地磁场梯度对飞机磁场求解精度的影响分析-武汉大学学报·信息科学版
- 格式:pdf
- 大小:3.12 MB
- 文档页数:4
一种改进的航磁补偿系数求解算法作者:郑文超等来源:《智能计算机与应用》2014年第01期摘要:针对航空物探中高精度航磁补偿的要求,概述了航空平台磁干扰模型的建立过程,推导了16项磁补偿算法的求解过程,分析了其在计算过程中解决复共线性问题时采用的方法,针对该方法存在的问题,提出了用岭回归法来改进的方案,并用实验验证了改进效果。
关键词:磁补偿;复共线性;岭回归中图分类号:TP206+.1 文献标识码:A文章编号:2095-2163(2014)01-0091-030引言航空磁力探测已经成为有效提高探矿效率的主流方法之一,由于其效率高、速度快、受地球表面影响小等独特优势,已经在航空物探领域发挥了非常重要的作用。
航空磁力探测就是将灵敏的磁力仪装载于飞机的合适位置上,在空中巡回飞行收集磁力数据,用于检测地表的磁异常,达到探测矿体的目的。
但是,由于飞机本身即带有铁磁性物质,在空中飞行时,飞机自带的磁性物体产生的磁场和金属切割地磁场磁感线产生的磁场也会共同作用于磁力仪的传感器上,妨碍磁异常的探测,进而影响物探的质量。
要想获得良好的探测效果,就必须对探测数据进行补偿。
航磁补偿的目的就是要减少或消除类似的影响磁探测效果的磁干扰,充分发挥磁力仪的作用。
因此在磁探测系统中就需要一个实时、高效和稳定的磁补偿器,以处理探测到的数据,同时对磁干扰实施消除。
而在磁补偿器系统中的关键一环就是消除与飞机机动相关的磁干扰,实现方法就是根据对飞机平台磁干扰建立完备的模型以设计最佳磁补偿算法,利用校准飞行中收集到的数据计算得到模型中的磁干扰系数,并在补偿飞行阶段对磁力仪探测到的数据进行实时补偿,使目标信号显现出来,由此达到探测的目的。
目前获得广泛应用的磁干扰模型就是在1950年由Tolles和Lawson提出的[1]。
这项研究是根据磁干扰产生的原因及性质将磁干扰分解成恒定磁场、感应磁场和涡流磁场,并用数学模型将其表达出来,也就是人们所说的Tolles- Lawson方程,简称T-L方程。
绪论领航学是研究利用领航设备引领飞机航行的一门应用学科.确定飞机位置、飞机航向、飞行时间是领航需要解决的三个基本问题.第1章1、地球磁场三要素:磁差、磁倾、地磁力地球磁场强度.P62、磁经线北端偏离真经线北端的角度,叫作磁差或磁偏角,用MV 或VAR 表示, 磁差范围-180︒~+180︒,磁差常见的表达形式有:MV-2︒,VAR2︒W.P63、地球表面任何一点的地球磁场强度方向及自由磁针的轴线方向,也就是磁力线的切线方向与水平面之间的夹角,就叫磁倾角,简称磁倾.地球磁场对磁体如磁针的作用力叫地磁力.P84、例通过查询地图上等磁差线,某地1960年磁差为︒,年变率为',求该地2011年磁差:︒︒-≈-⨯-+-=2)8.0()19602011(5.1')2011(MV .P95、航线航段的方向,用航线角Course 表示,即从航线起点的经线北端顺时针量到航线航段去向的角度.航线角范围0︒~360︒.因经线有真经线、磁经线,所以航线角用真航线角TC 和磁航线角MC 两种来表示,换算关系 式:MC=TC-MV.P96、地球表面上的大圆航线距离最短,但是每经过一条经线就要改变航线角;等角航线的航线角不变,但是航线距离比大圆航线长.因此远程航线的全程应选择大圆航线取其短,再分成数段,每段按等角航线飞行取其航线角不变.P11地图三要素:地图比例尺、地图符号、地图投影方法无线电高度表测量飞机真实高度确定飞机位置的方法:地标定位、无线电定位、推测定位推测飞机位置必须掌握:推测起点、航迹、地速、时间地形的表示包括:标高点、等高线、分层着色7、现代大中型飞机都可以使用大圆航线,而小型飞机如运五、TB 等受导航设备限制只能采用等角航线.P128、等角正圆柱投影又称墨卡托投影,是圆柱投影的一种,由荷兰地图学家墨卡托G. Mercator 于1569年创立.P19等角正割圆锥投影图又称为兰伯特投影图,是德国人兰伯特9、几幅相同比例尺的航图拼接时,按照图幅编号顺序和邻接图表通常在航图左侧上方的图边缘处的提示,裁去上图和左图相接部分的图边,依照上图压下图、左图压右图的原则,将相同的经、纬线以及主要的线状地标对齐接合.P2510、标准大气条件下,气压每减小1hPa,高度升高;气压每减小1mmHg,高度升高11m.