乘除法速算方法
- 格式:doc
- 大小:18.00 KB
- 文档页数:8
第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B) ×C =A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9) =236×999=236×(1000-1) =236000-236 =235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
小学数学速算方法与技巧小学数学速算方法与技巧1、头差1尾合10的两个两位数相乘的乘法速算,即用较大的因数十位数的平方减去它的个位数的平方。
例如“48x52=2500-4=2496。
2、首同尾合10的两个两位数相乘的乘法速算,即其中有一个十位数上的数加1, 再乘以另一个数的十位数,得到的积做两个数相乘的积的百位、十位,再用两个数个位上的数的积作为两个数相乘的积的个位、十位。
例如“14x16=224” ,其中“4x6=24”,24分别作为个位、十位,(1+1) x1=2”,2作为百位,即可得到答案224。
假如两个个位数相乘的积缺乏两位数,那么需要在十位上补0。
3、利用“估算平均数”速算。
例如“712+694+709+688=? ”,观察算式得到平均数7。
0,将每个数与平均数的差累计,可得12-6+9-12=3,最后计算为“700 x 4+3=2803”。
4、最后,还需要熟记一些常用的数据,例如乘法口诀表、圆周率、1至20的平方数、20以内的质数表等等。
当孩子掌握这些知识后,最主要的还是要做多种多样的速算练习。
拓展阅读:小学数学不好怎么提升对于刚入门的小学生来说,数学是个很模糊的概念;或者,数学在他们看来,只不过是口袋里的零花钱罢了,所以数学学得再好似乎都不影响正常生活。
久而久之,这门功课就被淡忘,因此就学不好了。
所以应当从培养兴趣开场。
一、诱发学生的学习兴趣。
“兴趣是最好的老师”,“没有兴趣的学习,无异于一种苦役;没有兴趣的地方,就没有智慧和灵感。
”入迷才能叩开思维的大门,智力和才能才能得到开展。
作为老师,要擅长诱发孩子的学习兴趣。
1、以生动的实例,描绘枯燥的概念,使比拟抽数学知识,利用数学知识,来进步孩子学习的兴趣。
2、利用思辨问题或实验结论作引导。
这样既可激发孩子的学习兴趣又可启发孩子的考虑。
3、提出矛盾的问题,引起学生的疑惑。
学消费生疑惑,探求真理的愿望,也是激发学习兴趣的手段之一。
4、诱发求知欲。
100以内的速算口诀
当我们谈到速算口诀时,通常是指能够快速计算加减乘除的技巧。
以下是一些在100以内进行速算的口诀:
1. 加法口诀:
两位数相加,先加个位,再加十位,进位记得加。
例如,47 + 38,先计算7+8=15,写下5,进位1,再计算4+3+1=8,所以答案是85。
2. 减法口诀:
两位数相减,先减个位,再减十位,借位记得减。
例如,73 29,先计算3-9,借位后变成13-9=4,再计算7-2=5,所以答案是44。
3. 乘法口诀:
乘法口诀表是最基本的速算工具,熟练掌握乘法口诀表可以快速进行大部分的乘法计算。
4. 除法口诀:
除法口诀需要掌握除法的基本原理和技巧,例如,对于除法计算,可以通过估算、分解因数等方法来快速计算。
总的来说,速算口诀是通过熟练掌握基本的加减乘除口诀,以及灵活运用进位、借位、分解因数等技巧来实现快速计算。
希望以上口诀能帮助你更快地进行100以内的速算。
四年级乘法除法速算巧算TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。
实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B)×C=A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。
例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
解:原式=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
乘除法中的速算与巧算知识储备整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。
要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。
1、乘法的运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc2、除法的运算性质(1)a÷b=(a×c)÷(b×c) (c≠0)(2)a÷b=(a÷c)÷(b÷c) (c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分配性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。
