分式的加减混合运算
- 格式:doc
- 大小:57.00 KB
- 文档页数:1
分式的混合运算法则
分式的混合运算法则是数学中的一个重要概念,它是由非常多的具体规则和方法构成的,许多学生在学习时感到十分困难。
在本文中,我们将详细阐述分式混合运算的各种规则和方法,帮助读者更好地理解和掌握这一课题。
首先,我们需要了解分式混合运算的定义。
分式混合运算是指任意一种基本数学运算(加、减、乘、除)在多个分式中进行,即同时含有加减乘除符号的分式运算。
其计算方式主要是在多个分式的顶端和底端上分别进行相应的运算,然后再将其化简为最简分式,以得到最终的结果。
其次,我们要掌握分式混合运算的常见规则和方法。
首先,对于含两个分式的加减式,我们需要先将两个分式的分母约分为最小公倍数,然后将两个分子的和(或差)除以共同的分母。
对于含两个分式的乘除式,我们需要先将两个分式的分子和分母分别进行相应的运算,然后再将新的分子和分母化简为最简分式。
对于含多个分式的混合运算式,我们需要遵循“先乘除后加减”的原则,先将含乘除运算的分式化简,再依次进行加减运算。
此外,在进行分式混合运算时,还需要注意一些常见的错误,如分不尽分子分母的错误、忘记将分式化简为最简分式的错误、含多个运算符号的运算顺序错误等。
为了避免这些错误,我们需要认真掌握各种分式运算的规则和方法,并不断实践和总结。
最后,我们需要强调的是,分式混合运算在数学学科中具有广泛的应用,它不仅可以帮助我们解决实际问题,还可以提高我们的数学思维和计算能力。
同时,在学习分式混合运算时,我们需要注重理解、归纳和总结,才能真正掌握这一重要的数学概念。
专题5.2 分式的运算-重难点题型【知识点1 分式的加减】同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a bc c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。
注:不论是分式的哪种运算,都要先进行因式分解。
【题型1 分式的加减】【例1】(2021春•盐城月考)化简: (1)a a−b+b b−a; (2)x 2−4x 2−4x+4−4x x 2−2x.【变式1-1】当m >﹣3时,比较m+2m+3与m+3m+4的大小.【变式1-2】(2021•乐山)已知A x−1−B 2−x=2x−6(x−1)(x−2),求A 、B 的值.【变式1-3】(2021春•河南期末)若a >0,M =aa+1,N =a+1a+2 (1)当a =1时,M =12,N =23;当a =3时,M =34,N =45;(2)猜想M 与N 的大小关系,并证明你的猜想.【题型2 分式与整式的混合运算 】 【例2】(2021•嘉兴一模)计算x 2x+2−x +2时,两位同学的解法如下:解法一:x 2x+2−x +2=x 2x+2−x+21=x 2x+2−(x+2)2x+2解法二:x 2x+2−x +2=1x+2[x 2−(x −2)(x +2)] (1)判断:两位同学的解题过程有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.【变式2-1】(2021•梧州)计算:(x ﹣2)2﹣x (x ﹣1)+x 3−4x 2x 2.【变式2-2】(2021秋•昌平区期中)阅读下列材料,然后回答问题.我们知道,假分数可以化为整数与真分数的和的形式.例如:32=1+12,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:x+1x−2,x 2x+2这样的分式是假分式;1x−2,xx 2−1这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:x+1x−2=(x−2)+3x−2=1+3x−2,x 2x+2=(x+2)(x−2)+4x+2=x −2+4x+2.解决下列问题: (1)将分式x−2x+3化为整式与真分式的和的形式;(2)如果分式x 2+2x x+3的值为整数,求x 的整数值.【变式2-3】(2021春•玄武区期中)著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.”《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效. 将分式分离常数可类比假分数变形带分数的方法进行,如:x 2−2x+3x−1=x(x−1)+x−2x+3x−1=x +−(x−1)+2x−1=x ﹣1+2x−1,这样,分式就拆分成一个分式2x−1与一个整式x ﹣1的和的形式. 根据以上阅读材料,解答下列问题: (1)假分式x+6x+4可化为带分式 形式;(2)利用分离常数法,求分式2x 2+5x 2+1的取值范围;(3)若分式5x 2+9x−3x+2拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m ﹣11+1n−6,则m 2+n 2+mn 的最小值为 .【知识点2 分式的混合运算】 1.乘法法则:db ca d cb a ⋅⋅=⋅。
分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a bcdacbd⋅=;abcdabdcadbc÷=⋅=当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘.2. 分式的加减法(1)同分母的分式加减法法则:acbca bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等的同分母的分式的过程.4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取;(3)相同字母(或含有字母的式子)的幂的因式取指数最高的.5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项,从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分,将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(xym m y x xy m ÷-⋅-(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅(5)22)2(4422-++---x x x x x x (6)6554651651222222-+-+-++--++x x x x x x x x x (7)()()222624x x x ---+ (8)223y xy xy xy x y x +-+++(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+--精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯--例2. ()242223232222222+++++--+-a a a a a a a a例3. 