聚类分析法解读
- 格式:ppt
- 大小:2.18 MB
- 文档页数:43
聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。
1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。
选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。
这样,每次合并减少一类,直至所有的样品都归成一类为止。
系统聚类法直观易懂。
1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。
第二,构造n 个类,每个类只包含一个样品。
第三,合并距离最近的两类为一新类。
第四,计算新类与各当前类的距离。
第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。
第六,画聚类谱系图。
第七,确定类的个数和类。
1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。
最常用的就是最短距离法。
1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。
定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。
聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。
系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。
根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。
系统聚类分析法基本步骤如下(许志友,1988)。
(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。
设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。
1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。
1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。
有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。
2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。
第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。
聚类分析定义及分析⽅法聚类分析聚类分析(Cluster Analysis)是根据事物本⾝的特性研究个体分类的⽅法。
聚类分析的原则是同⼀类中的个体有较⼤的相似性,不同类的个体差异很⼤。
根据分类对象不同分为样品聚类和变量聚类。
样品聚类在统计学中⼜称为Q型聚类。
⽤SPSS的术语来说就是对事件(cases)进⾏聚类,或是说对观测量进⾏聚类。
是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进⾏分类。
变量聚类在统计学中有称为R型聚类。
反映事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某⼀⽅⾯进⾏研究。
SPSS中进⾏聚类和判别分析的统计过程是由菜单Analyze---Classify导出的选择Classify 可以显⽰三个过程命令:1 K-Means Cluster进⾏快速聚类过程。
2 Hierarchical Cluster进⾏样本聚类和变量聚类过程。
3 Discriminant进⾏判别分析过程。
通常情况下在聚类进⾏之前 Proximitice 过程先根据反映各类特性的变量对原始数据进⾏预处理,即利⽤标准化⽅法对原始数据进⾏⼀次转换。
并进⾏相似性测度或距离测度。
然后 Cluster 过程根据转换后的数据进⾏聚类分析。
在SPSS for Windows 中分层聚类各⽅法都包含了 Proximitice 过程对数据的处理和Cluster 过程。
对数据的分析给出的统计量可以帮助⽤户确定最好的分类结果。
1.1 主要功能聚类的⽅法有多种,最常⽤的是分层聚类法。
根据聚类过程不同⼜分为凝聚法和分解法。
分解法:聚类开始把所有个体(观测量或变量)都视为属于⼀⼤类,然后根据距离和相似性逐层分解,直到参与聚类的每个个体⾃成⼀类为⽌。
凝聚法:聚类开始把参与聚类的每个个体(观测量或变量)视为⼀类,根据两类之间的距离或相似性逐步合并直到合并为⼀个⼤类为⽌。
⽆论哪种⽅法,其聚类原则都是近似的聚为⼀类,即距离最近或最相似的聚为⼀类。
聚类分析方法及其应用条件研究聚类分析是一种数据分析方法,用于将数据分成不同的类别或群组。
通过聚类,我们可以发现数据的内在结构,揭示出数据之间的相似性和差异性。
聚类分析在各种领域都有广泛的应用,例如市场分割、医学诊断、社交网络分析等。
本文将介绍聚类分析的基本原理、常用方法和应用条件。
一、聚类分析的原理聚类分析的基本原理是将数据点划分为互相间相似度高的聚类。
相似度通常通过计算数据点之间的距离或相似性指标来确定。
常用的距离度量有欧氏距离、曼哈顿距离和余弦相似度等。
聚类过程中,通过迭代计算和调整聚类中心,使同一聚类中的数据点相似度最大化,不同聚类之间的相似度最小化。
二、常用的聚类分析方法1. 划分聚类法(Partitioning Clustering):该方法将数据划分为多个互不重叠的聚类。
常见的划分聚类方法有k-means和k-medoids算法。
k-means算法通过指定聚类中心数量来划分数据,通过最小化总体平方误差来优化聚类结果。
k-medoids算法是一种基于对象之间的相似度测量的划分聚类方法,它选择一些具有代表性的对象作为聚类的中心点。
2. 层次聚类法(Hierarchical Clustering):该方法将数据逐步划分为层次结构。
层次聚类分为自底向上的聚合聚类和自顶向下的分裂聚类。
自底向上的聚合聚类从每个数据点开始,逐步合并最相似的聚类,形成一个聚类层次结构。
自顶向下的分裂聚类从一个包含所有数据点的聚类开始,逐步分裂聚类,形成一个聚类层次结构。
