高中物理斜面模型
- 格式:doc
- 大小:79.50 KB
- 文档页数:2
斜面问题模型解读:斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
对沿粗糙斜面自由下滑的物体做受力分析,物体受重力mg 、支持力F N 、动摩擦力f ,由于支持力θcos mg F N =,则动摩擦力θμμcos mg F f N ==,而重力平行斜面向下的分力为θsin mg ,所以当θμθcos sin mg mg =时,物体沿斜面匀速下滑,由此得θμθcos sin =,亦即θμtan =。
所以物体在斜面上自由运动的性质只取决于摩擦系数和斜面倾角的关系。
当θμtan <时,物体沿斜面加速速下滑,加速度)cos (sin θμθ-=g a ; 当θμtan =时,物体沿斜面匀速下滑,或恰好静止; 当θμtan >时,物体若无初速度将静止于斜面上;模型拓展1:物块沿斜面运动性质的判断例1.(多选)物体P 静止于固定的斜面上,P 的上表面水平,现把物体Q 轻轻地叠放在P 上,则( )A.、P 向下滑动 B 、P 静止不动 C 、P 所受的合外力增大 D 、P 与斜面间的静摩擦力增大模型拓展2:物块受到斜面的摩擦力和支持力的分析例2.如图,在固定斜面上的一物块受到一外力F 的作用,F 平行于斜面向上。
若要物块在斜面上保持静止,F 的取值应有一定的范围,已知其最大值和最小值分别为F 1和F 2(F 2>0)。
由此可求出( )A 、物块的质量B 、斜面的倾角C 、物块与斜面间的最大静摩擦力D 、物块对斜面的压力点评:本题考查受力分析、力的分解、摩擦力、平衡条件。
关键是要根据题述,利用最大静摩擦力平行斜面向上、平行斜面向下两种情况,应用平衡条件列出两个方程得出物块与斜面的最大静摩擦力的表达式。
高考物理建模之斜面模型斜面模型是高中物理最重要也最常见模型,在历年月考、各地期末考乃至高考试卷中,斜面模型是常考题型。
涉及斜面模型的知识很多,有共点平衡问题、牛顿运动定律、电磁场知识、平抛规律、功能关系等。
题型变化多样,考查灵活多变,所以斜面模型是学生必需掌握的重要模型斜面共点力平衡问题这类问题往往涉及物体静止在斜面或在斜面上匀速运动,解题思路是利用"隔离法"或"整体法"受力,然后利用"合成法"或"正交分析法"求解。
经典例题如下图所示,质量为m的木块静止在斜面上,斜面质量为M,倾角为θ,求木块受到的支持力N1和摩擦力f1,以及地面对斜面的支持力N2和摩擦力f2。
解析:首先掌握木块的受力分析,如下图所示:由正交分析法可知:对木块有:f1=mgsinθ,N=mgcosθ(隔离法)对斜面来说,如果我们对斜面受力,显然很复杂,因为斜面受到很多力。
此时,可以考虑对斜面和木块作为一个整体进行受力分析(整体法)。
需要注意的是,使用整体法时我们只考虑外界物体对这个整体施加的力(外力),不考虑整体内部之间的力(内力)。
PS:何为外力,内力?所谓"外力",就是整体以外的物体对整体施加的力。
这里的整体指的是"斜面和木块",则与该整体接触的物体只有"地球"以及"地面"。
因此,对整体受力时,只考虑"地球"、"地面"对整体施加的"外力"。
所谓"内力",就是整体内部物体间存在相互作用力。
比如说斜面和木块间存在相互作用的一对摩擦力,相互作用的一对支持力和压力,这些就是内力,使用整体法时这些内力不用考虑。
基于上述分析,我们以"斜面"和"木块"整体受力,如下图所示:显然,由于整体处于静止状态,水平方向上有:F x(合)=0,竖直方向上有:Fy(合)=0。
有关物理“斜面模型”的九种类型
有关物理“斜面模型”的九种类型如下:
1.光滑斜面:斜面光滑无摩擦,无其他外力作用,物体仅受重力作用沿斜面下滑。
2.粗糙斜面:斜面粗糙有摩擦,物体下滑时同时受到摩擦力作用。
3.匀速斜面:斜面的角度、长度以及物体的质量一定时,物体下滑的速度保持不变。
4.固定斜面:斜面固定不动,不会随物体的运动而发生形变或滑动。
5.可动斜面:斜面可以运动,例如可以沿某个方向滑动或转动。
6.匀加速斜面:斜面的角度、长度以及物体的质量一定时,物体下滑的加速度保持不
变。
7.弹性斜面:物体在下滑过程中,会受到弹力的作用,使物体产生弹性形变。
8.有外力作用的斜面:物体在下滑过程中,会受到外力作用,如重力、摩擦力等。
9.有运动约束的斜面:物体在下滑过程中,会受到某些运动约束,如滑轮、弹簧等。
专题九模型专题(1)斜面模型【模型解读】在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。
物体之间可以细绳相连,也可以弹簧相连。
求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。
