【物理】物理动量定理练习题及答案
- 格式:doc
- 大小:278.50 KB
- 文档页数:7
高二物理动量定理试题答案及解析1.对下列物理现象的解释,正确的是()A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力D.在车内推车推不动,是因为合外力冲量为零【答案】 CD【解析】试题分析: 用橡皮锤敲打钉子将其钉进木头里,力的作用时间长,作用力小,所以击钉时,不用橡皮锤,故A错误;跳远运动员跳在沙坑里,延长了力的作用时间,减小作用力,不是减少冲量,故B错误;搬运玻璃等易碎物品时,在箱子里放些刨花、泡沫塑料等,延长了力的作用时间,减小作用力;故C正确;在车内推车推不动,因为车受合外力为零,所以合外力冲量为零,故D正确。
【考点】动量定理2.如图所示,两个完全相同的小球A、B用等长的细线悬于O点.线长L.若将A由图示位置静止释放,则B球被碰后第一次速度为零时的高度不可能是 ( )A.L/2 B.L/4 C.L/8 D.L/10【答案】D【解析】小球A从释放到最低点,由动能定理可知:,解得:.若A与B发生完全弹性碰撞,由能量守恒定律和动量守恒定律可知两者交换速度,即,B上升过程中由动能定理可知:,解得:;若A与B发生完全非弹性碰撞即AB粘在一起,由动量守恒定律可知:,解得:,在AB上升过程中,由动能定理可知:,解得:,所以B球上升的高度,故选项D错误.【考点】考查动量守恒定律和动能定理在碰撞中的应用,关键在于根据两球碰撞的可能情况解出高度的范围.3.如图所示,质量为2kg的物体A静止在光滑的水平面上,与水平方向成30º角的恒力F=3N作用于该物体,历时10s,则:()A.力的冲量大小为零B.力F对物体的冲量大小为30NsC.力F对物体的冲量大小为15NsD.物体动量的变化量为15Ns【答案】BD【解析】根据公式可得力F对物体的冲量大小为30Ns,AC错误,B正确;物体的动量变化为,故D正确故选BD【考点】考查了动量定理的应用点评:冲量就是力对物体的大小和时间的乘积,与物体运动方向有关。
【物理】物理动量定理练习题及答案一、高考物理精讲专题动量定理1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g取10m/s2)【答案】1.5xl03N;方向向上【解析】【详解】设运动员从人处下落,刚触网的速度为匕=,2ghi=8m/s运动员反弹到达高度生,,网时速度为v2=q2gh2=10m/s在接触网的过程中,运动员受到向上的弹力F和向下的重力mg,设向上方向为正,由动量定理有(F-)得F=1.5xlO3N方向向上2. 一质量为0.5kg的小物块放在水平地面上的八点,距离八点5m的位置B处是一面墙,如图所示,物块以vo=9m/s的初速度从人点沿方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.为质点)放在的木板左端,物块与木板间的动摩擦因数〃=0.4。
质量m°=0.005kg的子弹以速度%=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取3B⑴求物块与地面间的动摩擦因数〃;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)〃=0.32(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:代入数据解得:户032.(2)规定向左为正方向,对碰墙的过程运用动量定理得:Fat=mv—mv,代入数据解得:F=130N.3.如图所示,质量M=l.Okg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视10m/s2。
求:(1)物块的最大速度VI:(2)木板的最大速度(3)物块在木板上滑动的时间t%m【答案】(l)3m/s;(2)lm/s:(3)0.5s o【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:movo=(m+m。