3. 密度聚类法(Density Clustering):该方法根据数据点的密度来划分聚类。
密度聚类方法不受聚类数目的限制,可以发现任意形状和大小的聚类。
常见的密度聚类方法有DBSCAN和OPTICS算法。
DBSCAN算法通过将数据点定义为核心点、边界点和噪音点,并基于核心点的密度连接来划分聚类。
OPTICS算法是DBSCAN算法的一种扩展,通过构建一个表示数据点密度变化的有序列表,可以探索不同密度和可变形状的聚类。
报告中运用聚类与分类分析进行结果解读引言:近年来,数据的快速增长和复杂性催生了聚类与分类分析的广泛应用。
无论是在商业领域还是科学研究中,聚类与分类分析都扮演着重要的角色。
本文将以报告中的运用为切入点,详细论述聚类与分类分析在结果解读中的应用。
一、聚类分析的理论基础1.1 聚类分析的定义与分类聚类分析是一种无监督学习的方法,主要用于将数据按照其相似性进行分组。
在聚类分析中,我们需要选择合适的聚类方法和距离度量方式来刻画数据之间的相似度。
1.2 聚类算法的主要应用领域聚类算法在许多领域都有应用,包括市场细分、社交网络分析、基因表达数据分析等。
不同的聚类算法适用于不同的数据类型和领域。
二、分类分析的理论基础2.1 分类分析的定义与分类分类分析是一种监督学习的方法,通过构建分类模型将数据划分到预定义的类别中去。
在分类分析中,我们需要选择合适的分类算法和特征选择方法来提高分类的准确性。
2.2 分类算法的主要应用领域分类算法在许多领域都有应用,比如垃圾邮件识别、疾病预测、情感分析等。
不同的分类算法适用于不同的问题和数据类型。
三、聚类与分类分析在报告中的应用3.1 数据预处理与特征提取在进行聚类与分类分析之前,我们需要对原始数据进行预处理和特征提取。
数据预处理包括数据清洗、缺失值处理等,而特征提取则是从原始数据中提取有意义的特征。
3.2 聚类分析结果的解读在聚类分析中,我们可以通过统计指标和可视化工具来解读聚类结果。
常用的统计指标包括轮廓系数、间隔、紧密度等,而可视化工具则可以帮助我们更直观地理解不同类别的分布情况。
3.3 分类分析结果的解读在分类分析中,我们可以通过混淆矩阵、准确率、召回率等指标来解读分类结果。
此外,我们还可以对分类模型进行评估和优化,以提高分类的准确性和稳定性。
四、实例分析:聚类与分类分析在市场细分中的应用4.1 市场细分的重要性与挑战市场细分是一种将消费者划分为不同群体的方法,有助于企业更精确地定位目标市场。
文章透彻解读聚类分析及案例实操目录一、聚类分析概述 (3)1. 聚类分析定义 (4)1.1 聚类分析是一种无监督学习方法 (4)1.2 目的是将相似的对象组合在一起 (5)2. 聚类分析分类 (6)2.1 根据数据类型分为数值聚类和类别聚类 (7)2.2 根据目标函数分为划分聚类和层次聚类 (9)二、聚类分析理论基础 (10)1. 距离度量方法 (11)1.1 欧氏距离 (13)1.2 曼哈顿距离 (14)1.3 余弦相似度 (15)1.4 皮尔逊相关系数 (16)2. 聚类有效性指标 (17)三、聚类分析算法 (18)1. K-均值聚类 (19)1.1 算法原理 (21)1.2 算法步骤 (22)1.3 收敛条件和异常值处理 (24)2. 层次聚类 (25)2.1 算法原理 (26)2.2 算法步骤 (27)2.3 凝聚度量和链接度量 (28)四、案例实操 (30)1. 客户分群 (31)1.1 数据准备 (33)1.2 聚类结果分析 (34)1.3 结果应用 (35)2. 商品推荐 (36)2.1 数据准备 (37)2.2 聚类结果分析 (38)2.3 结果应用 (39)3. 新闻分类 (40)3.1 数据准备 (41)3.2 聚类结果分析 (42)3.3 结果应用 (44)五、聚类分析应用场景 (45)1. 市场细分 (46)2. 社交网络分析 (47)3. 生物信息学 (48)4. 图像识别 (49)六、讨论与展望 (51)1. 聚类分析的局限性 (52)2. 未来发展方向 (53)一、聚类分析概述聚类分析是一种无监督学习方法,旨在将相似的对象组合在一起,形成不同的组或簇。
它根据数据的内在结构或特征,而非预先定义的类别对数据进行分组。
这种方法在数据挖掘、机器学习、市场细分、社交网络分析等领域具有广泛的应用。
特征选择:从数据集中选择合适的特征,以便更好地表示数据的分布和模式。
距离度量:确定一个合适的距离度量方法,用于衡量数据点之间的相似程度。
聚类分析法聚类分析是一种常用的数据分析方法,主要用于将相似的样本归类到同一类别中。
它是数据挖掘和机器学习领域中非常重要的一项技术,被广泛应用于各个领域,如市场研究、医学诊断、社交网络分析等。
本文将介绍聚类分析的基本概念、方法和应用,并分析其优势和局限性。
聚类分析是一种无监督学习方法,它不依赖于事先标定好的训练数据集。
通过对给定的数据进行聚类,我们可以发现数据中隐藏的模式、结构和规律。
聚类分析的基本思想是通过计算样本之间的相似度或距离,将相似的样本归为一类,从而实现对数据的分类。
在聚类分析中,相似度或距离的度量是一个关键问题,常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。
聚类分析的方法主要有层次聚类和划分聚类两种。
层次聚类是将样本逐步合并或分割成不同的类别,形成层次化的分类结果。
划分聚类是将所有的样本划分为K个不相交的类别,每个类别之间是互不重叠的。
这两种方法各有优劣,选择何种方法取决于具体的问题和数据特点。
聚类分析的应用非常广泛。
在市场研究中,聚类分析可以将消费者按照其购买行为、兴趣偏好等特征划分为不同的群体,为企业提供有针对性的营销策略。
在医学诊断中,聚类分析可以将病人按照其病情特征进行分类,帮助医生进行准确的诊断和治疗。
在社交网络分析中,聚类分析可以将社交网络中的用户划分为不同的社区,研究社交网络的结构和特征。
然而,聚类分析也存在一些局限性和挑战。
首先,聚类算法的结果很大程度上依赖于选择的相似度或距离度量方法,不同的度量方法可能导致不同的聚类结果。
其次,聚类算法对初始的聚类中心的选择非常敏感,不同的初始选择可能会得到不同的聚类结果。
此外,聚类算法还面临维度灾难的问题,当数据的维度很大时,聚类算法的计算复杂度会急剧增加。
在实际应用中,我们还可以将聚类分析与其他数据挖掘方法相结合,以获得更好的分析结果。
比如,我们可以将聚类分析与关联规则挖掘结合起来,通过挖掘不同类别之间的关联规则,深入分析不同类别之间的关系。