简易音频功率放大器
- 格式:doc
- 大小:635.50 KB
- 文档页数:18
简单音频功放电路原理图大全(六款简单音频功放电路设计原理图详解)描述简单音频功放电路原理图(一)这款功放一声道只需17个零件,却收到了意想不到的效果,还音效果真实,频响平直,解析力高,且功率可以达到50W。
此功法电路可谓一装即成,特别适合初学者制作。
具体电路如图(只画出一声道),全机用1/2W电阻,C2和C4用瓷盘电容即可,Q5、Q6采用大功率管2SC5200,变压器容量大于200W,次级输出电压AC22V*24A。
调试方法:本机一般来说无需调整,装机后测中点电压在+-50mV内可以认为正常,否则可调整R2的阻值,如偏离电压高则加大R2,反之则减小。
简单音频功放电路原理图(二)文中介绍的是一款由NE5532构成的OCL准互补功放电路。
该音频功率放大电路采用一运算放大器组成驱动级,晶体三极管VT1~VT4组成复合式互补对称电路,担任功率放大。
电路总增益Au=(R1+R3)/R1,RL为扬声器。
交流信号的工作过程与简单的互补对称功率放大器类似。
其中电位器RP1调节整机的增益,RP2用于调整中点电压。
本电路经过简单的调试即可成功,更换不同的运放整机的音色都会随之改变,DIY的乐趣尽在其中。
缺点是功率较小,可以把运放的供电提高并稳压在正负15V,后级功放管的电压提高到正负30V以上,即可满足一般家庭使用的需要。
简单音频功放电路原理图(三)LM4889是一款主要应用于手机的音频功率放大器。
5V电源时,它能够提供1瓦的连续平均功率输出(8Ω桥式连接负载),失真小于2%(THD+N)。
LM4889需要的外部元件极少,不需要输出耦合电容器或启动电容器,因此适合移动电话和其他低电压应用。
该LM4889具有低功耗的停机模式、内部误关断保护机制、噪音消除功能,可以配置外部的增益设定电阻。
LM4889典型应用电路:简单音频功放电路原理图(四)LM380集成音频功率放大器的应用电路如下图所示:简单音频功放电路原理图(五)OPA541芯片是一个功率放大器,它能由最大为士40V的电源供电,而产生最大电流为5A的连续输出。
音频功率放大器的设计
一、音频功率放大器
1、定义
音频功率放大器(PA)是一种用于提高音频设备输出功率的设备,以增加音频系统的响度。
它可以将低功率信号变成足够大的信号,能够推动音箱或拓展环境的响度。
通过调整音频功率放大器的参数,可以改变音频系统的响度和声学特性。
2、类型
音频功率放大器可以分为两类:模拟功率放大器和数字功率放大器。
模拟功率放大器是一种传统的音频放大器,它主要用于推动音箱。
数字功率放大器是一种现代化的音频放大器,它使用数字信号处理技术,能够提供更高的响度和更低的热损耗。
3、设计
(1)模拟功率放大器
模拟功率放大器的设计原理基于晶体管效应放大器(CEA)。
CEA可以将低功率的输入信号放大,使其达到足够大的功率,从而推动音箱。
CEA的典型设计利用晶体管的互补对称原理,使用NPN型和PNP型晶体管组合,来提高其响应时间和低频性能,并能够有效抑制回音和失真。
(2)数字功率放大器
数字功率放大器的设计利用数字信号处理(DSP)技术,以获得更高的响度和更低的热损耗。
它采用噪声抑制技术,可以减少噪声干扰,从而提高声音质量。
典型OTL音频功率放大器组装与维修场景描述OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。
本任务流程如图3-1-1所示。
图3-1-1任务流程图一、实训工具及器材准备完成本次实训任务所需工具及器材见表3-1-1。
表3-1-1拆装与检修动圈式扬声器实训工具及器材准备二、简易OTL音频功率放大器组装(一)电路原理的熟悉图3-1-2简易OTL功放电路原理图1、电路特点本功放电路结构简单,元件易购,成本低廉,原理典型,非常适合初学者组装学习。
电路包括:A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。
B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放部分来推动喇叭。
图中以VT3、VT4为核心组成的电路完成功率放大功能。
C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。
图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。
