8第八章增稠和乳化剂剖析
- 格式:ppt
- 大小:223.50 KB
- 文档页数:19
乳化剂类型阴离子阳离子非离子解释说明以及概述1. 引言1.1 概述乳化剂是一种常用的化学物质,广泛应用于许多行业领域。
它能够在两种互不溶的液体中形成稳定的混合溶液,被广泛用于制备乳液、胶体以及调味品等产品。
乳化剂可以分为三类:阴离子乳化剂、阳离子乳化剂和非离子乳化剂。
本文将详细介绍这三种类型的乳化剂,并比较它们在不同应用领域中的优缺点。
1.2 文章结构本文共分为五个主要部分。
引言部分已经对文章进行了简要介绍,并概述了各个章节的内容安排。
接下来,我们将依次介绍阴离子乳化剂、阳离子乳化剂和非离子乳化剂,在每个章节中包括定义和特点、应用领域以及各自的优缺点。
最后,我们将总结各种乳化剂的特点与应用领域,并展望未来研究方向。
1.3 目的本文旨在全面地介绍和解释阴离子、阳离子和非离子乳化剂的类型,并比较它们在不同应用领域中的优缺点。
通过本文的阅读,读者将对这三种乳化剂有更深入的了解,从而能够在实际应用中选择合适的乳化剂,并为未来研究提供一定的参考。
2. 阴离子乳化剂:2.1 定义和特点:阴离子乳化剂是一种具有负电荷的表面活性剂,也被称为阴离子表面活性剂。
其分子结构中含有一个或多个亲水基团以及一个亲油基团,通常是通过在亲油基团上引入带有负电荷的官能团实现。
阴离子乳化剂在水中形成胶束,其中亲水基团向外与水分子形成氢键,并使胶束呈负电荷。
2.2 应用领域:阴离子乳化剂广泛应用于许多工业领域。
在日常生活中,在洗涤产品中使用的肥皂和洗发水常使用阴离子乳化剂作为表面活性剂。
此外,咸菜、果酱等食品加工中也会采用阴离子乳化剂来改善稠度和口感。
在制药工业方面,阴离子乳化剂可用于药物输送系统的制备以及改善溶解性。
其他应用领域还包括纺织、油漆、农业等。
2.3 优缺点:阴离子乳化剂具有以下优点:- 能够稳定乳液,使油水相分散均匀。
- 具有良好的减压降黏、增稠和润滑性能。
- 在酸性条件下仍然具有较好的稳定性。
然而,阴离子乳化剂也存在一些缺点:- 不耐酸,在酸性环境中易失去乳化活性。
液态奶中增稠剂、乳化剂及复合乳化稳定剂作者:罗凯文谢小玲黄华平来源:《西部论丛》2019年第14期摘要:本文阐述了常用的液态奶增稠剂、乳化剂及复合乳化稳定剂的独特性能以及在液态奶产品中的应用技术关键词:液态奶增稠剂乳化剂稳定剂复合乳化稳定剂引言在液态奶的生产和研发过程中,各种食品添加剂的使用常常起到关键作用,特别是复合乳化稳定剂具有优良的组织结构化及乳化能力,可以作为增稠剂、胶凝剂或稳定剂,对液态奶组织结构、口感风味、物理稳定性、延长货架期等方面具有重要作用。
一、液态奶中增稠剂的概念、种类和特性(一)液态奶中增稠剂的概念提高食品的黏稠度或形成凝胶,从而改变食品的物理性状、赋予食品黏润、适宜的口感,并兼有乳化、稳定或使呈悬浮状态作用的物质。
(二)液态奶中增稠剂的种类液态奶中增稠剂的种类有:卡拉胶、果胶、琼脂、黄原胶、瓜尔胶、结冷胶、槐豆胶、羧甲基纤维素钠、微晶纤维素、明胶、海藻酸钠、海藻酸丙二醇酯、可溶性大豆多糖、变性淀粉等。
(三)液态奶中增稠剂的特性·耐酸性:羧甲基纤维素钠、果胶、海藻酸丙二醇酯、黄原胶、可溶性大豆多糖;·增稠性:瓜尔胶、黄原胶、槐豆胶、果胶、海藻酸钠、卡拉胶、羧甲基纤维素钠、魔芋粉;·溶液假塑性:黄原胶、槐豆胶、卡拉胶、瓜尔胶、海藻酸钠、海藻酸丙二醇酯;·凝胶强度:卡拉胶、琼脂、明胶、结冷胶;·凝胶透明性:结冷胶、海藻酸钠、卡拉胶、明胶、琼脂;·凝胶热可逆性:卡拉胶、琼脂、明胶;·冷水溶解:羧甲基纤维素钠、黄原胶、瓜尔胶、海藻酸钠;·快速凝胶:琼脂、果胶:卡拉胶、结冷胶、海藻酸钠;·奶类稳定性:卡拉胶、果胶、羧甲基纤维素钠、黄原胶、槐豆胶、结冷胶。