4、两数之和乘以这两数之差的积等于这两个数的平方差。
(a+b)×(a-b)=a2-b25、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。
大家要记住这些结果。
思维引导例1、计算:(1)999+999×999 (2)1111×9999(3)125×25×32 (4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999 (2)140×299(3)808×125 (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便方法计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便方法计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×÷÷跟踪练习:计算:199999998×2200220022÷18÷100010001例11、计算:19981999×19991998-19981998×跟踪练习:计算:1997×1999-1996×2000例12、末尾有几个零?跟踪练习:计算:能力对接1、 将相应的序号填入括号中。
小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识
点就可以了。
对于新的知识接受,一定要让孩子在学校认真听讲,跟着老
师的思路走,做好笔记,即使有不懂的地方也要及时的请教老师或者同学。
下面总结了小学“速算乘除法”的8大技巧;让孩子数学成绩迅速提升!家长和孩子一起来学学。
1、个位数是“1”
速算口诀:头乘头;头加头;尾是1(头加头如果超过10要进位)
2、十位数是“1”
速算口诀:头是1;尾加为;尾乘尾(超过10要进位)
3、个位数都是“9”
速算口诀:头数各加 1 ;相乘再乘10;减去相加数;最后再放 1
4、十位数都是“9”
速算口诀:100减前数;再被后减数。
100减大家;结果相互乘;占2位
5、头相同;尾互补(尾数相加为10)速算口诀:头乘头加1;尾乘尾占2位
6、头互补;尾相同
速算口诀:头乘头加尾;尾乘尾占2位
7、互补数乘叠数
速算口诀:头加1再乘头;尾乘尾占2位
8、其中一个是11
速算口诀:首尾都不动;相加放中间。
乘除法速算与技巧一、特殊类型的两位数相乘1、首同尾和10的两位数相乘。
一首数加1后,头×头与尾×尾连写就是所求的乘积。
如果出现尾×尾小于10,那么就在其前面添一个“0”。
例如:87×83= =7221 如:41×49= =2009练习: 11×19= 27×23= 54×56= 92×98=2、尾同首和10的两位数相乘。
尾同首和10的两位数相乘,速算方法:(头×头+尾)与尾×尾连写就是结果。
例如:23×83= =1909练习:34×74= 69×49= 19×99= 17×97=3、同数与和10数相乘。
同数指个位数与十位数相同的一个两位数的简称。
如99、77等。
和10数是指个位数与十位数加起来等于10的一个两位数。
如64、73等。
口诀:找出和10数,在和10数的首位数加1后,头×头与尾×尾连写。
如:28×33= = 924口算练习:82×77= 64×33= 46×55= 73×22=19×88= 91×88= 99×46=(二)10-20之间的两位数相乘。
口诀:尾×尾,写在后;尾+尾,写中间;头×头,写前边;满+要进位,按照这个口诀计算,要从后位算起,向前位数进位。
例:13×12= = 156 17×19= =323。
口算练习:12×17= 14×13= 16×15= 13×12=(三)、两位数的平方。
口诀:尾×尾,写在后 2×头×尾,写在中头×头,写在前满+要进位。
例:12平方= =144 36平方= =1296练习:232= 253= 286= 298=(四)任意两个两位数相乘。
乘除法速算技巧范文一、乘法速算技巧:1.乘法交换律:两个数相乘,交换两个数的位置,积不变。
例如:3×4=4×3=12,可以根据需要灵活变换位置进行计算。
2.乘法分配律:一个数乘以另外两个数之和,等于它分别乘以这两个数之和的和。
例如:3×(4+5)=(3×4)+(3×5)=27,通过分配律可以将乘法运算进行分解,使计算变得简单。
3.乘法结合律:三个数相乘,可以先计算其中两个数的积,再与另外一个数相乘,结果相同。
例如:2×3×4=2×(3×4)=24,通过结合律可以将复杂的乘法运算化简成简单的两个数相乘。
4.乘法中的零:任何数与零相乘,结果都为零。
例如:7×0=0,0×9=0,所以在乘法运算中遇到零,可以直接得出结果。
