换热器设计软件介绍与入门
- 格式:pdf
- 大小:3.34 MB
- 文档页数:56
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
管壳式换热器设计计算软件管壳式换热器是目前工业中最常见的换热设备之一,其结构简单,易于维护,同时可以满足各种不同流体之间的换热需求。
为了更加高效地完成管壳式换热器的设计计算工作,我们可以开发一款专门的软件来支持这一过程。
接下来,本文将详细介绍如何设计一款高效的管壳式换热器设计计算软件,并就此进行3000字的阐述。
一、软件开发背景在每个行业中,对于不同领域或不同参数的管壳式换热器都有着不同的需求。
设计软件的开发目的是为了更好地满足这些需求。
软件开发可以使设计人员更好地掌握和了解换热器的相关知识,同时提高换热器设计的工作效率和质量。
二、需求分析(一)功能需求1. 可以完成理想换热器的设计,计算出合适的传热面积和流体流量;2. 可以对已有的换热器进行参数修改和设计,以满足不同的需求;3. 可以计算换热器的热传导性能,根据计算结果调整换热器结构参数。
(二)性能需求1. 处理大规模数据快速响应,能够提高工作效率和设计效果;2. 具有较高的数据精度和稳定性,以达到高质量的计算结果;3. 软件应该具备较好的可拓展性,支持后续功能的增加和升级。
(三)安全性需求软件应具有一些安全措施,可以避免不必要的误操作,保护用户的利益和数据安全。
例如:1. 设计者需要填写一部分基本参数的值才能开始设计,以避免错误输入和计算出错;2. 设计者需要输入账户和密码才可以使用软件;三、设计思路(一)应用框架设计应用框架是指软件的总体结构,包括各个模块的组织方式、应用模式和数据交互方式。
为了使得软件具有良好的可扩展性和升级性,我们可以采用以下的应用框架:1. Model-View-Controller(MVC)架构:设计模型和视图分开,视图呈现在界面上,模型对视图做数据处理。
同时采用MVP模式,Presenter中进行业务处理,更新View界面。
基于这种结构,我们可以轻松扩展和优化功能。
2. 流水线架构(Pipeline):将设计流程划分成不同的阶段,并按流程顺序一步步完成设计。
HTRI 管壳式换热器Xist 设计目录01定义单位 (2)02工艺参数输入 (6)03冷热物性输入 (10)04物性生成器的使用 (14)05结构参数的输入 (21)06壳程参数输入 (32)07管子参数输入 (36)08折流板参数输入 (42)09再沸器参数输入 (50)10再沸器配管参数输入 (54)11管口参数输入 (59)12防冲设施的设置 (63)13管子排布设置 (66)14管束间隙的设置 (74)15设计选项的设置 (79)01定义单位HTRI换热器软件入门教程:设计一个管壳式换热器【Xist】,本节HTRI教程先进行软件界面的熟悉。
1、双击HTRI软件快捷图标HTRI Xchanger Suiter 7.1,打开程序界面:2、创建一个“新的管壳式换热器”3、设置自己熟悉的一套单位制,比如MKH公制,也可以通过<Edit…>来自定义。
(1) 如何自定义单位制,进入<Edit…>,选择<Modify…>设置自定义单位制的名称“My Units”;选择参照单位制(Reference set Nam e),程序默认有三套单位制1US美制,2SI国际标准值,3MKH公制。
国内选SI或MKH,将与你最常用的单位不一致的,可去掉勾选,然后选择你所需要的如下图:(2) 保存退出后,即可在单位制选项中出现“My Units”。
4. 接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据:(1)“Process”工艺条件:包括热流体侧和冷流体侧;(2) “Hot Fluid Properties”、“Cold Fluid Properties”热流体物性,冷流体物性;(3) “Geometry”机械结构:包括壳体结构尺寸、管子、折流板、管口、布管等。
5. 当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。
HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。
HTRI帮助其会员设计高效、可靠及低成本的换热器。
HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。
该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。
HTRI.Xphe能够设计、核算、模拟板框式换热器。
这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。