高中物理 选修 动量一、【动量、冲量、动量定理】1.课上老师做了这样一个实验:如图所示,用一象棋子压着一纸条,放在水平桌面上接近边缘处.第一次,慢拉纸条,将纸条抽出,棋子掉落在地上的P 点;第二次,将棋子、纸条放回原来的位置,快拉纸条,将纸条抽出,棋子掉落在地上的N 点.从第一次到第二次现象的变化,下列解释正确的是( )A .棋子的惯性变大了B .棋子受到纸条的摩擦力变小了C .棋子受到纸条的摩擦力的冲量变小了D .棋子离开桌面时的动量变大了解析:选C .两次拉动中棋子的质量没变,其惯性不变,故A 错误;由于正压力不变,则纸条对棋子的摩擦力没变,故B 错误;由于快拉时作用时间变短,摩擦力对棋子的冲量变小了,故C 正确;由动量定理可知,合外力的冲量减小,则棋子离开桌面时的动量变小,故D 错误.2.如图所示,是一种弹射装置,弹丸的质量为m ,底座的质量为M =3m ,开始时均处于静止状态,当弹簧释放将弹丸以对地速度v 向左发射出去后,底座反冲速度的大小为 14v ,则摩擦力对底座的冲量为( )A .0B .14m v ,方向向左C .14m v ,方向向右D .34m v ,方向向左 解析:选B .设向左为正方向,对弹丸,根据动量定理:I =m v ;则弹丸对底座的作用力的冲量为-m v ,对底座根据动量定理:I f +(-m v )=-3m ·v 4得:I f =+m v 4,正号表示方向向左;故选B .3.高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能( ) A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比解析:选B .速度v =at ,动能E k =12m v 2=12ma 2t 2,与经历的时间的平方成正比,A 错;根据v 2=2ax ,动能E k =12m v 2=12m ·2ax =max ,与位移成正比,B 对;动能E k =12m v 2,与速度的平方成正比,C 错;动量p =m v ,动能E k =12m v 2=p 22m,与动量的平方成正比,D 错. 4.如图所示,质量为m 的物体,在大小确定的水平外力F 作用下,以速度v 沿水平面匀速运动,当物体运动到A 点时撤去外力F ,物体由A 点继续向前滑行的过程中经过B 点,则物体由A 点到B 点的过程中,下列说法正确的是( )A .v 越大,摩擦力对物体的冲量越大,摩擦力做功越多B .v 越大,摩擦力对物体的冲量越大,摩擦力做功与v 的大小无关C .v 越大,摩擦力对物体的冲量越小,摩擦力做功越少D .v 越大,摩擦力对物体的冲量越小,摩擦力做功与v 的大小无关解析:选D .由题知,物体所受的摩擦力F f =F ,且为恒力,由A 到B 的过程中,v 越大,所用时间越短,I f =Ft 越小;因为W f =F ·AB ,故W f 与v 无关.选项D 正确.5. (多选)如图所示,AB 为竖直固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量水平向右B .小球所受支持力的冲量水平向右C .小球所受合力的冲量大小为m 2gRD .小球所受重力的冲量大小为零解析:选AC .在小球从A 点运动到B 点的过程中,小球在A 点的速度为零,在B 点的速度水平向右,由动量定理知,小球所受合力的冲量即重力和支持力的合力的冲量水平向右,A 正确,B 错误;在小球从A 点运动到B 点的过程中机械能守恒,故有mgR =12m v 2B,解得v B =2gR ,由动量定理知,小球所受合力的冲量大小为I =m 2gR ,C 正确;小球所受重力的冲量大小为I G =mgt ,大小不为零,D 错误.6.如图所示,在水平光滑的轨道上有一辆质量为300 kg ,长度为2.5 m 的装料车,悬吊着的漏斗以恒定的速率100 kg/s 向下漏原料,装料车以0.5 m/s 的速度匀速行驶到漏斗下方装载原料.(1)为了维持车速不变,在装料过程中需用多大的水平拉力作用于车上才行.(2)车装完料驶离漏斗下方仍以原来的速度前进,要使它在2 s 内停下来,需要对小车施加一个多大的水平制动力.解析:(1)设在Δt 时间内漏到车上的原料质量为Δm ,要使这些原料获得与车相同的速度,需加力为F ,根据动量定理,有F ·Δt =Δm ·v所以F =Δm Δt·v =100×0.5 N =50 N. (2)车装完料的总质量为M =m 车+Δm Δt·t =⎝⎛⎭⎫300+100×2.50.5kg =800 kg 对车应用动量定理,有F ′·t ′=0-(-M v )解得F ′=M v t ′=800×0.52N =200 N. 答案:(1)50 N (2)200 N7.第二届进博会于2019年11月在上海举办,会上展出了一种乒乓球陪练机器人,该机器人能够根据发球人的身体动作和来球信息,及时调整球拍将球击回.若机器人将乒乓球以原速率斜向上击回,球在空中运动一段时间后落到对方的台面上,忽略空气阻力和乒乓球的旋转.下列说法正确的是( )A .击球过程合外力对乒乓球做功为零B .击球过程合外力对乒乓球的冲量为零C .在上升过程中,乒乓球处于失重状态D .在下落过程中,乒乓球处于超重状态解析:选AC .球拍将乒乓球原速率击回,可知乒乓球的动能不变,动量方向发生改变,可知合力做功为零,冲量不为零.A 正确,B 错误;在乒乓球的运动过程中,加速度方向向下,可知乒乓球处于失重状态,C 正确,D 错误.8.