计算:xx xx x x x x x x x 4122121035632222-+-++---+++例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值例5.已知6112=++a a a ,试求1242++a a a 的值 例6. 1814121111842+-+-+-+--x x x x x例7. 计算 45342312+++++-++-++x x x x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x -++⋅+÷+--36)3(446222类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b ca b c b c a c a b-+-+--++--+--(3)2422---x x x (4)22211y x xy x y x -+--+(5)224--+a a (6) 222244242x y y x y x y y x -+-++ (7) 已知y x a x y -=,y xb x y+=,求22a b -类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭(3)245(3)33x x x x -÷----- (4)111111--++x x(5)2222222265232y x y x y xy x y x y xy x y xy x -+⋅---÷+++-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+-类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少?类型五:分式的拆分 1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n .2.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x .自我测试一、选择题2. 下列分式是最简分式的( ) A .ba a 232 B .aa a 32- C .22b a b a ++ D .222b a ab a --3. 化简)2()242(2+÷-+-m mm m 的结果是( )A .0B .1C .-1D .(m +2)24. 已知2111=-b a ,则b a ab -的值是( )A .21B .21- C .2 D .-25. 化简(x y -y x ) ÷x yx -的结果是( )A .1yB .x y y +C .x y y -D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 .7. 化简: aa 12-÷(1+a 1)= .8. 化简:4)222(2-÷--+x x x x x x 的结果为 .9. 若x 2-3x +1=0,则2421x x x ++的值为_________.10.化简12-a ·442++a a ÷2+a +12-a ,其结果是________.三、计算题 11. 计算(1) 22399xx x --- (2) x x x x x x x x x x 23832372325322222--+--+++--+ (3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x(5)aaa a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x12.化简求值 (1)aa -+-21442,并求时原式的值.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n 3… 输出答案 11分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a b c d ac bd ⋅=;a b c d a b d c adbc÷=⋅= 当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘. 2. 分式的加减法(1)同分母的分式加减法法则:a cbc a bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等 的同分母的分式的过程. 4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取; (3)相同字母(或含有字母的式子)的幂的因式取指数最高的. 5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、 分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项, 从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分, 将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( C )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( A )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( B )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( D )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( B )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(x