该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。
HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。
该软件使用了HTRI的最新逐点完全增量计算技术。
HTRI.Xjpe是计算套管式换热器的软件。
HTRI.Xtlo是管壳式换热器严格的管子排布软件。
HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。
HTRI.Xfh能够模拟火力加热炉的工作情况。
该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。
在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。
一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。
管壳式换热器设计计算软件管壳式换热器是一种常见的热交换器,用于在工业过程中实现热量传递。
设计一个管壳式换热器需要进行一系列的计算,以确保换热器能够满足工艺要求,并具有合适的换热效果。
为了简化这个过程,可以使用管壳式换热器设计计算软件。
下面将详细介绍这个软件的功能和计算步骤。
1.换热器类型选择:软件可以提供不同类型的管壳式换热器供用户选择,如固定管板式、浮动管板式、U型管式等。
用户可以根据具体的工艺要求选择适合的类型。
2.热工参数计算:软件可以根据用户提供的热工参数,如流体的温度、流量等数据,自动计算换热器的热传导率和传热系数。
这些参数是换热器设计和性能评估的基础。
3.结构设计:软件可以根据用户提供的设计参数,如管束长度、管板间距、管壳接头方式等,自动生成换热器的结构设计。
这些参数直接影响换热器的尺寸和重量。
4.管束优化:软件可以通过计算不同管束类型的传热性能指标,如换热面积、热损失等,为用户提供管束设计的优化方案。
用户可以根据具体的工艺要求选择最合适的管束类型。
5.材料选择:软件可以提供不同材料的换热器管束和壳体选项,并计算其耐压性能和传热性能。
用户可以根据具体的工艺要求选择最合适的材料。
以上功能只是管壳式换热器设计计算软件的一部分,不同的软件可能还具备其他附加功能,如换热器的模拟和仿真功能,用户可以在软件中进行各种操作和实验,以评估换热器不同工况下的性能。
下面将以一个具体的设计计算为例,介绍常见的管壳式换热器设计步骤:1.确定工艺要求:首先,需要明确工艺要求,包括流体的温度、流量、压力等参数。
这些参数将直接影响换热器的设计和性能。
2.确定传热参数:根据流体的温度和热传导性质,可以计算出换热器的热传导率和传热系数。
这些参数是换热器设计和性能评估的基础。
3.计算换热面积:根据传热参数和工艺要求,可以计算出所需的换热面积。
通常,换热面积与流体的温度差和流量成正比。
4.确定结构参数:根据所需的换热面积和设计要求,可以确定换热器的结构参数,如管束长度、管板间距、管壳接头方式等。
ASPEN PLUS换热器设计说明ASPEN PLUS与换热器设计程序的界面本章讲述的是如何使用ASPEN PLUS 自带的换热器设计程序界面(HXINT)在ASPEN PLUS运行与换热器设计程序包之间传输加热/冷却曲线的数据。
本章的主题包括:§生成物性数据§开始运行HTXINT§选择加热/冷却曲线的结果§生成界面文件§在换热器设计程序包中使用界面程序关于换热器设计程序界面用户可以使用HTXINT程序从一个ASPEN PLUS 运行程序中选择加热/冷却曲线数据,并将这些数据传输到某个能被下列换热器设计程序包读取的文件中:§B-JAC中的HETRAN§HTFS的TASC, ACOL, 以及APLE§HTFS的M-系列程序, 包括M-TASC, M-ACOL, 以及M-APLE§HTRI的ST, CST, ACE, PHE以及RKH用户还可以扩展由加热/冷却曲线所得到的默认数据,使其包括换热器设计程序包所需要的所有物性数据。
完成一次ASPEN PLUS 运行之后,在开始运行设计程序之前要先运行HTXINT。
HTXINT将通过一系列提示给用户以指引,为换热器设计程序选择加热/冷却曲线。
HTXINT是一个用于调用ASPEN PLUS 摘要文件工具的应用程序。
在模拟中生成物性数据HTXINT所使用的物性数据来自加热/冷却曲线,许多ASPEN PLUS单元操作模型都可以生成这种曲线。
在使用HTXINT时,用户必须先使用ASPEN PLUS 生成所需的加热/冷却曲线,对于每个想要的单元模块都要生成加热/冷却曲线(一条或多条)。
关于指定加热/冷却曲线的详细细节,请参见第10章“要求加热/冷却曲线计算”一节。
在模块的Hcurve上就可以:1.在“Property Sets”栏下选择“HXDESIGN”2.选择所需采样点的数目。