由于在飞行中选择的气压基准面不同,因此有三种气压高度:场压高、修正海压高度、标准气压高度.P3211、离场航空器在爬升过程中,保持本机场的QNH 直至到达过渡高度.在穿越过渡高度或者在过渡高度以下穿越修正海平面气压适用区域的侧向水平边界时,必须立即将高度表气压刻度调到标准气压,其后航空器的垂直位置用飞行高度层表示.航空器在修正海平面气压适用区域内,按过渡高度平飞时,应使用机场的修正海平面气压.P3912、最低安全高度MSA-Minimum Safe Altitude 是指保证飞机不与地面障碍物相撞的最低飞行高度.最小超障余度即安全真高MOC-Minimum Obstacle Clearance 是指保证飞机超越障碍时所应保证的最小垂直间隔,它的大小依据可能造成高度偏差的气象条件、仪表误差、飞机性能及驾驶员技术水平等因素,由有关主管部门发布.规定:航线仪表飞行的最小超障余度是平原地区为400m,丘陵和山区为600m.P41-P4213、最低安全高度的计算是在航线两侧各25km 区域内的最大标高,加上最小超障余度,以及由于沿航线飞行的最低海平面气压低于760mmHg 而产生的气压修正量H ∆,即MSA =ELEV+MOC+H ∆,式中H ∆=760-航线最低海压⨯11m,但一般不做计算,可忽略,ELEV 标高可从地图作业或航行资料中查出.例:宁陕至小烟庄,航线两侧25km 范围内的最高超障物是秦岭山脉的静裕脑,其标高为3015m,则该航线的最低安全高度MSA=3015+600=3615m 注:宁陕至小烟庄属山区,最小超障余度取600mP4214、飞机纵轴前方的延长线叫航向线.从飞机所在位置经线北端顺时量到航向线的角度,叫航向角;航向角的范围为0︒~360︒P4315、马赫数M 数-Mach Number :马赫数是该飞行高度上的真空速与音速a 之比,即M=TAS/a16、表速与真空速的换算:飞行中由表速计算真空速的步骤为TAS EAS IAS CAS BAS −−→−−−→−−→−−→−∆∆∆∆ρεv v v v qi P56-57 17、马赫数与真空速之间的关系可用数学式表示为M TAS H ⋅+⋅=288t 2731224式中可以看出:保持一定的M 数飞行,高度升高时,气温降低,真空速减小;在同飞行高度,空中温度越高,真空速越大.P5718、根据飞机的速度表的不同,速度单位有公里/时km/h 、英里/时mile/h 、海里/时kn 和米/秒m/s,换算关系为:1 kn= mile/h= km/h,1 m/s= km/h,.例:180kn=333km/h=207mile/h=93m/s.常用的质量单位是公斤kg 、磅lb,关系为:1 kg= lb.例:200kg=441 lbs.常用的容积单位有公升、英加仑、美加仑,关系式为:1公升=美加仑=英加仑.例:3000美加仑=2500英加仑=11400公升.P68-69第2章19、风有两种表示方法:一种是气象上用的风叫气象风,其风向是指风吹来的真方向,即从真经线北端顺时针量到风的来向的角度,用m WD 表示,单位:米/秒m/s 、海里/时kn ;一种是领航上用的风叫航行风,其风向是指风吹去的磁方向,即从磁经线北端顺时针量到风的去向的角度,用n WD 表示,单位:公里/时km/h 、海里/时kn.注:n WD =m WD ±180︒-MV.或m WD =n WD ±180︒+MV.例:成都飞重庆,预报风为m WD =70︒则n WD =70︒+180︒=250︒由于该飞行地区磁差较小,MV=-2︒,可忽略不计P7820、航行速度三角形:3个向量包含了6个元素:磁航向MH 、真空速TAS 、风向WD 、风速WS 、磁航迹MTK 、地速GS .还有两个元素是三角形的两个内角,即偏流DA 和风角WA 课本图.用地速向量同空速向量的夹角,即航迹线偏离航向线的角度来表示,这一角度叫偏流角DA-Drift Angle,简称偏流.注:以TAS 为基准,左侧风,规定偏流为正+DA,右侧风,规定为负-DA.在航行速度三角形中,航迹线同风向线的夹角即地速向量同风速向量的夹角叫风角WA-Wind Angle.以航迹线为基准,左侧风,由航迹线顺时针量到风向线,为正值,+WA,右侧风,由航迹线逆时针量到风向线,为负值,-WA.