5.乘法中的九法:一个数乘以9,可以通过将这个数的个位数变成9,十位数减1得到结果。
例如:7×9=63,个位数为3,所以结果为63、这个技巧对于乘以大于9的数也适用。
例如:13×9=117,个位数为7,十位数减1得到结果。
6.乘法中的十法:一个数乘以10,结果就是这个数在末尾添加一个0。
例如:8×10=80,9×10=90,所以乘以10时,可以直接在末尾添加一个0。
7.乘法中的乘以11法:一个两位数乘以11可以通过将这个两位数的个位数放在结果的个位数上,将这个两位数的十位数放在结果的十位数上,得到结果。
例如:34×11=374,3放在个位数上,4放在十位数上,得到结果374二、除法速算技巧:1.除法的减法法:将被除数减去除数,再将减数的差减去除数,直到得到不能再减的差为止,这时计算减数的次数就是商,最后剩下的差就是余数。
例如:35÷5=7,35减去5得到30,再减去5得到25,以此类推,共减了7次,商为7,余数为0。
2.除法的分配律:一个数除以另外两个数之和,等于它分别除以这两个数的和。
小学三年级是学生接触数学的关键时期,良好的速算和巧算技巧可以帮助他们更好地理解和掌握数学知识。
下面是一些适合小学三年级学生的速算和巧算技巧:1.知识点梳理:首先,要帮助学生梳理和掌握好基本的数学知识点,如加减法、乘除法的口诀和技巧。
例如,学生可以通过加减法口诀表来熟悉数字之间的加减法关系,并可以用乘法口诀表来快速计算乘法运算。
2.数字分解:学生可以通过数字的分解来进行速算。
例如,对于两位数相加相减的计算,在计算过程中,可以将两位数拆分为个位数和十位数,然后进行运算。
对于乘法,学生可以将一个较大的数拆分为易于计算的数,然后进行运算。
3.近似计算:近似计算是一种巧算的技巧,可以快速得到近似答案。
学生可以将复杂的计算问题简化为简单的计算,然后进行近似计算。
例如,将一个数取近似值,然后进行计算,最后再修正结果。
4.列竖式计算:列竖式计算是一种有效的计算方法,可以帮助学生进行加减乘除法的计算。
学生可以按照正确的步骤进行计算,将数字对齐,并逐位进行运算。
5.快速乘除法:对于较大的乘法和除法问题,学生可以通过一些特殊的规律和技巧进行快速计算。
例如,学生可以利用乘法法则中的分配律和结合律来简化乘法计算,或者通过减法法则中的除法运算来简化除法计算。
6.数量关系的转化:对于一些涉及到数量转化的问题,学生可以通过一些简单的技巧来求解。
例如,将百分数转化为小数,然后进行计算;或者将分数转化为小数,然后进行比较大小等。
7.倍数关系:学生可以通过找到数与数之间的倍数关系来进行速算。
例如,学生可以利用倍数关系快速计算两个数的最小公倍数或最大公约数。
8.抽象问题的转化:对于一些抽象的问题,学生可以尝试将其转化为具体的数学问题进行求解。
例如,对于一些关于物体的问题,可以尝试将其转化为长度、面积或体积的问题进行求解。
通过以上的速算和巧算技巧,小学三年级的学生可以更加灵活地运用数学知识,提高计算速度和准确性。
同时,这些技巧也可以让学生更好地理解数学概念和思维方法,培养他们的数学思维能力。
整数乘除法的速算乘除法速算与技巧一、特殊类型的两位数相乘1、首同尾和10的两位数相乘。
一首数加1后,头×头与尾×尾连写就是所求的乘积。
如果出现尾×尾小于10,那么就在其前面添一个“0”。
例如:87×83= =7221 如:41×49= =2009练习: 11×19= 27×23= 54×56= 92×98=2、尾同首和10的两位数相乘。
尾同首和10的两位数相乘,速算方法:(头×头+尾)与尾×尾连写就是结果。
例如:23×83==1909练习:34×74= 69×49= 19×99= 17×97=3、同数与和10数相乘。
同数指个位数与十位数相同的一个两位数的简称。
如99、77等。
和10数是指个位数与十位数加起来等于10的一个两位数。
如64、73等。
口诀:找出和10数,在和10数的首位数加1后,头×头与尾×尾连写。
如:28×33= = 924口算练习:82×77= 64×33= 46×55= 73×22=19×88= 91×88= 99×46=(二)10-20之间的两位数相乘。
口诀:尾×尾,写在后;尾+尾,写中间;头×头,写前边;满+要进位,按照这个口诀计算,要从后位算起,向前位数进位。
例:13×12== 156 17×19= =323。
口算练习:12×17= 14×13= 16×15= 13×12=(三)、两位数的平方。
口诀:尾×尾,写在后2×头×尾,写在中头×头,写在前满+要进位。
例:12平方= =144 36平方= =1296 练习:232= 253= 286= 298=(四)任意两个两位数相乘。
速算乘除法的八大技巧
1. 嘿,倍数关系巧利用呀!比如计算48×5,咱可以先算 48 的一半也
就是 24,然后再乘以 10,哇塞,是不是一下子就算出来是 240 啦!这多
简单快捷呀!