如图所示,物体从t =0时刻开始由静止做直线运动,0~4 s 内其合外力随时间变化的关系图线为某一正弦函数,下列表述不正确的是( )A .0~2 s 内合外力的冲量一直增大B .0~4 s 内合外力的冲量为零C .2 s 末物体的动量方向发生变化D .0~4 s 内物体动量的方向一直不变解析:选C .根据F -t 图象面积表示冲量,可知在0~2 s 内合外力的冲量一直增大,A 正确;0~4 s 内合外力的冲量为零,B 正确;2 s 末冲量方向发生变化,物体的动量开始减小,但方向不发生变化,0~4 s 内物体动量的方向一直不变,C 错误,D 正确.9.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为 3 km/s ,产生的推力约为4.8×106 N ,则它在1 s 时间内喷射的气体质量约为( )A .1.6×102 kgB .1.6×103 kgC .1.6×105 kgD .1.6×106 kg解析:选B .设1 s 内喷出气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理Ft =m v 知,m =Ft v =4.8×106×13×103 kg =1.6×103 kg ,选项B 正确. 10.(多选)如图所示,用高压水枪喷出的强力水柱冲击右侧的煤层.设水柱直径为D ,水流速度为v ,方向水平,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.高压水枪的质量为M ,手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ.下列说法正确的是( )A .高压水枪单位时间喷出的水的质量为ρv πD 2B .高压水枪的功率为18ρπD 2v 3 C .水柱对煤层的平均冲力为14ρπD 2v 2 D .手对高压水枪的作用力水平向右解析:选BC .设Δt 时间内,从水枪喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,ΔV =S v Δt =14πD 2v Δt ,单位时间喷出水的质量为Δm Δt =14ρv πD 2,选项A 错误.Δt 时间内水枪喷出的水的动能E k =12Δm v 2=18ρπD 2v 3Δt ,由动能定理知高压水枪在此期间对水做功为W =E k =18ρπD 2v 3Δt ,高压水枪的功率P =W Δt =18ρπD 2v 3,选项B 正确.考虑一个极短时间Δt ′,在此时间内喷到煤层上水的质量为m ,设煤层对水柱的作用力为F ,由动量定理,F Δt ′=m v ,Δt ′时间内冲到煤层水的质量m =14ρπD 2v Δt ′,解得F =14ρπD 2v 2,由牛顿第三定律可知,水柱对煤层的平均冲力为F ′=F =14ρπD 2v 2,选项C 正确.当高压水枪向右喷出高压水流时,水流对高压水枪的作用力向左,由于高压水枪有重力,根据平衡条件,手对高压水枪的作用力方向斜向右上方,选项D 错误.11.质量相等的A 、B 两物体放在同一水平面上,分别受到水平拉力F 1、F 2的作用而从静止开始做匀加速直线运动.经过时间t 0和4t 0速度分别达到2v 0和v 0时,分别撤去F 1和F 2,两物体都做匀减速直线运动直至停止.两物体速度随时间变化的图线如图所示.设F 1和F 2对A 、B 两物体的冲量分别为I 1和I 2,F 1和F 2对A 、B 两物体做的功分别为W 1和W 2,则下列结论正确的是( )A .I 1∶I 2=12∶5,W 1∶W 2=6∶5B .I 1∶I 2=6∶5,W 1∶W 2=3∶5C .I 1∶I 2=3∶5,W 1∶W 2=6∶5D .I 1∶I 2=3∶5,W 1∶W 2=12∶5解析:选C .由题可知,两物体匀减速运动的加速度大小都为v 0t 0,根据牛顿第二定律,匀减速运动中有F f =ma ,则摩擦力大小都为m v 0t 0.由题图可知,匀加速运动的加速度分别为2v 0t 0、v 04t 0,根据牛顿第二定律,匀加速运动中有F -F f =ma ,则F 1=3m v 0t 0,F 2=5m v 04t 0,故I 1∶I 2=F 1t 0∶4F 2t 0=3∶5;对全过程运用动能定理得:W 1-F f x 1=0,W 2-F f x 2=0,得W 1=F f x 1,W 2=F f x 2,图线与时间轴所围成的面积表示运动的位移,则位移之比为6∶5,整个运动过程中F 1和F 2做功之比为W 1∶W 2=x 1∶x 2=6∶5,故C 正确. 12. 