风角WA 范围从0︒~±180︒,0︒表示顺风,180︒表示逆风,±90︒左或右正侧风,0︒~±90︒左或右表示顺侧风,±90︒~180︒左或右表示逆侧风.P81-82第3章21、飞机沿预定航线飞行应该保持的航向,称为应飞航向,用MH 应表示.无风时,MH 应=MC,飞机受到侧风情况,必须使飞机的航向迎风修正一个偏流角,即在航线角基础上迎风修正一个偏流,得到应飞航向MH 应=MC-DA.P90-9122、计算携带油量:最少携带油量=航线飞行时间+备份时间⨯耗油率+地面用量航行备用油量根据天气情况、飞机性能、航程和到备降机场的距离等确定.国内飞行,保证飞机若不能在着陆机场着陆,飞抵最远备降机场上空还有不少于45min 的油量.以起飞机场为备降机场,不得少于1h30min 的备用油量.飞机自反航点返航,还有不少于45min 的油量.国际航线飞行的备用油量,包含航线飞行时间的10%的燃油量,飞抵备降机场的燃油量按实际距离或370km ;在备降机场上空的460m1500ft 高度等待30min 的燃油量;在备降机场进近着陆的燃油量.直升机通常不少于30min 的航行备用油量.P9223、P93-94对尺计算:风角WA=WD-MC,风角范围0︒~±180︒,所以当︒-180n >MC WD 时,应在较小的角度上先加360︒后再相减.对尺计算偏流、地速,图.例.24、飞机的航迹线与航线间的夹角,叫偏航角,用TKETrack Angle Error 表示.航迹线偏在航线右边,偏航角为正;航迹线偏在航线左边,偏航角为负,磁航迹角等于磁航线角与偏航角之和,即MTK=MC+TKE.P103-10425、P107例题此外还有相关计算第4章26、机载导航设备和地面的导航台站之间的连线,即无线电波的传播路线叫无线电方位线,简称方位线.图.P121利用甚高频全向信标VOR 测定方位,其方位指示器有多种形式,主要有无线电磁指示器RMI 、航道偏离指示器CDI 、水平状态指示器HSI.27、位置线交点定位法分类:θθ-定位测向-测向定位,可以实现θθ-定位的有双NDB 台、双VOR 台、NDB/VOR 台和ILS 中的航向信标LOC 等;θρ-定位测距-测向定位,可以实现θρ-定位的有NDB/DME 、VOR/DME 、ILS/DME 等;ρρ-定位测距-测距定位,可以实现ρρ-定位的有DME/DME 等;双曲线定位测距差定位,可以实现双曲线定位的有ONS.P146-14728、P156例题飞行中测出DA=+5︒,TKE=-3︒,说明飞机偏在航线左、右侧,空中风为左、右侧风. 若DA-3︒,∆GS-25,说明空中风为:右侧逆风第5章29、仪表进近程序Instrument Approach Procedure-IAP 是航空器根据飞行仪表提供的方位、距离和下滑信息,对障碍物保持规定的超障余度所进行的一系列预定的机动飞行程序.仪表进近程序构成:进近航段、起始进近航段、中间进近航段、最后进近航段、复飞航段.P163-164仪表进近程序的基本形式有:直线航线程序、反向航线程序、直角航线程序、推测航迹程序.30、在当前的导航设备中,能够实施精密进近程序的系统有仪表着陆系统ILS 、精密进近雷达PAR 、微波着陆系统MLS 和使用卫星进行精密进近的系统GLS.在仪表进近的最后进近航段,只能够为飞机提供航迹引导的程序,叫非精密进近Non-Precision Approach Procedure.非精密进近有:NDB 进近、VOR 进近、VOR 、NDB 结合DME 进近. 起始进近采用直线航段NDB 方位线或VOR 径向线或DME 弧的进近程序.31、着陆入口速度at V 是该型飞机在着陆形态下以最大允许着陆重量进近着陆时失速速度的倍,即s at 3.1V V =.32、仪表进近转弯坡度或转弯率:程序设计规定,等待和起始进近使用的坡度平均为25︒,目视盘旋为20︒,复飞转弯为15︒.使用上述坡度时,相应转弯率不得超过3︒/s ;如果转弯率超过3︒/s 时,则应采用3︒/s 转弯率所对应的坡度.计算表明,转弯坡度25︒、真空速170kn315km/h,其转弯率为3︒/s ;真空速小于170kn 时,25︒坡度对应的转弯率将大于3︒/s.因此,实际应用中按照:TAS>170kn315km/h,采用25︒;TAS ≤170kn315km/h,采用3︒/s 转弯率对应的坡度.P17033、起始进近主区内的最小超障余度是300m,中间进近主区内的最小超障余度是150m.