2. 哇哦,凑整法超好用呢!就像25×36,把 36 拆成4×9,那25×4 不就
是 100 嘛,再乘以 9,答案不就出来啦,这不就轻松搞定了嘛!
3. 哎呀呀,同因数提取有妙招!好比99×56+56,这里都有 56 这个因数呀,把 56 提出来,变成56×(99+1),这不就快速得出结果啦!
4. 嘿哈,除法的转化可别忘!像480÷25,可以变成480÷(100÷4),等于480÷100×4,这样算起来多容易呀!
5. 哇塞,数字拆分真神奇啊!例如125×24,把 24 拆分成8×3,125×8
那可是 1000 呀,再乘以 3,是不是好快呀!
6. 嘿嘿,小数点移动要注意哦!像×40,把小数点向右移动两位变成25,40 小数点向左移动两位变成,结果不就轻松得到 10 啦!
我觉得这些速算乘除法的技巧真的超实用,学会了能让我们的计算速度大大提升呢,你们说是不是呀!。
知识要点二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠ ⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)乘除法速算与巧算两人和倍乘5、15、25、125【例 1】 下面这些题你会算吗?(1)125(408)⨯+ (2)(1004)25-⨯ (3)(1008)25-⨯【分析】 (1)125(408)125401258500010006000⨯+=⨯+⨯=+=(2)(1004)251002542525001002400-⨯=⨯-⨯=-= (3)(1008)251002582525002002300-⨯=⨯-⨯=-=【例 2】 下面这道题怎样算比较简便呢?看谁算的快!2625⨯【分析】 26不能被4整除,但26可以拆成642⨯+,这样2625⨯,可转化为6425⨯⨯再加上225⨯,这样就可速算了. 原式64225=⨯+⨯()642522560050650=⨯⨯+⨯=+=【例 3】 你知道下题怎样快速的计算吗?⑴786 5 ⨯ ⑵12425⨯ ⑶96125 ⨯ ⑷75258⨯⨯ 【分析】 我们刚刚学过了乘 5,25,125的速算法,大显身手练一下吧!⑴7865786(52)2786023930⨯=⨯⨯÷=÷=或 786539325393103930⨯=⨯⨯=⨯= ⑵12425124(254)41240043100⨯=⨯⨯÷=÷=或1242531425311003100⨯=⨯⨯=⨯=⑶9612596(1258)896000812000 ⨯=⨯⨯÷=÷=或 9612512812512100012000⨯=⨯⨯=⨯= ⑷7525825475210015015000⨯⨯=⨯⨯⨯=⨯=【例 4】 计算:813125⨯⨯= 【分析】 根据乘法凑整原则81312581251310001313000⨯⨯=⨯⨯=⨯=去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.【例 5】 为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?192564125⨯⨯⨯ 【分析】 把64分成482⨯⨯,用乘法结合律便可速算.原式2541258192=⨯⨯⨯⨯⨯()()()1001000383800000=⨯⨯=【例 6】 计算:1733212525⨯⨯⨯. 【分析】 原式1734812525=⨯⨯⨯⨯()173425812517300000=⨯⨯⨯⨯=()()【例 7】 请快速计算下面各题. ⑴200425⨯ ⑵125792⨯ 【分析】 ⑴200425(20004)2520002542550100⨯=+⨯=⨯+⨯=⑵125792125(8008)1258001258100010010001000(1001)99000⨯=⨯-=⨯-⨯=⨯-=⨯-=【例 8】 456212525548⨯⨯⨯⨯⨯⨯ 【分析】 原式456252541258=⨯⨯⨯⨯⨯⨯()()()456101001000=⨯⨯⨯ 456000000=【例 9】 聪明的你也来试试吧!⑴2415 ⨯ ⑵8475⨯ ⑶3975 ⨯ ⑷56625 ⨯【分析】 ⑴2415(24242)10(2412)10360⨯=+÷⨯=+⨯=⑵8475(214)(253)(213)(425)631006300⨯=⨯⨯⨯=⨯⨯⨯=⨯= ⑶3975 (401)7540751753000752925⨯=-⨯=⨯-⨯=-=⑷56625(78)(1255)(75)(8125)35100035000⨯=⨯⨯⨯=⨯⨯⨯=⨯=【例 10】 请你简便计算.