2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如图所示,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点.质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s.取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量I 的大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.解析:(1)根据匀变速直线运动公式,有L =v 2B -v 2A 2a=100 m. (2)根据动量定理,有I =m v B -m v A =1 800 N ·s.(3)运动员经过C 点时的受力分析如图所示.运动员在BC 段运动的过程中,根据动能定理,有mgh =12m v 2C -12m v 2B 根据牛顿第二定律,有F N -mg =m v 2C R解得F N =3 900 N.答案:(1)100 m (2)1 800 N ·s (3)受力图见解析 3 900 N二、【动量守恒定律】1.(多选)如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑()A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球能回到槽上高h处解析:选BC.在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B正确;小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球不能滑到槽上,选项D错误;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,故小球和槽都做匀速运动,选项C正确.2.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是()A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v解析:选C.在最高点水平方向动量守恒,由动量守恒定律可知,3m v0=2m v+m v′,可得另一块的速度为v′=3v0-2v,对比各选项可知,答案选C.3.如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是()A.2LMM+m B.2LmM+mC.MLM+m D.mLM+m解析:选B .分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O 点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L .小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有m v 1=M v 2,故ms 1=Ms 2,s 1+s 2=2L ,其中s 1代表小球的水平位移大小,s 2代表小车的水平位移大小,因此s 2=2Lm M +m,选项B 正确.4.如图所示,B 、C 、D 、E 、F ,5个小球并排放置在光滑的水平面上,B 、C 、D 、E ,4个球质量相等,而F 球质量小于B 球质量,A 球的质量等于F 球质量.A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后( )A .3个小球静止,3个小球运动B .4个小球静止,2个小球运动C .5个小球静止,1个小球运动D .6个小球都运动 解析:选A .因A 、B 质量不等,M A <M B .A 、B 相碰后A 速度向左运动,B 向右运动.B 、C 、D 、E 质量相等,弹性碰撞后,不断交换速度,最终E 有向右的速度,B 、C 、D 静止.E 、F 质量不等,M E >M F ,则E 、F 都向右运动.所以B 、C 、D 静止;A 向左,E 、F 向右运动.故A 正确,B 、C 、D 错误.5.如图所示,两辆质量均为M 的小车A 和B 置于光滑的水平面上,有一质量为m 的人静止站在A 车上,两车静止.若这个人自A 车跳到B 车上,接着又跳回A 车并与A 车相对静止.则此时A 车和B 车的速度之比为( )A .M +m mB .m +M MC .M M +mD .m M +m 解析:选C .规定向右为正方向,则由动量守恒定律有:0=M v B -(M +m )v A ,得v A v B=M M +m,故C 正确. 6.