下降梯度Gr 是飞机在单位水平距离内所下降的高度,等于飞机下降的高度与所飞过的水平距离之比,采用百分数表示,表示下降轨迹的平均倾斜度.最低下降高度MDA 是以平均海平面MSL 为基准;最低下降高MDH 是以机场标高或入口标高为基准.最低下降高度/高MDA/H 是非精密进近程序中规定的一个高度,飞机在最后进近中下降到这一高度时,如果不能建立目视参考,或者处于不能进入正常着陆位置时,不能继续下降高度,而应保持这一高度到复飞点复飞.P17134、P180例题.P189图上数据能读懂.35、修正角航线的开始点必须是电台,修正角航线由出航航迹背台边、基线转弯入航转弯和入航航迹向台航迹构成.图.P18836、P192风的分解:在修正角航线飞行中,将预报风分解成平行出航航迹的顺逆风分量1WS 和侧风分量2WS ,则αcos 1⋅=WS WS ,αsin 2⋅=WS WS ,其中α为风向与出航航迹MC 出之间的夹角37、风的修正:飞机受到左侧风影响,应向左减少一个A,MH 应=MC 出-A ;飞机受到右侧风影响,应向右增加一个A,MH 应=MC 出+A .P194决断高度/高DA/DH 是指飞行员对飞机着陆或复飞作出判断的最低高度,飞机下降到这一高度时,飞行员必须目视跑道并处于正常的着陆位置才能转入目视下降着陆,否则应当立即复飞.38、P206计算17、18题第6章39、从区域导航的发展和当前的使用来看,可以用于区域导航的导航系统有VOR/DME 、DME/DME 、惯性导航系统INS/IRS 、全球卫星导航系统GNSS 、飞行管理系统综合FMS P207-208第7章40、飞行管理计算机系统FMCS 由飞行管理计算机FMC 和控制显示组件CDU 组成,它协调、处理并控制其他分系统的工作.自动飞行控制系统AFCS 是FMS 的操作系统,它对自动驾驶、飞行指引系统、速度配平、马赫配平等提供综合控制.它由两台或三台飞行控制计算机FCC 、一个方式控制板MCP 及一些其他部件组成.惯导系统按结构可分为两大类:平台式惯导系统和捷联式惯导系统.28天更新一次.41、全球定位系统GPS,其全称为定时和测距的导航卫星,它的含义是利用导航卫星进行测时和测距,以构成全球定位系统.包括三部分:空间GPS卫星、地面控制站组、用户GPS接收机.GPS优点:GPS具有全球、全天候、连续导航能力,能提供连续、实时的三维空间坐标、三维速度和精密时间,并具有良好的抗干扰性能;GPS具有高精度,三维空间定位精度优于10m,三维速度精度优于3cm/s,时间精度为20~30ns;GPS 能满足各类用户,可用于铁路、航空、城市交通、农业、森林防火、地震预报、救援等;GPS具有多种功能,可以广泛用于导航、搜索、通信、交通管理、授时、航空摄影、大地测量等;GPS为连续输出,更新率高,一般为每秒一次,适用于高动态移动用户的定位;GPS用户设备简单,购置费用较低.GPS缺陷:GPS卫星工作于L波段,电波入水能力差,不能用于水下导航;GPS的完好性监测和报警能力不足,对卫星的一些软故障要在很长时间后才能发出故障状态信息;GPS的可用性即所有地区的连续服务能力不足,某些时候在某些地方将出现少于4颗卫星的情况;整个系统维护费用太高.P23442、FMS的主要功能:导航和制导;编排飞行计划,实施性能管理;全自动着陆能力;快速诊断故障能力.P24043、飞行管理系统FMS有:飞行管理计算机系统FMCS由飞行管理计算机FMC和控制显示组件CDU组成,它协调、处理并控制其他分系统的工作;控制系统AFCS是FMS的操作系统,它对自动驾驶、飞行指引系统、速度配平、马赫配平等提供综合控制;自动油门系统;传感器系统.采用FMS编排飞行计划的方法有:选择公司航路、人工选择航路.44、飞行管理系统由飞行管理计算机系统、自动飞行控制系统、自动油门系统和传感器系统四部分组成.45、PBN的导航规范包括RNP和RNAV.。
机场地磁场测量及数据处理李秋红;辛长江;陈双贵;许康生;闫万生【摘要】地磁偏角(D)被广泛应用于飞行器的导航,磁罗经是最经典、最可靠的导航工具之一。
结合中国机场地磁测量的需求和地磁观测的现状,详细描述罗经标定盘(Compass rose 或 Compass cali-bration pad)在机场选址、建设及应用过程中,利用质子旋进磁力仪(GSM-19T或 G856)、磁通门无磁经纬仪(CTM-DI 或Mingeo)和差分GPS (PROMARK 2或PROMARK 100)进行地磁总强度(F)梯度、地理方位角、地磁方位角和地磁偏角(D)的测量方法。