图示或释义与斜面相关的滑块运动问题规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变)(3)μ<tan θ,滑块一定匀加速下滑,此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (4)若滑块处于静止或匀速下滑状态,可用整体法求出地面对斜面体的支持力为(M+m)g,地面对斜面体的摩擦力为0;若滑块处于匀变速运动状态,可用牛顿第二定律求出,地面对斜面体的支持力为(M+m)g-ma sin θ,地面对斜面体的摩擦力为ma cos θ;不论滑块处于什么状态,均可隔离滑块,利用滑块的运动状态求斜面对滑块的弹力、摩擦力及作用力(5)μ=0,滑块做匀变速直线运动,其加速度为a=g sin θ注意画好截面图斜面的变换模型加速运动的车上水杯液面可类似于物块放在光滑斜面上a=gtana tana=h/R【典例突破】【例1】如图所示,在水平地面上静止着一质量为M、倾角为θ的斜面体,自由释放的质量为m的滑块能在斜面上匀速下滑(斜面体始终静止),则下列说法中正确的是() A.滑块对斜面的作用力大小等于mgcos θ,方向垂直斜面向下B.斜面对滑块的作用力大小等于mg,方向竖直向上C.斜面体受到地面的摩擦力水平向左,大小与m的大小有关D.滑块能匀速下滑,则水平地面不可能是光滑的【练1】如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上。
高中物理模型法解题模板————斜面问题模型【模型概述】在每年各地的高考卷中几乎都有关于斜面模型的试题.我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.1.自由释放的滑块能在斜面上(如图1-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.图1-1甲2.自由释放的滑块在斜面上(如图1-1 甲所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如图1-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M 对水平地面的静摩擦力依然为零.图1-1乙4.悬挂有物体的小车在斜面上滑行(如图2-2所示):图1-2(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v 0平抛一小球(如图2-3所示):图1-3(1)落到斜面上的时间t =2v 0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tanθ,与初速度无关;(3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ.6.如图1-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止(斜面光滑).图1-47.在如图1-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定速度v m =mgR sin θB 2L 2.图1-58.如图1-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=mm+ML.图1-6【知识链接】斜面问题涉及知识点多,它几乎可以和力、电相关的物理知识相关。
斜面问题
1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.
2.自由释放的滑块在斜面上(如图9-1 甲所示):
(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;
(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;
(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.
3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).
4.悬挂有物体的小车在斜面上滑行(如图9-2所示):
(1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面;
(2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上;
(3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下.
5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):
(1)落到斜面上的时间;
(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;
(3)经过小球距斜面最远,最大距离.
6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止.
7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度.