如图所示,光滑水平轨道右边与墙壁连接,木块A 、B 和半径为0.5 m 的14光滑圆轨道C 静置于光滑水平轨道上,A 、B 、C 质量分别为1.5 kg 、0.5 kg 、4 kg.现让A 以6 m/s 的速度水平向右运动,之后与墙壁碰撞,碰撞时间为0.3 s ,碰后速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,已知g =10 m/s 2,求:(1)A 与墙壁碰撞过程中,墙壁对木块A 平均作用力的大小;(2)AB 第一次滑上圆轨道所能达到的最大高度h .解析:(1)A 与墙壁碰撞过程,规定水平向左为正方向,对A 由动量定理有:Ft =m A v 2-m A (-v 1)解得F =50 N.(2)A 与B 碰撞过程,对A 、B 系统,水平方向动量守恒有:m A v 2=(m B +m A )v 3AB 第一次滑上圆轨道到最高点的过程,对A 、B 、C 组成的系统,水平方向动量守恒,且最高点时,三者速度相同,有:(m B +m A )v 3=(m B +m A +m C )v 4由能量关系:12(m B +m A )v 23=12(m B +m A +m C )v 24+(m B +m A )gh 解得h =0.3 m.答案:(1)50 N (2)0.3 m7.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A .给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离木板B . 在小木块A 做加速运动的时间内,木板速度大小可能是( )A .1.8 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/s解析:选B .A 先向左减速到零,再向右做加速运动,在此期间,木板做减速运动,最终它们保持相对静止,设A 减速到零时,木板的速度为v 1,最终它们的共同速度为v 2,取水平向右为正方向,则M v -m v =M v 1,M v 1=(M +m )v 2,可得v 1=83m/s ,v 2=2 m/s ,所以在小木块A 做加速运动的时间内,木板速度大小应大于2.0 m/s 而小于83m/s ,只有选项B 正确.8.(多选)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A .12m v 2 B .mM 2(m +M )v 2 C .12NμmgL D .N μmgL解析:选BD .设系统损失的动能为ΔE ,根据题意可知,整个过程中小物块和箱子构成的系统满足动量守恒和能量守恒,则有m v =(M +m )v t (①式)、12m v 2= 12(M +m )v 2t +ΔE (②式), 由①②联立解得ΔE =Mm 2(M +m )v 2,可知选项A 错误,B 正确;又由于小物块与箱壁碰撞为弹性碰撞,则损耗的能量全部用于摩擦生热,即ΔE =NμmgL ,选项C 错误,D 正确.9.(多选)如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m 1和m 2.图乙为它们碰撞前后的x -t 图象.已知m 1=0.1 kg.由此可以判断( )A .碰前m 2静止,m 1向右运动B .碰后m 2和m 1都向右运动C .m 2=0.3 kgD .碰撞过程中系统损失了0.4 J 的机械能解析:选AC .由x -t 图象的斜率得到,碰前m 2的位移不随时间而变化,处于静止状态.m 1速度大小为v 1=ΔxΔt =4 m/s ,方向只有向右才能与m 2相撞,故A 正确;由题图乙读出,碰后m 2的速度为正方向,说明向右运动,m 1的速度为负方向,说明向左运动,故B 错误;由题图乙求出碰后m 2和m 1的速度分别为v 2′=2 m/s ,v 1′=-2 m/s ,根据动量守恒定律得,m 1v 1=m 1v 1′+m 2v 2′,代入解得,m 2=0.3 kg ,故C 正确;碰撞过程中系统损失的机械能为ΔE =12m 1v 21-12m 1v 1′2-12m 2v 2′2,代入解得,ΔE =0 J ,故D 错误. 10.(多选)质量为M 的小车置于光滑的水平面上,左端固定一根水平轻弹簧,质量为m 的光滑物块放在小车上,压缩弹簧并用细线连接物块和小车左端,开始时小车与物块都处于静止状态,此时物块与小车右端相距为L ,如图所示,当突然烧断细线后,以下说法正确的是( )A .物块和小车组成的系统机械能守恒B .物块和小车组成的系统动量守恒C .当物块速度大小为v 时,小车速度大小为m M vD .当物块离开小车时,小车向左运动的位移为mML解析:选BC .