同时描述观测数据仪器差的改正、日变通化和长期变计算方法,以供机场地磁测量应用。
%In Aeronautics,the magnetic compass is extensively used to navigate the aircraft.In case of failure of other electronic navigation devices(GPS,VOR,etc.),the magnetic compass can play an important backuprole.This paper mainly focuses on measuring the gradient of the geomagnetic total intensity,the geographic azimuth,and the geomagnetic declination using a proton precession magnetometer (GSM-19T or G856 ), a non-magnetic fluxgate theodolite (CTM-DI or Mingeo),and a differential GPS (PROMARK 100 or PROMARK 2).The results can be applied for selecting the airport site and for constructing the airport.In addition,we ex-plore the different methods of correcting instrument differences,removing diurnal variation from observational data,and computing secular variation,which are useful for the airport geomagnetic surveys.【期刊名称】《地震工程学报》【年(卷),期】2016(038)0z1【总页数】5页(P44-48)【关键词】地磁测量;地磁偏角;磁罗经;磁罗经标定盘【作者】李秋红;辛长江;陈双贵;许康生;闫万生【作者单位】甘肃省地震局,甘肃兰州 730000;甘肃省地震局,甘肃兰州730000;甘肃省地震局,甘肃兰州 730000;甘肃省地震局,甘肃兰州 730000;甘肃省地震局,甘肃兰州 730000【正文语种】中文【中图分类】P318.6当飞行器的其他电子导航设备(如GPS,VOR等)出现问题时,磁罗经仍然是最基本的导航设备,扮演一个重要的角色[1]。
重磁(梯度)张量数据边界识别方法研究重磁(梯度)张量数据边界识别方法指的是利用重力和磁场数据获取地球内部的边界信息的一种方法。
通过对地球内部的重力和磁场进行测量并建立相应的模型,可以识别地壳、岩石和其他地球内部结构的边界。
本文将介绍重磁(梯度)张量数据边界识别的方法和一些相关研究。
首先,我们需要了解重力和磁场数据在地球内部结构识别中的作用。
重力数据可以提供与地下质量分布相关的信息,而磁场数据则可以提供与地下磁性物质分布相关的信息。
由于地壳中不同类型的岩石具有不同的密度和磁性,因此重力和磁场数据可以在一定程度上反映地壳和岩石的边界。
在重磁(梯度)张量数据边界识别中,主要有以下几种方法:1.磁梯度张量方法:这种方法基于磁场梯度的计算,通过计算磁场梯度张量(包括一阶和二阶磁梯度张量)来识别地球内部结构的边界。
磁梯度张量方法可以准确地提取地壳和岩石边界的位置和形状。
2.重力梯度方法:与磁梯度方法类似,重力梯度方法是基于重力梯度的计算来识别地球内部结构的边界。
重力梯度方法主要针对具有较小重力异常的地区,可以更好地反映地球内部的细节。
3.综合方法:综合方法是将重力和磁场数据结合起来进行边界识别的方法。
这种方法可以充分利用重力和磁场数据的互补性,提高边界识别的准确性和可靠性。
以上方法都需要进行一系列的数据处理和分析,包括滤波、去噪、数据插值等。
此外,还需要建立适当的物理模型和数学模型来描述地球内部的结构和边界。