8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=m/(m+M)L.。
高中物理丨斜面模型是受力分析的基础模型,学会斜面物理才
算入门
高一同学们现在应该学到三种常见力,力的合成与分解。
说实话,受力分析有不少难题,所以同学们更要打牢基础,才能够在综合题中做得好一些。
本章笔记把一些高三复习的知识也提前放了进来。
三种常见力:重力、弹力、摩擦力
研究力都从力的三要素:大小、方向和作用点,三个角度出发,力是相互作用,有施力物体和受力物体,我们大部分情况都是进行受力分析,所以首先要确定受力物体。
本张笔记中提前讲到重力与万有引力的关系,高考这是一个重点,提前预习一下。
弹簧弹力和弹簧弹力做功是以后考查的重点。
弹力做功属于变力做功,需要用f-x面积求解。
最大静摩擦力等于滑动摩擦力。
学完摩擦力之后就可以学习正交分解法和力的合成啦。
斜面模型(临界条件μ=tanθ)
斜面模型(动态模型)
力的合成重要的是画重力线,把其他的力都合成到重力的作用线上,用重力和三角函数表示其它力的大小。
实验:验证平行四边形定则
受力分析,无论是分解还是合成,先按照步骤做熟练,学会了这些基础模型,在看特殊的情况。
高中物理受力分析-斜面体模型2各们小伙伴儿们,大家好!经过一个充实的周末之后,我们的物理模型分析又开始啦!经过上篇文章之后,我们的斜面体模型又将迎来新的篇章!我们先来看一道例题:例题1:如图所示,一斜面A静止在粗糙水平面上,在其斜面上放着一滑块B,若给滑块B一平行斜面向下的初速度v_{0},则B正好保持匀速下滑,斜面体A保持静止。
则此时水平面对斜面体A的摩擦力为多少?解析:因为滑块B做匀速直线运动,斜面体A静止,所以滑块B和斜面体A的合力均为0,可以对A和B用整体法。
现在对A和B整体进行受力分析,分析结果如下:从受力分析结果可以看出,此时水平面对斜面体A没有摩擦力。
因为整体隔离法在上一篇文章中已经讲过了,所以今天我们只是拿来运用。
今天我们的核心内容更加精彩,请看下面这道题。
例题2:一斜面体A静止在粗糙的水平面上,在其斜面上放着一滑块B,若给滑块B一平行斜面向下的初速度v_{0},则B正好保持匀速下滑。
如图所示,现在B下滑过程中再加一个作用力,则以下说法正确的是()A.在B上加一竖直向下的力F_{1},则B将保持匀速运动,A对地无摩擦力的作用B.在B上加一沿斜面向下的力F_{2},则B将加速运动,A对地有水平向左的静摩擦力的作用C.在B上加一水平向右的力F_{3},则B将减速运动,在B停止前A对地有向右的摩擦力的作用D.无论在B上加什么方向的力,在B停止前A对地都无静摩擦力的作用这个题我们根据题干的理解可以知道:B正好能保持匀速下滑,所以在B匀速下滑的过程中,水平面对A是没有摩擦力的。
但是如果再加上外力又该怎么样呢?可能有小伙伴儿想着这个题也用整体隔离法,但是一旦加上外力之后,物体B就会有加速度,此时用整体隔离法是分析不出地面对A的摩擦力的。
所以这个题不能用整体法,只能用隔离法。
我编写的《高中物理知识模型探究与实践》一书里面专门针对受力分析、牛顿第二定律、传送带和滑块木板、平抛运动、圆周运动、天体运动、动能定理功能关系和动量的基本知识点和基本模型进行了全面细致地讲解,采用的是讲解式的叙述手法。
一模型界定本模型是指涉及固定斜面或自由斜面的力学问题,涉及斜面的抛体或类抛体的动力学问题,也包括环套在倾斜杆上的情形。
二模型破解1.整体法与隔离法处理斜面上的受力问题(i )物体在斜面上处于静止或运动状态、斜面固定或不固定的情况下,涉及物体与斜面间作用时应采用隔离法,反之则可采用整体法,但通常需将整体法与隔离法结合使用。
(ii )当物体运动中斜面也处于变速运动状态时,可利用矢量三角形处理斜面系统的变速运动(iii )解决斜面问题时,应先进行受力分析,当物体受力较多时,可建立正交坐标系,利用三大观点列方程求解。
(iv )一些典型情景可利用固定结论解决:○1.自由释放的滑块能在斜面上(如图1 所示)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ. ○2.在斜面上自由释放的滑块(如图1 所示):(I)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零,对地面的压力等于整体重力;(II)加速下滑时,斜面M 对水平地面的静摩擦力水平向右,对地面的压力小于整体的重力;(III)减速下滑时,斜面M 对水平地面的静摩擦力水平向左,对地面的压力大于整体的重力.○3.在斜面上自由释放的滑块(如图2所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零.○4.悬挂有物体的小车在斜面上滑行(如图3所示): (I)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;(II)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上;(III)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下;(IV)悬绳沿竖直方向时,加速度a=0;(V)悬绳沿水平方向时,加速度θsin g a =. ○5.如图4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止. 图1 图2 图3⑥.如图5所示,对斜劈施加的作用力F=(M+m)g tan θ即a=g tan θ时,甲图中绳恰好松弛,乙图中m恰好对斜劈无压力、小球即将离开斜劈。
斜面问题
1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.