⑴5365⨯ ⑵63815⨯ ⑶3225⨯ ⑷6875⨯【分析】 ⑴5365536(52)2536022680⨯=⨯⨯÷=÷=⑵63815(6386382)109570⨯=+÷⨯= ⑶322532(254)432004800⨯=⨯⨯÷=÷=⑷6875174253173(425)5100⨯=⨯⨯⨯=⨯⨯⨯=【例 11】 计算:125161119⨯-⨯=____________. 【分析】 根据乘法凑整原则整理为125161119⨯-⨯ ()=125829992000100012000100011001⨯⨯-=--=-+=【例 12】 计算:()450002590÷⨯=【分析】()450002590÷⨯()=450005045=450005045=100050=20÷⨯÷÷÷乘9、99、999【例 13】 下面各题怎样算简便呢?⑴129⨯ ⑵1299⨯ ⑶12999⨯【分析】 ⑴利用公式,可以得出结果:12912012108⨯=-=;⑵12991200121188⨯=-=,此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘99”.的补数是88去11112=118812× 99⑶12999120001211988⨯=-=,此题可用小技巧:“去1添补,中间隔9”法. 注意:只适用于“两位数乘999”.中间隔的补数是88去1是12=1198812×【例 14】 计算:123456789876543219⨯=【分析】 原式()21111111119=⨯ 999999999111111111=⨯111111111000000000111111111=- 111111110888888889=【例 15】 算式1234567898765432163⨯值的各位数字之和为 。
小学数学“加、减、乘、除”速算技巧掌握良好的速算技巧,是让孩子们在最短的时间内,提高数学成绩的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。
下面就让我们一起学习加减乘除除法的速算技巧吧。
加法的神奇速算法一、加大减差法1、口诀前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、例题1376+98=1474 计算方法:1376+100-23586+898=4484 计算方法:3586+1000-1025768+9897=15665 计算方法:5768+10000-103二、求只是数字位置颠倒两个两位数的和1、口诀一个数的十位数加上它的个位数乘以11等于和2、例题47+74=121 计算方法:(4+7)x 11=12168+86=154 计算方法:(6+8)x 11=15458+85=143 计算方法:(5+8)x 11=143三、一目三行加法1、口诀提前虚进一,中间弃9,末位弃102、例题365427158644785963+742334452———————1752547573方法:从左到右,提前虚进1;第1列:中间弃9(3和6)直接写7;第2列:6+4-9+4=5 以此类推...最后1列:末位弃10(8和2)直接写3 注意:中间不够9的用分段法,直接相加,并要提前虚进1;中间数字和大于19的,弃19,前边多进1,末位数字和大于19的,弃20,前边多进1 减法的神奇速算法一、减大加差法1、例题321-98=223计算方法:减100,加28135-878=7257计算方法:减1000,加12291321-8987= 82334计算方法:减10000,加10132、总结被减数减去减数的整数,再加上减数与整数的差,等于差。
二、求只是数字位置颠倒两个两位数的差1、例题74-47=27计算方法:(7-4)x9=2783-38=45计算方法:(8-3)x9=4592-29=63计算方法:(9-2)x9=63被减数的十位数减去它的个位数乘以9,等于差。
1运算定律1.加法交换律两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2.加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3.乘法交换律两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4.乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5.乘法分配律两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6.减法的性质从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