相关的研究表明,重磁(梯度)张量数据边界识别方法在地球科学领域有着广泛的应用。
例如,在地球内部的岩石学、构造地质学和地球物理学研究中,可以利用重磁(梯度)张量数据来解释地球内部的岩石类型、地质构造和地热分布等问题。
此外,重磁(梯度)张量数据边界识别方法还可以在勘探地球资源和环境地球物理研究中发挥重要作用。
综上所述,重磁(梯度)张量数据边界识别方法是一种获取地球内部结构边界信息的有效手段。
通过对重力和磁场数据的处理和分析,可以识别地壳、岩石和其他地球内部结构的边界,为地球科学研究和勘探地球资源提供重要支持。
航空重力梯度仪原理航空重力梯度仪是一种用于测量地球重力场变化的仪器。
它可以通过测量重力场的微小变化来获取地下的地质结构和地下水资源等信息。
本文将介绍航空重力梯度仪的原理。
航空重力梯度仪的工作原理基于物体的重力作用力。
重力是由地球质量吸引物体而形成的,它是地球引力场的体现。
当飞机携带了重力梯度仪飞行时,该仪器可以测量飞机所在位置的重力场梯度。
航空重力梯度仪的原理基于以下几个关键概念:一、重力梯度重力梯度是指物体在某一点上的重力随距离的变化率。
在地球表面上,重力通常是均匀的,但在不同地点上由于地下地质结构的不同,会导致地表上的重力场存在微小的变化,即重力梯度。
重力梯度的变化可以提供有关地下地质构造和密度变化的信息。
二、测量原理航空重力梯度仪通过测量重力梯度来获取地下的地质结构信息。
它采用了差分测量的方法,即在仪器中设置了两个或多个重力传感器,并在其间测量重力差异。
通过测量重力传感器之间的微小重力变化,可以获得重力梯度的信息。
三、测量误差和校正在实际测量过程中,航空重力梯度仪还会受到一些误差的影响,如飞机的运动、大气影响和仪器本身的漂移等。
针对这些误差,需要进行相应的校正和补偿。
飞机的运动误差可以通过GPS定位系统和惯性导航系统进行校正。
通过精确的飞行轨迹数据,可以消除因飞机姿态变化和运动幅度而引起的重力测量误差。
大气影响通常会导致重力变化,因为大气压力和温度的变化会影响到重力的测量。
航空重力梯度仪通常会安装气压计和温度计等仪器,以对大气影响进行校正。
仪器本身的漂移误差可以通过稳定的仪器设计和定期校准进行补偿。
定期的校准可以通过参考测点进行,以确保测量的准确性和可靠性。
总之,航空重力梯度仪是一种通过测量重力梯度来获取地下地质结构信息的仪器。
其工作原理基于测量重力梯度的变化,在测量过程中需要进行误差校正和补偿。
通过航空重力梯度仪的应用,可以为地质勘探、地下水资源调查和地震研究等领域提供重要的数据支持。
航空磁测法研究专家技术原理应用最广的航空物探方法,又称航空磁测或航空磁力勘探,简称航磁。
目前航空磁测用的仪器有两类,一类是测总磁场模数的变化△T,另一类是测总磁场模数变化的梯度。
目前在生产中应用的测总磁场模数变化的仪器主要是核子旋进磁力仪和光泵磁力仪,也有用磁通门磁力仪的(见磁法勘探)。
测总磁场模数变化梯度的是航空磁力梯度仪。
它用距离固定的两个磁力仪探头(如光泵磁力仪探头),同时测量地磁场并记录其差值(即磁力梯度,可测垂直梯度或水平梯度),一般灵敏度约达3×10-4~5×10-4纳特/米。
航空磁法在地质工作中应用较为广泛,用于以下几个方面的地质效果较好。
地质制图和研究大区域构造在大片研究程度很低的地区和海上,可用小比例尺的航空磁测研究地质构造。
许多火成岩和老变质岩都具有磁性。
根据磁异常场的特征可以区分并圈定它们的范围,包括在沉积盖层下伏的部分。
它们的分布、排列、组合有一定的规律,并且常可见到一些线形特征。
例如,串珠状或雁行排列的局部异常,条带形或弧形的异常带,异常带的错动,异常场区域性特征的线形分界线等,据此可以发现或追索各种断裂、断裂带、褶皱构造等,然后划分地质构造单元。
沉积岩一般磁性很小,但其下常有磁性岩体组成基底。
对航空磁测资料进行定量计算,可以算出磁性体顶面距飞机的高度,减去航高,就可得到沉积岩层的估计厚度,从而圈出沉积盆地的范围,并研究它的特点。
找金属矿和其他固体矿藏直接找强磁性矿体(例如磁铁矿)是航空磁法应用的重要方面。
要求发现几十万吨至几亿吨的不同规模矿藏,飞机的飞行高度为几十米到上千米。
有些矿藏虽然不能用航空磁法直接勘探,但可用它快速圈定成矿的远景区,然后进行地面磁测(见磁法勘探)。