改变R8的阻值可以改变功放管的静态电流。
D.负反馈电路:利用负反馈的特性,控制整个放大电路的增益,提高电路稳定性。
其中R4为放大器提供交直流负反馈,R5、C4对反馈的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。
2、电路原理和各元件的作用音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。
第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。
R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压(正常要求为电源电压的一半)。
C3为输入隔直耦合电容。
R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进行放大。
如何设计一个简单的音频放大器音频放大器是一种常见的电子设备,用于放大音频信号。
它能够增加音频信号的强度,以便更好地驱动扬声器或耳机,从而提升音频效果。
设计一个简单的音频放大器并非难事,下面将介绍一种基本的设计方案。
材料清单:1. 声音源(如音频输入信号)2. NPN型晶体管(如2N2222)3. 电容器(如100μF)4. 电阻器(如10kΩ)5. 扬声器/耳机步骤:1. 准备工作:首先,确认所需材料齐全。
确保晶体管型号与设计兼容,以及电容器和电阻器的额定值符合要求。
2. 安装电路:将晶体管、电容器和电阻器组装成电路。
声音源连接到晶体管的基极,将其与电容器的一端相连。
另一端连接到电阻器并与地线相连。
晶体管的发射极连接到地线,而集电极连接到扬声器/耳机。
3. 调整电路:调整电阻器的阻值以达到适当的放大效果。
可以通过更改电阻器值来调整放大器的增益。
增大阻值可以提高放大器的增益,减小阻值则会降低增益。
根据实际需要,进行适当的调整。
4. 连接电源:将电源连接到电路。
请确保电源电压适配设计要求并正确连接正负极。
5. 测试音频放大器:连接音频源和扬声器/耳机,然后测试音频放大器的效果。
播放音频源,观察扬声器/耳机是否能够放大信号并发出声音。
根据需要,可能需要对电阻器进行进一步的调整以获得最佳音质。
总结:通过以上步骤,我们可以设计一个简单的音频放大器。
即使是一个初学者也能够轻松地完成这个设计。
当然,这只是一个基本的设计方案,还可以根据个人需求进行改进和调整。
不过在进行任何电子设备的设计和制作过程中,请务必注意安全,并确保符合电路和元器件的规格要求。
音频功率放大器的原理
音频功率放大器是一种用于增幅音频信号的电子设备。
其原理是利用放大器电路将输入音频信号的电压或电流放大到更大的振幅,从而增加其功率。
音频功率放大器通常由若干个放大器级联而成,每个级别都将输入信号放大一定倍数。
每个级别都由一个晶体管或管子构成,根据输出功率的要求,可以选择不同类型的放大器,如AB类、B类、C类等。
在AB类功率放大器中,输入信号通过一个晶体管的基极,然
后通过另一个晶体管的集电极,并在输出端口传送到负载。
其中一个晶体管负责将正半周的输入信号放大,另一个负责将负半周的输入信号放大,因此可以更好地保持音频信号的波形。
B类功率放大器只在输入信号的正半周或负半周进行放大,并
且只有当信号振幅达到阀值时才工作,从而提高效率。
C类功
率放大器将输入信号的负半周和正半周分别通过不同的晶体管放大,然后通过一个输出网络进行合并。
此外,音频功率放大器的输入端通常由耦合电容和电阻构成,以防止输入信号对放大器产生影响。
输出端通过耦合电容将放大的信号传送到负载,以避免直流偏置对负载造成伤害。
综上所述,音频功率放大器工作原理是通过级联的放大器将输入音频信号放大到更大振幅,并且能够保持信号的波形,从而达到增加功率的效果。
小型音频功率放大器的设计与制作摘要:本文介绍了一种小型音频功率放大器的设计与制作。
通过选择合适的电子元器件和设计电路,实现了高性能、高稳定性的功率放大器。
具体设计过程包括选定电路拓扑结构、计算元器件参数、布局设计和选择合适的散热方式等。
最终,制作出一个功率输出达到10W,失真率小于0.5%的小型音频功率放大器。
该设计具有结构简单、制作成本低、性能稳定可靠等优点,适用于一些小型音响设备的增强性能。