弹簧推开物块和小车的过程,若取物块、小车和弹簧组成的系统为研究对象,则无其他力做功,机械能守恒,但选物块和小车组成的系统,弹力做功属于系统外其他力做功,弹性势能转化成系统的机械能,此时系统的机械能不守恒,A 选项错误;取物块和小车的系统,外力的和为零,故系统的动量守恒,B 选项正确;由物块和小车组成的系统动量守恒得:0=m v -M v ′,解得v ′=mM v ,C 选项正确;弹开的过程满足反冲原理和“人船模型”,有v v ′=M m ,则在相同时间内x x ′=M m ,且x +x ′=L ,联立得x ′=mLM +m ,D 选项错误.11.(多选)如图所示,在光滑的水平面上有一静止的物体M ,物体M 上有一光滑的半圆弧轨道,最低点为C ,A 、B 为同一水平直径上的两点,现让小滑块m 从A 点由静止下滑,则( )A.小滑块m到达物体M上的B点时小滑块m的速度不为零B.小滑块m从A点到C点的过程中物体M向左运动,小滑块m从C点到B点的过程中物体M向右运动C.若小滑块m由A点正上方h高处自由下落,则由B点飞出时做竖直上抛运动D.物体M与小滑块m组成的系统机械能守恒,水平方向动量守恒解析:选CD.物体M和小滑块m组成的系统机械能守恒,水平方向动量守恒,D正确;小滑块m滑到右端两者水平方向具有相同的速度:0=(m+M)v,v=0,可知小滑块m 到达物体M上的B点时,小滑块m、物体M的水平速度为零,故当小滑块m从A点由静止下滑,则能恰好到达B点,当小滑块由A点正上方h高处自由下落,则由B点飞出时做竖直上抛运动,A错误,C正确;小滑块m从A点到C点的过程中物体M向左加速运动,小滑块m从C点到B点的过程中物体M向左减速运动,选项B错误.12.如图所示,水平固定的长滑竿上套有两个质量均为m的薄滑扣(即可以滑动的圆环)A 和B,两滑扣之间由不可伸长的柔软轻质细线相连,细线长度为l,滑扣在滑竿上滑行时所受的阻力大小恒为滑扣对滑竿正压力大小的k倍.开始时两滑扣可以近似地看成挨在一起(但未相互挤压).今给滑扣A一个向左的水平初速度使其在滑竿上开始向左滑行,细线拉紧后两滑扣以共同的速度向前滑行,继续滑行距离l2后静止,假设细线拉紧过程的时间极短,重力加速度为g.求:(1)滑扣A的初速度的大小;(2)整个过程中仅仅由于细线拉紧引起的机械能损失.解析:(1)设滑扣A的初速度为v0,细线拉紧前瞬间滑扣A的速度为v1,滑扣A的加速度大小a=kg,由运动学公式得v21-v20=-2al,细线拉紧后,A、B滑扣的共同速度为v2,由动量守恒定律得,m v1=2m v2,细线拉紧后滑扣继续滑行的加速度大小也为a,由运动学公式得0-v 22=-2a ·l2. 联立解得v 2=kgl ,v 1=2kgl ,v 0=6kgl . (2)由能量守恒定律得ΔE =12m v 20-kmgl -k ·2mg ·12l , 解得ΔE =kmgl .答案:(1)6kgl (2)kmgl三、【“三大观点”解答力学综合问题】1.(多选)质量为M 和m 0的滑块用轻弹簧连接,以恒定的速度v 沿光滑水平面运动,与位于正对面的质量为m 的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列情况可能发生的是( )A .M 、m 0、m 速度均发生变化,分别为v 1、v 2、v 3,而且满足(M +m 0)v =M v 1+m 0v 2+m v 3B .m 0的速度不变,M 和m 的速度变为v 1和v 2,而且满足M v =M v 1+m v 2C .m 0的速度不变,M 和m 的速度都变为v ′,且满足M v =(M +m )v ′D .M 、m 0、m 速度均发生变化,M 、m 0速度都变为v 1,m 的速度变为v 2,且满足(M +m 0)v =(M +m 0)v 1+m v 2解析:选BC .在M 与m 碰撞的极短时间内,m 0的速度来不及改变,故A 、D 均错误;M 与m 碰撞后可能同速,也可能碰后不同速,故B 、C 均正确.2.(多选)如图所示,在光滑的水平面上,有一质量为M 的木块正以速度v 向左运动,一颗质量为m (m <M )的弹丸以速度v 向右水平击中木块并最终停在木块中.设弹丸与木块之间的相互作用力大小不变,则在相互作用过程中( )A .弹丸和木块的速率都是越来越小B .弹丸在任一时刻的速率不可能为零C .弹丸对木块一直做负功,木块对弹丸先做负功后做正功D .弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等解析:选CD .