ym m y x xy m ÷-⋅-解: 原式=663827c b a - 解:原式=338ym x -(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅ 解:原式=))(()(223b a b a b a +-+ 解:原式=32916ax b(5)22)2(4422-++---x xx x x x (6)6554651651222222-+-+-++--++x x x x x x x x x解:原式=21-+x x 解:原式=64+-x x (7)()()222624x x x ---+ (8)223y xy x y xy x y x +-+++ 解:原式=21-x 解:原式=xy x y -3(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+-- 解:原式=)1)(5(24-+-x x x 解:原式=0精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯-- 解:原式=)55()2222(426912624242669661244yx y x y x y x y x y x -÷⋅=)1()(51022y x y x -⋅=361yx -例2. ()242223232222222+++++--+-a a a a a a a a 解:原式=326322=++a a例3. 计算:x x xx x x x x x x x 4122121035632222-+-++---+++解:原式=)2)(2(12)1)(2()1()2)(5()1)(5(2-++-+---+++x x x xx x x x x x x=)2)(2(122121-+++---+x x x x x x =)2)(2(126-++x x x=26-x例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值解:由已知得:a c b b c a c b a -=+-=+-=+,,∴原式=a cb c c b a b c a b a +++++ =acb c b a b c a +++++ =-3例5.已知6112=++a a a ,试求1242++a a a 的值 解:由已知得:612=++a a a ,即611=++aa 51=+∴a a 232)1(1222=-+=+∴aa a a2411122224=++=++∴a a a a a 2411242=++∴a a a例6. 1814121111842+-+-+-+--x x x x x 解:原式=181412128422+-+-+--x x x x =181414844+-+--x x x =181888+--x x =11616-x例7. 计算 45342312+++++-++-++x x x x x x x x 解:原式=411311211111++++--+--++x x x x =41312111+++-+-+x x x x =)3)(2(52)4)(1(52+++-+++x x x x x x=24503510104234+++++x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x --+⋅+÷+--36)3(446222解:原式=)23(5--x m y x 解:原式=22--x类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b c a b c b c a c a b-+-+--++--+-- 解:原式=2- 解:原式=0(3)2422---x x x (4)22211y x xy x y x -+--+ 解:原式=2+x 解:原式=yx +2(5)224--+a a (6) 222244242x y y x y x y y x -+-++ 解:原式=242++-a a 解:原式=yx x 22+(7) 已知y x a x y -=,y xb x y+=,求22a b - 解:原式=4)2(2))((-=-⋅=-+yxx y b a b a类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭ 解:原式=nm nm 222-- 解:原式=)2(2+x x(3)245(3)33x x x x -÷----- (4)111111--++x x 解:原式=22+-x 解:原式=)2)(1()1)(2(-+-+x x x x(5)2222222265232y x yx y xy x y x y xy x y xy x -+⋅---÷+++- 解:原式=yx yx 26+-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+- 解:原式=))(()())(()(223334y xy x y x y x y x y x y x +--+=+-+又x y 2=,代入得: 原式=-9类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2解:原式=34--x , 当x =2时,原式=4.(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.解:原式=11+x , 当x =-45时,原式=5.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少? 解:原式=22-+x x , 当1x =时,原式=-3.类型五:分式的拆分1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n . 解:原式=11141313121211+-++-+-+-n n =111+-n =1+n n3.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x . 解:原式=100199********+-++++-+++-x x x x x x =10011+-x x =)100(100+x x 自我测试一、选择题A. a +bB. a -bC. a 2-b 2D. 12. 下列分式是最简分式的( C )A .b a a232 B .a a a 32- C .22b a b a ++ D .222b a ab a -- 3. 