关键词:音频功率放大器,电子元器件,拓扑结构,散热,失真率正文:一、概述音频功率放大器是音响设备中最常用的模块之一,它的作用是将低电平的音频信号放大到足够的功率,驱动扬声器发出声音。
在现代音响设备中,由于体积的限制,需要设计出更小巧、更高性能的功率放大器。
二、设计原理本文采用B类功率放大器作为设计基础,该结构具有功率损耗小、效率高等特点。
同时,为了保证电路的稳定性和可靠性,采用了负反馈的设计方法。
具体电路如下:(图1)通过分析电路可知,该放大器采用了共射极放大器和共集电极放大器相结合的拓扑结构,其中T1和T2为功率管,R2和R3为负反馈电阻,C1和C2为耦合电容,C3为输入直流隔离电容,C4和C5为滤波电容。
这样就可以在保证较高放大系数的同时,减少功率扭曲和干扰。
三、元器件选择和参数计算根据电路原理图,选择了以下元器件:(表1)在选择元器件后,通过测量和计算,得出所需的元器件参数:(表2)四、布局设计在元器件选择和参数计算完成后,需要进行布局设计,保证电路的排布合理、信号传输通畅、散热效果良好。
特别是功率管的散热问题需要特别注意。
布局设计如下:(图2)五、散热在功率管的选择和布局设计中,考虑了散热问题。
为了保证散热效果,采用了金属散热片和散热风扇相结合的方式。
同时,保证电路板与散热片之间的接触良好。
(图3)六、制作和调试完成布局设计和散热方案后,进行电路板制作和元器件的焊接。
在焊接过程中,需要保证焊接质量和元器件位置的准确性。
只用三个分立元件自制最简单的实用功放
江苏省泗阳县李口中学沈正中
笔者先用3DD303C等三只分立元件,制作了最简单实用的单管单声道功放,可谓是一款音质优
美、最简单的经典功放。
用电脑音频信号输入单声道,
根据电源电压不同,实测音乐输出
功率约0.1W~4W,整机功耗约0.12W~4.8W。
很适合室内欣赏音乐,也可用于初学者学习单管
放大电路的制作,电路图如
图2所示。
按照图2所示电路,把
100μF电容C、10KΩ可变
电阻R和3DD303C三极管
T三个元件连接好,接上阻
抗为4Ω~16Ω喇叭(或音
箱)L(大口径喇叭效果更好!),再接上1.5~24V直流电源,根据电源电压,通过调整可变电阻R,把三极管的偏置电流调整到接近200mA以下或正常放大工作点即可,然后测出可变电阻R的阻值,换上对应阻值的定值电阻。
当电源电压大于9V时,为了防止三极管过于发热,可适当加散热片。
三极管T也可选用3DD15、3DD200、3DD207、3DD102、3DD303、2N3055等替代3DD303C。
笔者是用3DD303C制作的。
音频功率放大器原理图
音频功率放大器是一种用于提高音频信号功率的电路,通常用于音响系统和放大器中。
它能够将输入的低功率音频信号转换为输出的高功率音频信号,从而驱动扬声器发出更大的声音。
音频功率放大器的原理图如下所示:
(在此插入音频功率放大器原理图)。
原理图中包括输入端、放大电路、输出端和电源端。
输入端接收来自音源的低功率音频信号,放大电路对该信号进行放大处理,输出端将放大后的高功率音频信号传送至扬声器,电源端则为整个电路提供所需的电源电压。
放大电路是音频功率放大器的核心部分,它通常由功率放大器芯片、电阻、电容和电感等元件组成。
功率放大器芯片是最关键的部分,它能够将输入信号进行放大,并输出到扬声器。
电阻、电容和电感则用于对输入信号进行滤波和匹配,以保证信号质量和稳定性。
音频功率放大器的工作原理是将输入的音频信号转换为相应的电压信号,并通过放大电路进行放大处理,最终输出为高功率音频信号。
这样的设计能够满足扬声器对音频信号的驱动需求,使得音响系统能够发挥出更好的音质和音量表现。
在实际应用中,音频功率放大器可以根据需要进行不同的设计和调整,以满足不同的音响系统和放大器的要求。
例如,可以根据功率放大器芯片的规格和电路参数进行合理的选择,以及根据扬声器的阻抗和灵敏度进行匹配,从而实现最佳的音频放大效果。
总的来说,音频功率放大器是音响系统和放大器中不可或缺的部分,它能够将输入的低功率音频信号转换为输出的高功率音频信号,从而驱动扬声器发出更大的
声音。
通过合理的设计和调整,可以实现更好的音质和音量表现,从而提升整个音响系统的性能和体验。
闽南师范大学《模拟电子技术》课程设计
设计题目:简易音频功率放大器
*名:***
学号:**********
系别:物理与信息工程学院
专业电气工程及其自动化
年级:12级
指导教师:周锦荣老师
2014年 5月 1 日
目录
一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2
