独立性及贝努里概型
- 格式:ppt
- 大小:8.86 MB
- 文档页数:34
伯努利概型和贝利努概型
伯努利概型和贝利努概型都是三种简单概型中的一个,相对伯努利概型是考研中概率题型中常考考点之一,并且考研中对伯努利概型的考察经常和实际问题相结合,所以考生对伯努利概型的掌握,不仅仅限于对符号和分布律的记忆了,也要理解伯努利概型,知道什么时候应该使用伯努利概型。
首先,我们先看看伯努利概型是怎样定义的:2021考研管综初数管综初数备考伯努利概型,关于伯努利概型中,最主要抓住的关键点三个:1.独立,2.重复,3.两种结果。
而其中两种结果可以通过人为的方式来规定,所以一般伯努利概型的问题,常常会解读出独立重复试验。
伯努利概型对考生的要求是要从题干中抽象出来伯努利概型的问题。
所以各位考生复习伯努利概型从这三个角度进行复习。
以上是为管综考研考生整理的“20XX考研管综初数强化备考:浅析伯努利概型”相关内容,希望整理的能有所帮助。
贝努里概型伯努利家族在数学与科学上的地位正如巴赫家族在音乐领域的地位一样地显赫。
这个非凡的瑞士家族在三代时间里产生了十余位数学家和物理学家,其中有八位数学家(其中三位是杰出的,他们是雅可布、约翰、丹尼尔),他们又生出了在许多领域里崭露头角的成群后代。
雅可布发明了极坐标,他和他的弟弟约翰是莱布尼茨的朋友,经常书信往来讨论数学问题。
他们对于莱布尼茨发明的微积分方法极为推崇,迅速地接受了莱布尼茨的学说,并且加以发扬光大。
雅可布曾当过洛必达的私人教师,最先提出洛必达法则,是欧拉的老师。
雅可布和约翰两兄弟有时致力于研究同一个问题,但是由于彼此嫉妒和易于激动,这一情况是很遗憾的。
有时两人之间的摩擦爆发成为公开的嫉恨诟骂。
由于解决“最速降线”问题,兄弟两个因为解法的优劣而争论不休,两人之间的口角纷争达数年之久,其所用言辞之粗野很像市井上的对骂而非科学讨论。
这两人之中约翰的脾气似乎更坏,因为多年之后,由于他的二儿子丹尼尔获得了他自己渴望获得的法兰西科学院奖金,约翰竟把他摔出窗外。
n次重复独立试验:(1)相同的条件下重复地做某试验n次;可重复性(2)每次试验结果不受其它各次试验影响;独立性如:掷骰子n重贝努里试验:每次试验结果只有两种可能的n重独立试验1.共进行n次试验;2.各次试验相互独立;3.在每次试验中某事件A或者发生或者不发生;4.在每次试验中事件A出现的概率都是p(0p1)。
n重贝努里试验中事件A恰好发生k(0kn)次的概率为kknkPn(k)Cnp(1p)证明:设Ai={第i次贝努里试验中出现A},B={n重贝努里试验中A出现k次}分步:(1)A在指定的前k次试验中出现,后n-k次中不出现pP(A1...Akk1...n)P(A1)...P(Ak)P(k1)...P(n)pkqnkk(2)事件A可能出现在n次试验中的任何k次,共Cn中情况。
kknk所以Pn(k)Cnpq例1(1)将一个对称的硬币掷2次,求出现:恰好一次正面的概率;(2)将一个对称的硬币掷10次,求出现:恰好4次正面的概率。