化简)2()242(2+÷-+-m mm m 的结果是( B ) A .0B .1C .-1D .(m +2)2 4. 已知2111=-b a ,则b a ab -的值是( D ) A .21 B .21- C .2 D .-2 5. 化简(x y -y x ) ÷x y x -的结果是( B ) A . 1y B . x yy + C . x yy - D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 -3 . 7. 化简: aa 12-÷(1+a 1)= a -1 . 8. 化简:4)222(2-÷--+x x x x x x 的结果为 x -6 .10.化简122-+a a ·4412++-a a a ÷21+a +122-a ,其结果是11-a . 三、计算题11. 计算(1) 22399x x x --- (2)x x x x x x x x x x 23832372325322222--+--+++--+ 解:原式=31+-x 解:原式=(3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x 解:原式=2)(y x xy - 解:原式=53-x (5)aa a a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x 解:原式=aa a a a a a a 633633-⋅+--⋅- 解:原式=252-x =)3(6361+-+-a a =31+-a12.化简求值 (1)aa -+-21442,并求3-=a 时原式的值. 解:原式=21+-a 当3-=a 时,原式=1.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . 解:原式=22--a a由已知得:02=-a a∴原式=-2(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n3 … 输出答案 1 1解:12=-+n nn n。
分式运算的若干技巧
在数学中,分式的运算经常被用来解决一些复杂的方程,这使得计算机科学、物理学及工程学方面的研究都变得更加得心应手。
尽管分式运算看起来有点复杂,但是通过一些有效的技巧,可以让分式运算变得简单易行。
以下是一些有效的分式运算技巧:
1、约分:约分是分式运算中最基本也是最常用的技巧,约分的目的是将分子和分母同时约简,在计算机科学上分式约分可以减少计算量,同时也有助于保持正确的结果。
2、简单运算:有时候分式运算中也可以使用简单运算,比如加减乘除等操作,比如:2/3 + 3/4 = 10/12。
3、使用分母的公约数:如果要将两个或多个分式相加减,那么,可以先将分母转化为同一个公约数,然后在进行加减操作,比如:2/3 + 3/4 = 8/12。
4、共轭分式:共轭分式是一种特殊的分式,其分子和分母的和等于1。
这种可以使用在分式的乘法、除法中,比如:3/5 * 5/3 = 3/5 * 3/5 = 1/1。
5、指数运算:指数不仅可以用来记录分式,也可以用来解决分式运算中的问题,比如:(2/3)^2 = 4/9。
6、求分式的逆数:对于一般的分式,求其逆数的步骤是:将分子和分母互换,然后用分子的取反数再除以分母,比如:2/3的逆数为:-2/3。
7、分式的混合运算:有时候也可以在分式运算中结合上述种运
算来完成混合运算,比如:(2/3 + 3/4) * 5/6 = 20/36。
以上就是一些常见的分式运算技巧,其实还有更多复杂的技巧,这里只是简单介绍了一些最基本的运算技巧。
当然,想要掌握这些技巧,不光是要理论知识,更重要的是要多加练习,不断的练习才能掌握这些技巧,实现分式运算中的高效率。
分式的加减法分式是数学中常见的一种表达形式,它由分子和分母组成,用于表示两个数的比值或者部分与整体的关系。
分式的加减法就是对两个或多个分式进行相加或相减的运算。
本文将介绍分式的加减法的基本原理和具体操作方法。
一、分式的加法分式的加法就是将两个分式相加,要求它们的分母相同。
具体的操作步骤如下:1. 找出需要进行加法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相加,保持分母不变,得到加法结果;4. 对加法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加法的答案。
例如,计算1/3 + 1/4的结果。
首先,分母不同,需要进行通分,得到4/12 + 3/12 = 7/12。
最后,7/12为所求的答案。
二、分式的减法分式的减法与加法类似,也需要求出相同的分母。
具体的操作步骤如下:1. 找出需要进行减法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相减,保持分母不变,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为减法的答案。
例如,计算3/4 - 1/3的结果。
分母不同,需要进行通分,得到9/12 - 4/12 = 5/12。
最后,5/12为所求的答案。
三、分式的加减混合运算对于分式的加减混合运算,按照运算顺序逐步进行。
先进行加法,再进行减法。
具体操作如下:1. 找出需要进行加减混合运算的分式,保持分子和分母的不变;2. 对这些分式进行加法运算,得到加法结果;3. 再对加法结果进行减法运算,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加减混合运算的答案。
例如,计算2/3 + 1/4 - 5/6的结果。
首先,需要进行通分,得到8/12 + 3/12 - 10/12 = 1/12。
分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。
分式可以进行加、减、乘、除以及乘方等混合运算。
本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。
一、分式的加法运算分式的加法运算是指将两个分式相加的操作。
要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。
