756的约数,如9。
756 ÷ 9 = 84然后,根据18是9的两倍,我们可以将结果除以2。
84 ÷ 2 = 42三、交叉相乘法交叉相乘法是一种常用的多位数除法估算方法。
其基本原理是将除数和被除数的位数减少,然后进行交叉相乘,最后根据乘积与原被除数的关系来估算商。
例3:计算864 ÷ 351.将被除数864的末尾两位64与除数35的个位数5交叉相乘,得到320。
2.估算320是864的几倍,可以得到约为2.8倍。
3.将除数35乘以2.8,得到98。
因此,864 ÷ 35 的估算结果约为98。
四、利用四舍五入法在进行多位数除法计算时,我们可以将除数和被除数四舍五入到最接近的整十、整百或整千的数,然后进行计算。
例4:计算975 ÷ 321.将除数32四舍五入为30,被除数975四舍五入为1000。
2.计算1000 ÷ 30,得到约33.3。
五、总结多位数除法的估算技巧主要包括将除数调整为整十、整百或整千的数、利用倍数关系、交叉相乘法和四舍五入法。
掌握这些估算技巧,可以帮助我们快速进行多位数除法计算,提高计算效率。
除法的估算
教学内容:除法的估算(课本第16页例2)
教学目标:1、使学生体会学习除法估算的必要性,了解除数是一位数除法估算的一般方法。
2、引导学生根据具体情境合理进行估算,培养学生良好的思维品质
和应用数学的能力。
教学重点:使学生掌握除数是一位数除法估算的一般方法。
教学难点:在具体的情境中进行除法估算,表达估算的思路。
教学准备:课件。
教学课时:一课时
教学过程:
一、复习导入:
课件出示口算题:
1800÷3 2400÷6 250÷5 420÷6
2700÷9 140÷7 120÷6 5400÷6
学生开火车直接说得数。
看哪一组开得又对又快。
板书课题:除法的估算
二、探究新知。
1、出示教学挂图,呈现农贸市场的情境图
师:上一节课我们共同为赵伯伯、李阿姨和王叔叔解决了难题,这节课我们继续为李叔叔他们三人解决困难,好吗?他们遇到了什么难题呢?我们一起来看看吧。
2、呈现李叔叔三人的情境图:
师:你们看,李叔叔他们三人想怎么把蔬菜运走呀?
(用三辆车一次把这124箱蔬菜全部运完。
)
课件演示:小精灵聪聪出现了:你们能提出什么问题吗?
同桌交流、讨论。
请学生提出问题,老师板书:
李叔叔他们三人平均每人大约运多少箱?
师:这道题该怎么解决呢?(让学生讨论)
(二)自主探索,学习新知:
师引导:你能大概猜一下他们每一个人运了多少箱吗?可以用什么方法快速地解决它呢?
生讨论后反馈结果。
请一学生叙述估算的过程。
可能出现以下几种情况:
(1)、把124看成120,120÷3=40(箱)
(2)、把124拆成120和4,再分别和3除,每人平均分了40箱,还剩4箱,又分了一次,最后还剩下一箱,每个人大约运了41箱。
师板书:124÷3≈40(箱)
或者124=120+4 120÷3=40 4÷3=1 (1)
124÷3≈41(箱)
(三)小结:
师:刚才你们是用什么方法很快地帮李叔叔解决难题的?(估算)这节课让你学到了什么知识?(学生发言)在生活中你还认为哪些地方用得到估算呢?
估算经常在我们的生活中出现,它是一种非常有用的方法,当我们遇到数字较大的题目,比如分东西,而你又不能准确地算出该平均分多少物品给每个人时,我们就可以用估算来计算。
三、巩固练习
做P16 “做一做”第1、2题
1、学生说说题意,并说一说为什么260可以看作240或者280。
之后解答这道题目。
2、要求学生独立完成本道题,之后进行全班性讲评。
四、课堂总结:
在这堂课上你学会了什么?你有什么收获?
五、课堂作业:
完成练习三第3题。
六:板书设计:
除法的估算
124÷3≈40(箱)
124 = 120 + 4
120÷3=40(箱)4÷3=1(箱)……1(箱)
124÷3≈41(箱)。