1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2
2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2
二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3
1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3
2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3
3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8
三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10
四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11
1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11
2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12
3.实验结果分析及与理论对比┄┄┄┄┄ 15
五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15
1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15
2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15
3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16
摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。
关键词:LM358;LM386;音频放大
一系统设计
1 设计任务
利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。
2 设计要求
设计一个简易的音频功率放大器,要求如下:
(1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调;
(2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成;
(3)要求输入音频信号在10mV/1kHz时,输出功率1
(负载:8Ω),输出音频信号无
Po W
明显失真,输出功率大小可调;
(4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供;
(5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试;
(6)完成课程设计报告撰写。
二电路设计原理
1系统原理
系统采用+9V单电源供电,主体部分由LM358前置放大器,LM386构成功率放大器。
滑动变阻器实现音量可调。
2 方案比较
2.1 第一种设计方案:
2.1.1
前置放大电路
2.1.2参数选择及计算
前级采用同前级通过C1充电抬高LM358 3号脚电压,向比例运算放大电路,
g=(1+R8/R7)=2 ,
前级LM358B 构成跟随器,增强后级电路带载能力。
经过前级运放的放大,
由Av=i1o1
U U =mv 10Ui =2,
可以得到Uo1=Ui2=20mv 。
于是我们得到了下一级功率放大电路的输入电压,
即为U i2=20mv 满足U i2≤400mv
2.1.3后级功率放大器
2.1.4参数选择及计算
由 Av=
Ui
0U =50 ; 所以 U0=1(v );
进而得出 P 0=L
2
0R U =1/8 满足P 0=0.125W<=1W
2.2 第二种设计方案:
2.2.1前置放大电路
2.2.2参数选择及计算
前级通过一个2K 电阻限流,从而保护电路,在利用偏置电路来抬高LM358 三脚的电压,
U3=U*R3/(R2+R3)=3.71V
因为在此电路中,我们采用单电源供电,若不抬高3脚电压,用示波器检测LM358输出波形时
负半轴的电压将检测不到,得到波形产生失真。