例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。
同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。
例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。
要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。
例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。
要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。
在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。
人教版八年级数学上册15.2.2.2《分式的混合运算》教案一. 教材分析人教版八年级数学上册15.2.2.2《分式的混合运算》一节,主要让学生掌握分式的加减乘除运算规则,以及混合运算的运算顺序。
这一节内容在分式知识体系中占据重要地位,为后续分式方程和不等式的学习打下基础。
教材通过例题和练习,使学生熟练掌握分式混合运算的方法和技巧。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算规则,对分式有了一定的认识。
但学生在混合运算方面,可能会存在运算顺序混乱、对运算规则理解不深等问题。
因此,在教学过程中,需要引导学生理清运算顺序,加深对运算规则的理解。
三. 教学目标1.让学生掌握分式的加减乘除运算规则。
2.培养学生解决分式混合运算问题的能力。
3.提高学生对数学运算的兴趣和自信心。
四. 教学重难点1.重点:分式的加减乘除运算规则,混合运算的运算顺序。
2.难点:理解并运用运算规则解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式混合运算的规则。
2.用实例讲解,让学生在实际问题中体会运算规则的应用。
3.运用小组合作学习,培养学生团队合作精神。
4.及时反馈,激发学生学习兴趣。
六. 教学准备1.准备相关例题和练习题,涵盖分式混合运算的各种情况。
2.制作课件,辅助讲解和展示。
3.准备黑板,用于板书关键步骤和结论。
七. 教学过程1. 导入(5分钟)以一个实际问题引入:某商店举行打折活动,原价100元的商品,打8折后售价是多少?让学生尝试用分式混合运算解决这个问题。
2. 呈现(10分钟)讲解分式混合运算的规则,通过PPT展示各种类型的题目,让学生观察和分析,引导学生发现运算规律。
3. 操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4. 巩固(10分钟)学生分组讨论,互相检查答案,教师随机抽取学生回答,检验掌握情况。
5. 拓展(10分钟)让学生举例说明分式混合运算在实际生活中的应用,分享给其他同学。
分式乘除法及加减法一、知识整理分式乘除法:1、分式乘以分式,把分子相乘的积作积的分子,把分母相乘的积作积的分母;分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。
ﻩﻩﻩD B C A D C B A ⋅⋅=⋅ CB DA C DB A DC B A ⋅⋅=⋅=÷2、分式的乘方,把分子、分母分别乘方。
n nnB A B A =⎪⎭⎫⎝⎛3、分子与分母没有公因式的分式,叫做最简分式。
化简分式时,通常要使结果成为最简分式或者整式。
分式加减法:1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减。
用式子表示是:CB AC B C A ±=±; (2)异分母的分式相加减,先通分,变为同分母的分式,然后再加减。
用式子表示是:BDBC AD BD BC BD AD D C B A ±=±=±。
3、分式的通分:化异分母分式为同分母分式的过程称为分式的通分。
通分的难点是寻找最简公分母,确定最简公分母的一般方法:①把各分式分母系数的最小公倍数作为最简公分母的系数;②把相同字母(或因式分解后得到的相同因式)的最高次幂....作为最简公分母的一个因式;③把只在一个分式的分母中出现的字母连同它的指数作为最简公分母的一个因式。
二、经典例题 分式乘除法 【例1】计算:(1)291643xy y x ⋅;ﻩ ﻩ(2)a a a a 21222+⋅-+; ﻩ(3)2332159518cab c b a ÷; (4)12)1)(3(1322-+--+÷-+x x x x x x ; ﻩ(5)abab ab a -÷-)(2。
课时教案课题:分式计算习题课
不忘初心,砥砺前行,写好生命的一页又一页~
师生活动备注
活动一、火眼金睛,指出错误(指出下面计算中的错误并说明错误原
因。
)这些图片上
的题目都是
学生在测验
中出现的比
较典型的错
误,放在第一
个活动,学生
先找出错误,
然后说出错
误的原因,目
的让学生知
道错误的原
因,能够说出
每一步计算
变形的依据,
能够做到每
一步计算都
有理有据。
教学过程
22a a ⎫⎪-⎭
的值(可以利用乘法分配律进行计
2
xy y y +的值.注意计算结果要是最简分式,多项式能分解因式的要分解因式。
.)a 12
的值- 要注意每一步变形计算
去分母的依据是什。
第2课时 分式的混合运算1.灵活应用分式的加减法法则.2.会进行比较简单的分式加减乘除混合运算.3.结合已有的数学经验解决新问题.自学指导:阅读教材P 141-142,并回答下面问题.1.同分母的分式相加减,分母不变,分子相加减.异分母的分式相加减:先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. 分式加减的结果要化为最简分式.2.分数的混合运算顺序是:先算乘方再算乘除,最后算加减.类比分数的混合运算法则你能猜想出分式的混合运算顺序吗?试一试.分式的混合运算顺序是:先算乘方再算乘除,最后算加减.自学反馈计算:(1)1-2y 3x ÷2y 3x ·3x2y ; (2)1+1-a 1-2-a a 12a 2++; (3)⎪⎭⎫ ⎝⎛-b a 2÷(5b 2a +5b a 2). 