- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明 对偶律.
例.事件A、B、C两两互不相容,则有
ABC 反之不成立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A2 , A2 A3 , A1 A2 , A1 A2 , A1 A2 A3 , A1 A2 A2 A3 A1 A3 .
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数.
E5: 在一批灯泡中任取一只, 测试它的寿命.
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的 结果; (3) 一次试验前不能确定会出现哪个结果.
§2. 样本空间与随机事件
P( A) m( A)
m( )
(其中m( ) 是样本空间的度量, m( A) 是构成事件A 的子区域的度量) 这样借助于几何上的度量来合理 规定的概率称为几何概率. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
可列个事件A1, A2 , 的和事件记为 Ak .
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
类似地,
事件
SAK
为可列B 个事件A1,
A2,
...的积事件.
k 1
(2)A B A
B
S
(3)A B
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?
P( A)
SA中中的的基基本本事事件件总数数
k n
古典概型概率的计算步骤:
(1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
k n
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
注
实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
二、几何定义:
定义若对于一随机试验, 每个样本点出现是等可能的,
样本空间所含的样本点个数为无穷多个, 且具有非 零的,有限的几何度量,即0 m() ,则称这一随机 试验是一几何概型的.
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
A - B A AB
显然: A-A=, A- =A, A-S=
s
A B
(4)A B
5.事件的互不相容(互斥): 若A B ,则称A与B是互不相容的,或互斥的,即
A与B不能同时发生.
B
A B
A
6. 对立事件(逆事件):
若A B S且A B ,则称A与B互为逆事件,也称
为对立事件. 即 : 在一次实验中, 事件A与B中必然有一 个发生, 且仅有一个发生. A的对立事件记为A.若A与B互为对立事件,则记为A B, 或B A.
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包
含S的 k 个样本点,则事件A的概率定义为
概率论与数理统计
第一ห้องสมุดไป่ตู้ 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
(三)事件间的关系与事件的运算 1.包含关系和相等关系:
B A
S
BA
7.事件的运算律:
交换律: A B B A;A B B A.
结合律: A (B C) (A B) C ; A (B C) (A B) C.
分配律: A (B C) (A B) (A C); A (B C) (A B) (A C).
对偶律: A B A B; A B A B.
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
(二) 随机事件