弹丸击中木块前,由于m <M ,两者速率相等,所以两者组成的系统总动量向左,弹丸水平击中木块并停在木块中的过程,系统的动量守恒,由动量守恒定律可知,弹丸停在木块中后它们一起向左运动,即弹丸开始时向右运动,后向左运动,故弹丸的速率先减小后增大,木块的速率一直减小,由以上分析知,弹丸的速率在某一时刻可能为零,故A 、B 错误;木块一直向左运动,弹丸对木块一直做负功,弹丸先向右运动后向左运动,则木块对弹丸先做负功后做正功,故C 正确;由牛顿第三定律知,弹丸对木块的水平作用力与木块对弹丸的水平作用力大小相等,相互作用的时间相等,由冲量的定义式I =Ft 知,弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等,故D 正确.3.(多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d ,m 2的左边有一固定挡板.m 1由图示位置静止释放,当m 1与m 2相距最近时m 1的速度为v 1,则在以后的运动过程中( )A .m 1的最小速度是0B .m 1的最小速度是m 1-m 2m 1+m 2v 1C .m 2的最大速度是v 1D .m 2的最大速度是2m 1m 1+m 2v 1解析:选BD .由题意结合题图可知,当m 1与m 2相距最近时,m 2的速度为0,此后,m 1在前,做减速运动,m 2在后,做加速运动,当再次相距最近时,m 1减速结束,m 2加速结束,因此此时m 1速度最小,m 2速度最大,在此过程中系统动量守恒和机械能守恒,m 1v 1=m 1v 1′+m 2v 2,12m 1v 21=12m 1v 1′2+12m 2v 22,可解得v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1,B 、D 选项正确.4.如图所示,一小车置于光滑水平面上,小车质量m 0=3 kg ,AO 部分粗糙且长L =2 m ,物块与AO 部分间动摩擦因数μ=0.3,OB 部分光滑.水平轻质弹簧右端固定,左端拴接物块b ,另一小物块a ,放在小车的最左端,和小车一起以v 0=4 m/s 的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点,质量均为m =1 kg ,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g 取10 m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 解析:(1)对物块a ,由动能定理得 -μmgL =12m v 21-12m v 2代入数据解得a 与b 碰前a 的速度v 1=2 m/s ;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:m v 1=2m v 2 代入数据解得v 2=1 m/s.(2)当弹簧恢复到原长时两物块分离,物块a 以v 2=1 m/s 的速度在小车上向左滑动,当与小车同速时,以向左为正方向,由动量守恒定律得m v 2=(m 0+m )v 3, 代入数据解得v 3=0.25 m/s.对小车,由动能定理得μmgs =12m 0v 23 代入数据解得,同速时小车B 端到挡板的距离s =132 m.(3)由能量守恒得μmgx =12m v 22-12(m 0+m )v 23 解得物块a 与车相对静止时与O 点的距离:x =0.125 m. 答案:(1)1 m/s (2)132m (3)0.125 m5.如图甲所示,质量m 1=4 kg 的足够长的长木板静止在光滑水平面上,质量m 2=1 kg 的小物块静止在长木板的左端.现对小物块施加一水平向右的作用力F ,小物块和长木板运动的速度—时间图象如图乙所示.2 s 后,撤去F ,g 取10 m/s 2.求:(1)小物块与长木板之间的动摩擦因数μ; (2)水平力的大小F ;(3)撤去F 后,小物块和长木板组成的系统损失的机械能ΔE . 解析:(1)由题图可知:长木板的加速度a 1=12m/s 2=0.5 m/s 2由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力F f =m 1a 1=2 N 小物块与长木板之间的动摩擦因数:μ=F fm 2g =0.2.(2)由题图可知,小物块的加速度a 2=42 m/s 2=2 m/s 2由牛顿第二定律可知:F -μm 2g =m 2a 2 解得F =4 N.(3)撤去F 后,小物块和长木板组成的系统动量守恒,以向右为正方向,最终两者以相同速度(设为v )运动m 1v 1+m 2v 2=(m 1+m 2)v 代入数据解得v =1.6 m/s 则系统损失的机械能ΔE =⎝⎛⎭⎫12m 1v 21+12m 2v 22-12()m 1+m 2v 2=3.6 J.答案:(1)0.2 (2)4 N (3)3.6 J6.