解:(1)原式=1-2y 3x ·3x 2y ·3x 2y =1-3x 2y =3x2y -3x . (2)原式=1+1-a 1-2)1)(a -(a 12a ++ =2)1)(a -(a 2-a a 2+++2)1)(a -(a 2a ++-2)1)(a -(a 12a ++ =2)1)(a -(a 1-a 2+ =2)1)(a -(a 1)-1)(a (a ++ =2a 1a ++. (3)原式=22b a ÷5b a 2a 2+=22b a ×2a 2a 5b +=2)b(a 5a +.严格按照计算顺序计算,在计算过程中,分式前面是“-”号时,计算时一定要注意符号变化.活动1 小组讨论例1 计算:2b 2a ⎪⎭⎫ ⎝⎛·b -a 1-b a ÷4b .解:原式=22b 4a ·b -a 1-b a ·b 4=b)-(a b 4a 22⋅-2b 4a =b)-(a b 4a 22-b)-(a b b)-4a(a 2 =b)-(a b 4ab 4a -4a 222+=b)-(a b 4ab 2=b)-b(a 4a . 活动2 跟踪训练1.计算:⎪⎪⎭⎫ ⎝⎛y x 22·x y 2-2y x ÷x 2y 2. 解:原式=224y x ·x y 2-2y x ·22y x =8y x -422y x =4238y 4x -xy . 2.计算:x 1x +·21x 2x ⎪⎭⎫ ⎝⎛+-(1-x 1-1x 1+). 解:原式=221)x(x 4x 1)(x +⋅+-1)1)(x -(x 1x -1x +++ =1x 4x +-1)1)(x -(x 2+ =1)1)(x -(x 1)-4x (x +-1)1)(x -(x 2+ =1)1)(x -(x 2-4x -4x 2+. 3.计算:x +y +y-x y x 22+. 解:原式=y -x y)-y)(x (x ++y -x y x 22+=y-x y x y -x 2222++=y -x 2x 2. 4.先化简,再求值:2y x y -x +÷22224y 4xy x y -x ++-2,其中x =2.25,y =-2. 解:原式=2y x y -x +÷22y)(x y)-y)(x (x ++-2 =2y x y -x +·y)-y)(x (x 2y)(x 2++-2=y x 2y x ++-yx y)2(x ++=y x x +-. 当x =2.25,y =-2时,原式=2-2.252.25-=-9. 在运算过程中,要注意分式乘方不要漏乘;加减计算要注意符号;和整数或整式相加减时注意把整式或整数看成分母是1的整式或整数,通分后再计算;化简求值,一定要换成最简分式再求值.课堂小结1.“把分子相加减”就是把各个分式的分子“整体”相加减.在这里要注意分数线的作用.2.注意分式和分数有相同的混合运算顺序:先乘方,再乘除,然后加减.3.运算结果,能约分的要约分,要化成最简分式.教学至此,敬请使用学案当堂训练部分.。
年 级 初二学科数学内容标题 分式的加减和混合运算 编稿老师何莹娟一、学习目标:1. 熟练地掌握分式加减法以及分式的混合运算.2. 知道负整数指数幂na -=na 1(a≠0,n 是正整数).掌握整数指数幂的运算性质.二、重点、难点:熟练地进行分式加减法及分式的混合运算.三、考点分析:考试要求:理解分式的加、减、乘、除运算法则,会进行简单的分式加、减、乘、除运算;会选用恰当的方法解决与分式有关的问题.1. 同分母加减运算法则:()0b c b ca a a a±±=≠ 2. 异分母加减运算法则:()0,0b d bc da bc da a c a c ac ac ac±±=±=≠≠; 3. 负指数幂:a -p =1p aa 0=1知识点一:分式的运算例1. (1)11123x x x ++ (2)223121cdd c + 思路分析:题意分析:本题考查分式的加法解题思路:解本题的关键是找到最简公分母,(1)6x ,(2)6c 2d 2,然后通分化为同分母进行计算. 解答过程:(1)解:11163211236666x x x x x x x ++=++= (2)解:2222222262362633121d c cd d c c d c d cd d c +=+=+解题后的思考:通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母.例2. 计算 (1)2222223223yx yx y x y x y x y x --+-+--+; (2)96261312--+-+-x x x x . 思路分析:题意分析:本题考查分式的加减混合运算.解题思路:第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项式看作一个整体加上括号参加运算,结果也要约分化成最简分式.第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,然后进行通分,结果要化为最简分式. 解答过程:(1)解:2222223223yx y x y x y x y x y x --+-+--+=22)32()2()3(y x y x y x y x --++-+ =2222y x y x --=))(()(2y x y x y x +--=yx +2(2)解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x=)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x解题后的思考:在进行分式加减法运算时,①要利用因式分解把分式的分母进行因式分解,找到最简公分母;②再利用分式基本性质进行通分,化为同分母后进行加减法运算;③注意分式的结果要进行约分.还要注意分式中符号变换规律;约分的结果是,一般要求分子、分母不含“-”.例3. 计算:(1)x xx x x x x x -÷+----+4)44122(22;(2)2224442y x x y x y x y x y y x x +÷--+⋅-. 思路分析:题意分析:本题考查分式的混合运算.解题思路:(1)题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.(2)题先做乘除,再做减法,把分子的“-”号提到分式本身的前边. 