二、液态奶中乳化剂的概念、种类和特性(一)液态奶中乳化剂的概念改善乳化体中各种构成相之间的表面张力,形成均匀分散体或乳化体的物质。
在液态奶中,乳化剂的作用通常有以下几个方面:乳化:使脂肪球呈微细乳浊状态,并使之稳定化;分散:分散脂肪球以外的分子并使之稳定化;与其它原料(如淀粉或蛋白质)交互作用,改善生产耐受性和控制组织结构;贮藏性的改善。
乳化剂的性能和作用机理及其在化妆品配方当中的应用一、本文概述乳化剂是一种重要的表面活性剂,其独特的性能和作用机理使其在化妆品配方中占据重要地位。
乳化剂的主要作用是通过降低界面张力,使互不相溶的油水两相形成稳定的乳状液。
本文旨在深入探讨乳化剂的性能和作用机理,并详细分析其在化妆品配方中的应用,以期为化妆品的研发和生产提供有益的参考。
本文将介绍乳化剂的基本概念和分类,包括其化学结构和性质,以及不同类型乳化剂的特点。
接着,我们将详细阐述乳化剂的作用机理,包括其在油水界面上的吸附行为、降低界面张力的机制,以及形成乳状液的过程和稳定性原理。
随后,本文将重点分析乳化剂在化妆品配方中的应用。
我们将讨论乳化剂在不同类型化妆品(如乳液、膏霜、洗发水等)中的作用和选择原则,并探讨乳化剂与其他原料的相互作用和配伍性。
我们还将关注乳化剂对化妆品稳定性和安全性的影响,以及其在化妆品中的用量和使用方法。
本文将总结乳化剂在化妆品配方中的重要性,并展望其未来的发展趋势。
通过深入了解乳化剂的性能和作用机理,以及其在化妆品配方中的应用,我们可以为化妆品的研发和生产提供更加科学、合理和高效的解决方案。
二、乳化剂的性能乳化剂是一类具有特殊性质的表面活性剂,其分子结构通常包含亲水基团和亲油基团两部分。
这种两亲性结构使得乳化剂在油水界面上具有高度的活性,能够有效降低油水界面的张力,从而实现油水混合体系的稳定化。
乳化剂的主要性能表现在以下几个方面:界面活性:乳化剂能够在油水界面形成稳定的膜层,有效降低界面张力,这是乳化剂实现乳化作用的基础。
界面活性越高,乳化效果越好。
乳化能力:乳化剂能够将油相和水相混合形成稳定的乳状液,防止油水分离。
乳化剂的乳化能力与其分子结构、浓度、温度等因素密切相关。
稳定性:乳化剂形成的乳状液具有一定的稳定性,能够在一定时间内保持油水混合体系的稳定。
稳定性好的乳化剂能够有效延长产品的保质期。
安全性:乳化剂在化妆品中的使用需要符合相关法规标准,保证其对人体皮肤的安全性。
食品增稠剂一、定义:指可以提高食品黏稠的或形成凝胶,从而改变食品的物理性状、赋予食品黏润、适宜的口感,并兼有乳化、稳定或使成悬浮状态作用的物质。
其一般都能够在水中溶解或分散,能增加流体或半流体食品的粘度,并能保持所在体系的相对稳定。
二、性质1.属于亲水性高分子化合物,其分子结构中含有许多亲水基团,绝大多数不具有表面活性,不能单独用来制备乳状液,仅用来稳定已形成的乳状液。
2.其稳定作用通过黏度的改变或在含水的分散介质中胶凝作用而赋予食品胶体长期的稳定性。
三、用途与作用1.起泡作用和稳定泡沫作用:形成网络结构,可包含大量气体,并因液泡表面黏性增加使其稳定;2.黏合作用:使产品成为一个聚集体,均质后组织结构稳定、润滑,并利用胶的强力保水性防止食品在储藏过程中失重;3.成膜作用:在食品表面形成非常光润的薄膜,可以防止冰冻食品、固体粉末食品表面吸湿而导致的质量下降;4.保健作用:在人体内几乎不消化而被排泄掉,所以用增稠剂代替部分糖浆、蛋白质溶液等原料,很容易降低食品的热量;5.保水作用:强亲水作用6.矫味作用:对一些不良的气味有掩蔽作用。