如图所示,质量为m 1=0.5 kg 的小物块P 置于台面上的A 点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M =1 kg 的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m 2=1 kg 的小滑块Q .现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内),撤去推力,此后P 沿台面滑到边缘C 时速度v 0=10 m/s ,与小车左端的滑块Q 相碰,最后物块P 停在AC 的正中点,滑块Q 停在木板上.已知台面AB 部分光滑,P 与台面AC 间的动摩擦因数μ1=0.1,A 、C 间距离L =4 m .滑块Q 与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g 取10 m/s 2),求:(1)撤去推力时弹簧的弹性势能; (2)长木板运动中的最大速度;。
(物理)物理动量定理练习题20篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s【解析】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s3.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv0【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反向的34v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I=m3()4v-m·(-v)解得I=72mv0.4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。
1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
高二物理动量定理试题答案及解析1.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量【答案】C【解析】由动量定理,而接球时先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前为了延长时间,减小受力,即,也就是减小了球的动量变化率,故C正确。
【考点】动量定理2.在光滑的水平桌面上有等大的质量分别为M="0.6" kg,m="0.2" kg的两个小球,中间夹着一个被压缩的具有E="10.8" J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然p释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R="0.425" m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是:A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4 N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s【答案】AD【解析】据题意,由动量守恒定律可知:,即,又据能量守恒定律有:,求得,则弹簧对小球冲量为:,故选项B错误而选项D正确;球从A到B速度为:,计算得到:,则从A到B过程合外力冲量为:,故选项A正确;半径越大,飞行时间越长,而小球的速度越小,水平距离不一定越小,故选项C错误。
【考点】本题考查动量守恒定律、能量守恒定律和动量定理。
距离的B处放有一3.(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:(1)释放小物体,第一次与滑板A壁碰前小物体的速度v多大?1(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?【答案】(1) (2) (3)【解析】(1)对物体,根据动能定理,有,得′;滑板的速度为v,(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1则.若,则,因为,不符合实际,故应取,则.(3)在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴即.对整个过程运用动能定理得;电场力做功.【考点】考查动量守恒定律和动能定理在碰撞问题中的综合应用.4.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。