解答过程:(1)解:x xx x x x x x -÷+----+4)44122(22=)4(])2(1)2(2[2--⋅----+x x x x x x x =)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x =)4()2(4222--⋅-+--x xx x x x x =4412+--x x(2)解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((y x y x y x y x xy --+- =))(()(y x y x x y xy +--=yx xy+-解题后的思考:做分式混合运算时要注意不要跳步,按照运算法则及顺序进行运算.小结:1、同分母分式的加减法:类似于同分母的分数的加减法; (1)正确地找出各分式的最简公分母.求最简公分母概括为:①取各分母系数的最小公倍数;②凡出现的字母为底的幂和因式都要取;③相同字母的幂和因式取指数的最大值.所取这些因式的积就是最简公分母.(2)准确地得出各分式的分子、分母应乘的因式. (3)用公分母通分后,进行同分母分式的加减运算.(4)公分母保持积的形式,将各分子展开. (5)将得到的结果化成最简分式(整式).知识点二:整数指数幂复习已学过的正整数指数幂的运算性质: (1)同底数的幂的乘法:nm nmaa a +=⋅(m ,n 是正整数);(2)幂的乘方:mn n m a a =)((m ,n 是正整数); (3)积的乘方:n n n b a ab =)((n 是正整数); (4)同底数的幂的除法:nm nmaa a -=÷( a≠0,m ,n 是正整数,m >n );(5)商的乘方:n nn ba b a =)((n 是正整数);(6)0指数幂,即当a≠0时,10=a .在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=9101米.此处出现了负指数幂,也出现了它的另外一种形式即正指数的倒数形式,但是这只是一种简单的知识介绍,而没有讲负指数幂的运算法则.规定负整数指数幂的运算性质:当n 是正整数时,na-=n a1(a≠0),也就是把n m n m a a a -=÷的适用范围扩大了,这个运算性质适用于m 、n 是全体整数.例4. 一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示. 思路分析:题意分析:本题考查负整数指数幂的运算 解题思路:我们知道:1纳米=9101米.由9101=10-9可知,1纳米=10-9米. 解答过程:35纳米=35×10-9米.而35×10-9=(3.5×10)×10-9=3.5×101+(-9)=3.5×10-8,所以这个纳米粒子的直径为3.5×10-8米.解题后的思考:用科学记数法可以表示一个较大的数,也可以表示一个较小的数.例5. (1)(x 3y -2)2; (2)x 2y -2·(x -2y )3; (3)(3x 2y -2)2÷(x -2y )3; 思路分析:题意分析:本题考查整数指数幂的运算.解题思路:应用推广后的整数指数幂的运算性质进行计算,与应用正整数指数幂的运算性质进行计算一样.解答过程:(1)46y x ; (2)4x y ; (3)7109yx .解题后的思考:注意当计算结果有负指数幂时,要写成分式形式.小结:引进了负整数指数幂,指数的范围扩大到了全体整数,幂的性质仍然成立.科学记数法不仅可以表示一些绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a 必须满足,1≤∣a ∣<10.且n 是正整数.知识点三、综合应用例6. 先化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,然后请你任取一个合适的数作为x 的值代入求值. 思路分析:题意分析:本题考查分式的混合运算.解题思路:本题考查整式的因式分解及分式的加减乘除混合运算,要注意运算顺序:先乘除后加减,有括号先算括号里的或按照乘法的分配律去括号. 解答过程:原式=x x x x x x x 222)2()2)(2(2-⋅⎪⎪⎭⎫⎝⎛+----+ ()()()22222222x x x x x x x x x +----=⨯-⨯+-()()2222x x x x x -+=-+()()()2222822x x x x x +--==++(x 只要不取0,±2均可) 取x =6,得原式=1解题后的思考:取值时要考虑分式的意义,即x ≠0、±2.例7. 有这样一道题“先化简,再求值:(41)442222-÷-++-x x x x x ,其中2008-=x ”小明做题时把“2008-=x ”错抄成了“2008=x ”,但他的计算结果也是正确的,请你解释这是怎么回事? 思路分析:题意分析:本题考查分式的混合运算. 解题思路:此题是先化简,再求值:(41)442222-÷-++-x x x x x ,小明做题时把“2008-=x ”错抄成了“2008=x ”,但他的计算结果也是正确的,说明化简后的结果与数值正负号无关. 解答过程:(41)442222-÷-++-x x x x x =1)2)(2()2)(2(4)2)(2(1)2)(2(4)2(22-+⨯-++=+-÷+-+-x x x x x x x x x x x =42+x把2008-=x 错抄成了2008=x 时,结果一样.解题后的思考:此题实质上是一道分式的化简求值题,但题目新颖,与例6有很多相似之处,是考查分式运算的一种新题型.例8. 观察下列关系式:1121)2)(1(1---=--x x x x 2131)3)(2(1---=--x x x x 3141)4)(3(1---=--x x x x …… 你可以归纳一般结论是 . 利用上述结论,计算:)2011)(2010(1)3)(2(1)2)(1(111--++--+--+-x x x x x x x . 思路分析:题意分析:本题考查整数指数幂的运算.解题思路:此题是归纳加应用的题目,解题关键是要读懂已知条件与所求式子之间的关系,才能融会贯通.把一个分式分解成两个分式和的形式 解答过程:一般结论是nx n x n x n x --+-=+--1)1(1)]1()[(1;解:)2011)(2010(1)3)(2(1)2)(1(111--++--+--+-x x x x x x x =20101201112131112111---++---+---+-x x x x x x x =20111-x 解题后的思考:此题考查归纳演绎的能力,此类题目在近几年的中考题中是热点内容.小结:分式的综合题目一般难度不大,但题目趋向新颖多变,考查同学们的灵活性.