四、增稠剂的分类1、天然增稠剂:海藻酸钠、食用明胶、酪蛋白酸钠、阿拉伯胶、田菁胶、琼脂、卡拉胶、果胶、黄原胶、β-环状糊精。
2、化学合成增稠剂:羧甲基纤维素钠、淀粉磷酸钠、羧甲基淀粉钠、羟丙基淀粉。
五、影响增稠剂作用效果的因素1.结构及相对分子量:不同结构黏度差别大;同种增稠剂,相对分子量越大,黏度越大;2.浓度:浓度升高,黏度增大;3.pH值;4.温度:一般情况下,温度升高,黏度降低;5.切变力:受搅拌、泵压等加工传输手段的影响;6.协同效应:如果增稠剂混合复配使用时,增稠剂之间会产生一种黏度叠加效应,这种叠加可以是增效的,也可以是减效的。
Eg:CMC+明胶,琼脂/黄原胶+刺槐豆胶;7.其它:乙醇、表面活性剂等影响海藻酸钠黏度。
六、选用增稠剂所需考虑的因素1.产品形态:凝胶、流动性、硬度透明、浑浊度;2.产品体系:悬浮颗粒能力、稠度、风味、原料类型;3.产品加工;4.产品储存:时间、风味稳定、水分和油分迁移;5.经济性乳化剂一、定义:指添加食品后可以显著降低油水两相界面张力,使互不溶的油(疏水物质)和水(亲水性物质)形成稳定乳浊液的食品添加剂。
增稠剂(胶体)的种类与应用发布:多吉利来源:减小字体增大字体增稠剂(胶体)的种类与应用增稠剂主要有:羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸钠、瓜尔豆胶、β-环状糊精、羧甲基纤维素(CMC)增稠剂和胶凝剂是一类能提高食品粘度或形成凝胶的食品添加剂。
在加工食品中可起供稠性、粘度、粘附力、凝胶形成能力、硬度、脆性、弹性、稳定、悬浮等作用,使食品获得良好的口感。
亦常称做增粘剂、胶凝剂、乳化稳定剂等。
因都属亲水性高分子化合物,可水化形成高粘度的均相液,故亦称水溶胶、亲水胶体或食用胶。
增稠剂的特性1、在水中有一定的溶解度。
2、在水中强化溶胀,在一定温度范围内能迅速溶解或糊化。
3、水溶液有较大粘度,具有非牛顿流体的性质。
4、在一定条件下可形成凝胶和薄膜。
常用增稠剂有:琼脂、羧甲基淀粉钠(CMS)、黄原胶、明胶、海藻酸、海藻酸钠、海藻酸丙二醇酯、卡拉胶、果胶、阿拉伯胶、槐豆胶、瓜尔豆胶、羟丙基淀粉、羟乙基淀粉、糊精、环状糊精(β-CD)、羧甲基纤维素(CMC)【CMC-钠】:羧甲基纤维素钠,白色纤维状粉末。
易分散于水中形成胶体溶液。
遇二价金属离子生成盐沉淀,失去粘性。
不溶于乙醇及有机溶剂。
硫酸铝之类的金属盐能赋予防水性。
对油脂和蜡的乳化力大。
用做增稠剂、稳定剂、组织改进剂、胶凝剂、泡沫稳定剂、水分移动控制剂。
广泛用于冰淇淋、饮料、酱体、面点等食品中。
因吸水后膨胀性极强,又不被消化吸收,可做减肥食品填充物。
FH9与FH6都是高粘度胶体。
FH9粘度还要高,并分耐酸与不耐酸两种。
耐酸型主要用于高酸性制品:酸奶、高酸性饮料、发酵制品等等。
其他型号还有FM6,为中粘度胶体。
【卡拉胶】:又名角叉菜胶。
一种用处较普遍的食用胶,用做增稠剂、稳定剂、悬浊剂、凝胶剂、粘结剂。
一般分κ、λ、τ三种主要型号。
κ型能形成易碎脆性凝胶;λ型能形成弹性凝胶;τ型不能形成凝胶。
根据不同的生产需要三种不同型号的卡拉胶进行复配得到不同用处的卡拉胶。
乳化剂、增稠剂的应用1.前言1.1实验目的运用在课堂上所学过的食品添加剂的基础理论知识,查阅有关文献,结合实验室现有的条件,在教师的指导下,通过实验,达到以下目的:(1)熟悉琼脂、卡拉胶、海藻酸钠、羧甲基纤维素(CMC)、黄原胶的溶解性能、凝胶条件;(2)了解各种因素对食用胶凝胶性能(凝胶强度、融点、凝固点)的影响;1.2实验原理1.2.1增稠剂作用机理(1)无机类增稠机理用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。