2.自由释放的滑块在斜面上(如图9-1 甲所示):
(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;
(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;
(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.
3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).
4.悬挂有物体的小车在斜面上滑行(如图9-2所示):
(1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面;
(2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上;
(3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下.
5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):
(1)落到斜面上的时间;
(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;
(3)经过小球距斜面最远,最大距离.
6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止.
7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度.
8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=m/(m+M)L.。
斜面模型
在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.
1.自由释放的滑块能在斜面上匀速下滑时,m与M之间的动摩擦因数μ=gtan θ.
2.自由释放的滑块在斜面上:
(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;
(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;
(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.
3.自由释放的滑块在斜面上匀速下滑时,M对水平地面的静摩擦力为
零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对
水平地面的静摩擦力依然为零(见一轮书中的方法概述).
4.悬挂有物体的小车在斜面上滑行
(1)向下的加速度a=gsin θ时,悬绳稳定时将垂直于斜面;
(2)向下的加速度a>gsin θ时,悬绳稳定时将偏离垂直方向向上;
(3)向下的加速度a<gsin θ时,悬绳将偏离垂直方向向下.
5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):
(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan
θ,与初速度无关;
6.当整体有向右的加速度a=gtan θ时,m能在斜面上保持相对静止.
题型一:考察物体在斜面上的受力问题
例1一质量为m的物块恰好静止在倾角为θ的斜面上.现对物块施加一个竖
直向下的恒力F,如图所示.则物块( )
A.沿斜面加速下滑B.仍处于静止状态C.受到的摩擦力不变D.受到的
合外力增大
答案A
题型二:考察物体在斜面上的功能关系
例二如图甲所示,一竖直平面内的轨道由粗糙斜面AD和光滑圆轨道DCE组成,AD与DCE相切于D点,C为圆轨道的最低点,将一小物块置于轨道ADC上离地面高为H处由静止释放,用压力传感器测出其经过C点时对轨道的压力N,改变H的大小,可测出相应的N的大小,N随H的变化关系如图乙折线PQI所示(PQ与QI两直线相连接于Q点),QI反向延长交纵轴于F点(0,5.8N),重力加速度g取lm/s2,求:
(1)图线上的PQ段是对应物块在哪段轨道上由静止释放(无需说明理由)?并求出小物块的质量m;
(2)圆轨道的半径R、轨道DC所对应的圆心角θ;
(3)小物块与斜面AD间的动摩擦因数μ
答案:
(1)小物块的质量m为0.5kg.
(2)圆轨道的半径及轨道DC所对圆心角37°.
(3)小物块与斜面AD间的动摩擦因数μ为0.3
题型三考察物体在双斜面上的运动问题
例3如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦。
现将质量分别为M、m(M>m)的小物块同时轻放在斜面两侧的绸带上。
两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等。
在α角取不同值的情况下,下列说法正确的有()
A.两物块所受摩擦力的大小总是相等B.两物块不可能同时相对绸带静止
C.M不可能相对绸带发生滑动D.m不可能相对斜面向上滑动
答案:AC。