2运算法则1.整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4.整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
5. 小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
速算方法与技巧口诀
一、快速乘法口诀
1.乘以0,答案就是0。
2.乘以1,答案还是原来的数。
3.乘以2,答案变两倍。
4.乘以5,答案除以10再乘以原数。
5.乘以9,答案乘以10再减去原数。
6.乘以10,在原数后面添个0。
7.乘以11,是原数的各位数字连起来得到的结果。
8.乘以25,答案除以4再乘以100。
9.乘以50,答案除以2再乘以100。
10.乘以99,答案减去原数。
二、快速除法口诀
1.除以1,答案还是原来的数。
2.除以2,答案是原来的数除以2
3.除以5,答案是原来的数除以10。
4.除以9,答案是原来的数除以10再乘以9
5.除以10,答案就是原来的数末尾去掉0。
6.除以11,先将从右到左的奇位数字相加,再将从右到左的偶位数字相加,两个和相差的绝对值就是答案。
7.除以25,答案是原来的数除以100再乘以4
8.除以50,答案是原来的数除以100再乘以2
9.除以99,答案是原来的数除以100再乘以99
三、快速平方口诀
1.以5结尾的数字的平方,将数字乘以其后一位的数字再在结果后面添上25
2.以10结尾的数字的平方,结果是原来的数去掉末尾的0再乘以原数加1
3.以其他数字结尾的数字的平方,计算以该数字为个位数的平方,再将结果赋予个位,其他位依次减1
四、小数乘除法口诀
1.乘法口诀:小数位数相加,几位化几位。
2.除法口诀:被除数小数点后移动几位,除数小数点前移动几位,商小数点后移动几位。
乘除法速算方法
乘除法速算方法
你可以到书城买本速算的书来看看啊
例如:11×12=132,结果是这样来的:将11这个数字拆开为“1”和“1”,
将12两个数字相加,即1+2=3(作为中间数)由于11×12的末尾是2,所以得数的末尾也就是2,将三个数字连在一起就是132..
像11×13=143 11×15=165 11×17=187..
这些知识速算书必定有的,当然在看速算书的基础上还要经常做口算第【1】讲;乘除法的速算、
【专题要点】
乘除法速算的基本思路和加减法速算一样,都是“凑整”。
根据题中数的特点,把能凑整的数利用乘、除法的运算定律和性质进行凑整的计算。
几种特殊的巧算方法如下:
1、“头同尾合十”的巧算方法;用十位上的数乘以十位上的数加1的积作为前两位数,用个位上的数相乘作为后两位数(如果积不满十,十位上要补写0)。
2、“尾同头合十”的巧算方法:十位上数字的乘积加上个位数字的和,再乘以100,最后积上个位数字的积。
3、两位数、三位数乘11的方法:(1)头做积的头;(2)尾做积的尾;(3头尾相加(或三位数的前两位数与后两位数的和)作积的中间数。
如果满10(100)要向前进“1”。
例题1、简便计算下列各题
(1)4×8×25×125
(2)(400-125)×8
=(4×25)×(8×125)
(利用乘法分配律)
=100×1000
=400×8-125×8
=100000
=3200×1000
遇到因数5,找个因数2 =2200
遇到因数25,找个因数4
遇到因数125,找个因数8
(3)8×64+61×8 (4)98×101
(利用乘法分配律)
(利用乘法分配律)
=8×(64+61)
=98×(100+1)
=8×125
=98×100+98×1
=1000
=9800+98
=9898
例题2、计算下面个题
(1)425÷25 (2)7900÷25÷4
=(425×4)÷(25+4)
=7900÷(25×4)
=1700÷100
=7900÷100
=17
=79
两个数相除,它们同时扩大或缩
一个连续除以这几个数,等
小相同的倍数,商不变。
于这个除以这几个数的积。
(扩大或缩小的数是不能是0.)
a÷b÷c=a÷(b×c)
a÷b÷c÷d=a÷(b×c×d)
(3)(255+170)÷17 (4)1950÷13÷5
=255÷17+170÷17
=1950÷5÷13
=15+10
=390÷13
=25
=30
除法分配律(乘法分配的拓展应用),也叫陈氏定律。
被除数是几个数的和或差,除数只有1个,就可以用除法分配。
就是把被除数的每个数分别去除除数,再加或减。
运算符号搬家:
54×12+47×54+54×41
628×51—628
=54×(12+47+41)
=628×51-628×1
=54×100
=628×50
=5400
例题3、计算
(1)63×67 (2)399×11
(3)27×87。