普查石油和天然气根据小比例尺磁测研究区域构造和沉积盆地的特点,结合其他资料,可以提出找油的远景地区;在进一步的详细工作中,当条件有利的时候,用航空磁法能圈出控制储油构造的二级构造带;如沉积岩中夹有稳定的磁性岩层,还可直接发现可能储油的构造。
航空地球物理勘探资料微调平处理骆遥;王林飞;何辉【摘要】航空物探测量中测线间水平往往存在差异,表现为沿测线方向的条带.调平处理旨在减少或消除测线间的水平差,是航空物探资料处理中的关键,对航空物探资料处理和解释具有重要作用.笔者以实际的航磁资料处理为例,详细介绍了航空物探资料微调平处理的原理与实现.微调平处理中首先通过方向滤波从原始资料中提取噪声网格,并按飞行测线提取噪声网格中的数据并分离有用的地质信息,最终将分离后的测线水平误差从原始资料中去除得到调平后资料,以此实现航空物探资料的微调平处理.同时,针对资料处理中遇到的诸如滤波器选取、异常分离阈值确定、最终调平效果检验等实际问题进行讨论,这对理解微调平并应用于实际资料处理均具有意义.%Airborne geophysical data often suffer from corrugations or line level errors,which can be adjusted or removed by using levelling procedure. Levelling is a critical step in airborne geophysical data processing and interpretation. Microlevelling routine can be applied to removing the remaining line level after tie line leveling. Based on practical aeromagnetic data levelling,the authors deal in detail with the principle of microlevelling and key steps in microlevelling procedure. For the purpose of microlevelling data,a directional high pass filter perpendicular to the flight line direction is first employed to produce a decorrugation noise grid. The noise grid is then extracted as new channel flight data. Amplitude limiting and low pass filtering can be applied to the noise channel so as to remove the residual geological signal and leave only the component of line level drift,which is then subtracted from the original data to produce the finalmicrolevelled data. This paper has also discussed some key technical problems in airborne geophysical data leveling,especially in microlevelling. The discussion in this paper may be useful in practical data processing.【期刊名称】《物探与化探》【年(卷),期】2012(036)005【总页数】5页(P851-855)【关键词】航空物探;资料处理;微调平;测线水平【作者】骆遥;王林飞;何辉【作者单位】中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心,北京100083;中国国土资源航空物探遥感中心,北京100083【正文语种】中文【中图分类】P631航空地球物理勘探(航空物探)多以飞机为载体,通过装载多种仪器在空中探测和测量地球物理场。