分式的运算与整式的运算相比难度较大,运算的步骤明显增多,符号的变换更加复杂,方法更加灵活,熟练掌握分式的基础知识,基本技能和基本方法,利于加强计算能力,对于提高分析问题、解决问题的能力也是十分必要的.(答题时间:60分钟)一、选择题1. 下列算式结果是-3的是( )A . 1)3(--B . |3|--C . )3(--D . 0)3(-2. 计算()a b a bb aa+-÷的结果为( ) A . a b b - B . a b b + C . a b a - D . a b a+3. 把分式中的x 、y 都扩大2倍,则分式的值( )A . 不变B . 扩大2倍C . 缩小2倍D . 扩大4倍4. 用科学记数法表示-0.000 0064应记为( )A . -64×10-7B . -0.64×10-4C . -6.4×10-6D . -640×10-8 5. 若322=+-b a b a ,则ab等于 ( ) A . 54-B . 54C . 1D . 546. 若0≠-=y x xy ,则分式=-xy 11( ) A . 1 B . x y - C .xy1D .-1 7. 一根蜡烛在凸透镜下成实像,物距为u ,像距为v ,凸透镜的焦距为f ,且满足fv u 111=+,则用u 、v 表示f 应是( ) A .uv v u + B . v u uv + C . v u D . uv8. 如果x >y >0,那么xyx y -++11的值是( ) A . 0 B . 正数 C . 负数 D . 不能确定 二、填空题1. (16x 3-8x 2+4x )÷(-2x )= .2. 已知a+b=2,ab=-5,则a b +b a=____________.3. 如果2ab =,则2222a ab b a b-++= ____________. 4. 一颗人造地球卫星的速度是8×103米/秒,一架喷气式飞机的速度是5×102米/秒,这颗人造地球卫星的速度是这架喷气式飞机的速度的____________倍.5. a 取整数 时,分式(1-114++a a )·a1的值为正整数.6. 已知a +a 1=6,则(a -a1)2= . 7. 已知25,4nn xy ==,则2()n xy -=_____________.8. 已知|x+y-3|+(x-y-1)2=0,则-221[(-x y)]2=______________________. 三、解答题1. (1)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围. (2)先化简,再求值已知3=a ,2-=b ,求2211()2abab a ab b +⋅++的值.2. 已知 y = ÷-+1,试说明在右边代数式有意义的条件下,不论x为何值,y 的值都不变.3. 按下列程序计算:n n n n →→+→÷→-→平方答案(1)填表. 输入n312-2-3…输出答案11…(2)请将题中计算程序用式子表达出来,并化简.一、选择题1. B2. A3. B (解析:把2x x 换成,2y y 换成,代入可得答案). 5. B (解析:根据内项积等于外项积 6322a b a b -=+ 45a b =). 6. A (解析:=-xy 11x yxy -,整体代入得10). 7. B (解析:1u v uv f+= uv f u v =+).8. B (解析:()()1111y y xy x xy y x yx x x x x x ++----==+++>0). 二、填空题1. 2842x x -+-2. 145- (解析:ab abb a a b b a 2)(2-+=+整体代入即可).3. 35(解析:可把a=2b 代入求解,也可设特殊值a=2,b=1代入求解).4. 165. -4,-2 (解析:31a -=+原式为正整数,所以a+1<0). 6. 32 (解析:22211236a a a a ⎛⎫+=++= ⎪⎝⎭ 22211234232a a a a ⎛⎫-=-+=-= ⎪⎝⎭). 7. 110000 (解析:原式=()21n n x y =110000).8.132(解析:列方程组,求得x=2,y=1再代入即可). 1. (1)解:()()()()()()()23121112122x x x x x x x x x x +---+-===-+-++原式 x≠1且x≠-2 (2)解:分式化简得1a b+,当3=a ,2-=b 时 原式=12.右边=()()()()21111111x xx x x x x-+⋅-++--=1111x x-+=3.(1)1,1(2)2221 n n n n nnn n++--==。
12.3分式加减乘除混合运算(复习)
授课教师:梁玉恒审稿:高凤娜 课型:新授课 日期:
教学目标:1、进一步掌握分式的加减乘除运算法则; 2、进一步掌握分式混合运算的步骤及运算技巧。
教学过程:
一、 夯实基础: 计算:
(1)x 2+3x x 2-9·3-x x +2 (2) x 2-x x +1÷x x +1
(3)a 2+1a +b -b 2+1a +b (4)2x -1+x -11-x .
(5) y
x y y x ++-22 (6)x +2x 2-2x -x -1
x 2-4x +4
.
二、技巧训练
(1) 222x x x +--21
44
x x x --+.
(2)4
21
42
---x x x
(3) (3a a -3-a a +3
)·a 2
-9
a
(4)1
11122----÷-a a a a a a (5)⎪⎭
⎫
⎝⎛---÷--225262x x x x
(6)x 2
x -1-x -1
三、应用提高:
1、先化简,再求值:3a
a --263a a a +-+3a
,其中a=32
.
2、()()n m n m mn
n m n m n m n m -+÷⎪⎪⎭
⎫ ⎝⎛+---+222222,然后
在取一组m,n 的值代入求值 计算
3、先化简代数式x 2-2x +1x 2-1÷(1-3
x +1
),再从-4
<x <4的范围内选取一个合适的整数x 代入求值.
四、思维拓展
已知下面一列等式: 1×12=1-12;12×13=12-13; 13×14=13-14;14×15=14-1
5
;… (1)请你从上边这些等式的结构特征写出它们的一般性等式;
(2)验证一下你写出的等式是否成立;
(3)利用等式计算:1x (x +1)+
1
(x +1)(x +2)+
1(x +2)(x +3)+1
(x +3)(x +4)
.
五、课后反思:。