C4,C5构成耦合电路 ,C5采用104滤高频分
量,C4稳压,采用10uF 电解电容,均为经验值。
前级采用同向比例运算放大电路,
g=(1+R8/R7)=1.1 ,
前级放大两倍。
前级放大倍数不易过高,后级LM386输入电压为0.4 v 电压过高,后级电路将
无法驱动,前级LM358B 构成跟随器,增强后级电路带载能力。
经过前级运放的放大,由A v =i1o1U U =mv
10Ui =1.1,可以得到U o1=U i2=11mv 。
于是我们得到了下一级功率放大电路的输入电压,即为U i2=11mv 满足U i2≤400mv
2.2.3后级功率放大器
2.2.4参数选择及计算
根据lm386的datasheet 给出的电路图(图三),在1,8脚之间加入可变电阻和电容使增益从
20到200可调,如图四所示。
根据典型电路,我们选择功率运放电路的增益为50,即把LM386
的1号脚和8号脚通过1电阻和电容串联起来。
图三 文档中给出的典型电路接法
图四 增益可调的lm386功放电路
由 Av=Ui 0U =200 ; 所以 U0=2.2(v ); 进而得出 P 0=L
2
0R U =0.625 满足P 0=0.625W<=1W
2.4最终终方案选案通过对两种方案的比较可以看出,第二种方案是比较好的方案,按照第二种方案不仅可以达到课程设计所要达到的要求,结果比较准确,受外界干扰较小。
第一种方案通过电容充电抬高LM358 3脚电压,3脚波形一直被抬升,所测波形不稳定,且第一种方案没有C4,C5构成的耦合电路稳定电压,滤除高频,使得放大后的音频噪声过大。
所以这种方案在最终确定的时候是被舍弃了。
3 芯片介绍
3.1 LM358芯片简介
LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合L。
LM358芯片的引脚排列如下图所示:
相关参数及描述
LM358
内部频率补偿
直流电压增益高(约100dB)
单位增益频带宽(约1MHz)
电源电压范围宽:单电源(3—30V)
输出电压摆幅大(0 至Vcc-1.5V)
3.2 LM386芯片简介
专为低损耗电源所设计的功率放大器集成电路。
它的内建增益为20,透过pin 1 和pin8脚位间电容的搭配,增益最高可达200。
LM386可使用电池为供应电源,输入电压范围可由4V~12V,无作动时仅消耗4mA电流,且失真低.LM386芯片的引脚排列如下图所示:
相关参数及描述
静态功耗低,约为4mA, 可用于电池供电。
工作电压范围宽,
4-12V or 5-18V
外围元件少。
电压增益可调,
20-200。
低失真度。
输入电压±0.4V
四 PCB布板
五实物安装与调试
1实物图
2测试的波形
2.1测试的正弦波波形V0=10mV f0=100Hz
波形测试值频率(Hz)峰-峰值(V)正弦波f=100Hz 输入:Vi=0.02
输出:V0=0.18
放大倍数 Vo/Vi=9
2.2 V0=10mV f0=1KHz
波形测试值频率(Hz)峰-峰值(V)正弦波f=1KHz Vi=0.02
V0=0.28 放大倍数=V0/Vi=14
2.3 V0=10mV f0=10KHz
放大倍数:V0/Vi=12
3实验结果分析及与理论对比
理论值与实际值有所偏差,理论上整个电路应该放大200倍,第一级放大 1.1倍,g=(1+R5/R4)=1.1 ,第二级放大200倍。
但是由于电路中各级电阻均要产生压降。
故理想放大倍数与实际放大倍数有偏差。
实际电路符合设计要求,音量可调,输出功率≤1W
五附录
5.1 设计总结
在这次课程设计中,经过反反复复的设计电路图,在课本上找原理,运用仿真软件画图,仿真,验证电路是否正确,焊接实物电路,拆了重做,再验证再调试。
我学会了怎样去根据课题的要求去设计电路和调试电路。
动手能力得到很大的提高。
在制作电路的过程中更是学到了许多实践经验,如电路板的布线、元器件的识别和整机的调试等各方面的经验。
从中我发现自己并不能很好的熟练去使用我所学到的模电知识。
在以后学习中我要加强对使用电路的设计和选用能力。
通过这种综合训练,我可以掌握电路设计的基本方法,提高动手组织实验的基本技
能,培养分析解决电路问题的实际本领,为以后毕业设计和从事电子实验实际工作打下基础。
5.2参考文献
[1]模拟电子技术基础[第四版],童诗白华成英,北京:高等教育出版社
[2]数字电子技术基础[第五版],阎石,北京:高等教育出版社
5.3 原件清单。