但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。
因此电解质加入量一般质量分数为1%~2%,而且和他类型的增稠剂共同作用,使体系更加稳定。
(2)纤维素类增稠剂纤维素增稠剂分子的疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。
也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。
这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高黏性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。
(3)天然胶增稠剂天然胶增稠剂增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。
1.2.2乳化剂作用机理乳化剂是促进乳液稳定不可缺少的组成部分,对乳状液的稳定性起重要作用。
为了形成稳定的乳状液,使分散相分散成极小的液滴,乳化剂的使用和选择也很重要。
乳化剂主要是通过降低界面自由能,形成牢固的乳化膜,以形成稳定的乳状液。
降低界面自由能,液滴粒子形成球状,以保持最小表面积。
两种不同的液体形成乳液的过程是两相液体之间形成大量新界面的过程。
液滴越小,新增界面越大,液滴粒子表面的自由能就越大。
乳化加料方式有两种:一种是水(含表面活性剂、酸)逐步加到混有复合乳化剂、助乳化剂以及酸的氨基硅油中,该方式伴有W/O向O/W的转相过程,是工业生产中常用的方式。另一种方式是氨基硅油(含表面活性剂)加到复合乳化剂、水和酸的混合物中。这两种加料方式均可制得透明微乳液。以第一种方法为例,按所需固含量,在400L不锈钢乳化桶中,依次加入计量的复合乳化剂、酸水溶液、助乳化剂和氨基硅油。在500~1200r/min转速下,于2~6h内逐步加入水,即制得外观清澈透明的氨基硅微乳。离心稳定性:将乳液置于离心试管中,于3000r/min转速下离心30min;目测微乳外观。耐碱性:50mL5%的氨水溶液中加入1g微乳,50℃恒温4h;目测微乳外观。稀释稳定性:将微乳用水稀释至氨基硅油质量分数为2%,放置24h;目测微乳外观。热稳定性:将微乳于100℃煮沸;目测微乳外观。欲将氨基硅油均匀地分散于水中,首先需选择亲水亲油平衡值(即HLB值)大于10的表面活性剂(以下简称乳化剂)。以高HLB值和低HLB值乳化剂组成的复合乳化剂比单一乳化剂的使用效果好[1],且以不同亲油基的乳化剂复配效果更好。这是由于具有不同亲油基的乳化剂的存在使胶束界面上亲油基的排列不规则,使界面易于弯曲,利于胶束的形成;同时,还可加强胶束界面膜的强度,故提高了微乳的稳定性。非离子型乳化剂是织物整理剂用氨基硅油微乳液的首选乳化剂。非离子型乳化剂的增溶性显著、可配成高浓度的微乳液、便于储存和运输,且可与大多数染整助剂同浴、配伍性好。当HLB值相同时,采用亲油基与被乳化物结构相似、与被乳化物亲和力强的乳化剂,乳化效果更好。注:1)◎-透明液体;○-具蓝光半透明液体;△-浅乳白色液体。氨基硅油乳化时,随着复合乳化剂用量的增加,体系中乳化剂的胶束增多、增大,增溶氨基硅油的能力乳化配方的设计原则乳化体化妆品的特性与产品选用的原料、配方的结构有很紧密的关系,其实,对于一个出色的配方来说,乳化体的类型、两相的比例、油相的组分、水相的组分和乳化剂的选择是至关最重要的。