第1章换热器设计软件介绍与入门孙兰义2014-11-2主要内容1 ASPEN EDR软件1.1 Aspen EDR简介1.2 Aspen EDR图形界面1.3 Aspen EDR功能特点1.4 Aspen EDR主要输入页面1.5 Aspen EDR简单示例应用2 HTRI软件2.1 HTRI简介2.2 HTRI图形界面2.3 HTRI功能特点2.4 HTRI主要输入页面2.5 HTRI简单示例应用Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。
Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。
Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。
Aspen EDR的主要设计程序有:①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器;⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器Aspen Shell & Tube Exchanger用于管壳式换热器的详细模拟和优化设计,是新一代传热动力学模拟、设计软件。
其前身是HTFS系列软件中的TASC软件,TASC是世界上非常优秀的管壳式换热器软件,早在80年代初就已进入中国,以计算准确性和工程实用性而闻名。
归入Aspen EDR体系的TASC软件功能更强,将所有管壳式换热器集为一体,融合了传热计算和机械强度计算,可用于多组分、多相流冷凝器,釜式再沸器,降膜蒸发器,多台换热器组等多种型式管壳式换热器的设计,并提供管束排列图。
考虑到管壳式换热器是应用最广泛的换热器型式,所以将着重对Aspen Shell&Tube Exchanger管壳式换热器的热力设计进行介绍,下文中的Aspen EDR如无特别说明,均指Aspen Shell&Tube Exchanger软件。
1.2 Aspen EDR图形界面Aspen EDR的计算模式Design(设计)回答了“怎样的换热器能够满足给定的工况需要”。
最关键的结果是换热器的几何信息。
Rating/Checking(校核)回答了“这台换热器能否达到这样的热负荷”。
需要设定热负荷,同时给出流体入口条件和压降估计值,软件会确定某台特定的换热器是否有足够的换热面积以满足用户要求,同时计算流体的实际压降。
Simulation(模拟)回答了“这台换热器能够达到多大的热负荷”。
需要提供换热器尺寸和大致估算的热负荷,通常将换热器尺寸和进料热/冷流体条件以及流量固定,软件会计算出另一股流体的条件以及相应的热负荷。
Find Fouling(最大污垢热阻)回答了“对于已知的换热器,多大的污垢热阻值能够使其达到需要的热负荷”。
之所以命名为最大污垢热阻是指该污垢热阻值是该换热器在现有换热能力下污垢热阻的最大数值。
理论基础: Q=UA∆t(Q-热负荷,U-传热系数,A-换热面积,∆t-传热温差)Aspen EDR的计算方法标准算法是首先规定一系列壳侧的焓/压力点,然后结合相对应的管侧的点来确定这些焓/压力点的位置。
高级算法是首先定义换热器内的一系列位置,然后计算壳侧及管侧流体流经这些点的状态(焓和压力)。
一般来说,标准算法和高级算法计算出来的结果是相似的,但在计算末端空间较大的换热器时,推荐采用高级算法。
Aspen EDR的物性数据来源物性计算的一般步骤:选择物性数据库-定义组分-指定组分分率-选择物性计算方法-指定温度、压力范围-规定间隔点个数(将温度区间分成多少个点)-获得物性数据。
Aspen EDR自身带有庞大的纯组分物性数据库,为用户提供四种物性数据库●软件默认的B-JAC Databank●油气加工领域中处于领先地位的物性数据库COMThermo●Aspen Properties●需要用户自行输入物性数据的User specified properties选项Aspen EDR的许多输入项都有缺省值,这些缺省值以红色显示,需要用户输入的数据项的背景为青绿色。
每次输入或者改变输入项的值,程序会自动检查输入项是否合理和完整,如果输入的值合理,则背景为无色,如果用户输入一个不符合常规的数值,数值项的背景会以暗红色显示以进行警告。
窗口底部的状态栏中会显示当前程序的状态和输入框的状态:,第一项用于观察输入是否完成,第二项用于表示当前的输入和计算结果是否吻合,第三项用于表示结果是否可以显示。
下面对一些主要的输入界面进行介绍:用项,主要用等选项。
污垢热阻等。
等参数。
Shell/Heads/Flanges/Tubesheets(壳体/封头/法兰/管板类型)窗口主要用于设置壳体、管箱、封头、法兰和管板类型,部分基本的选项与Geometry Summary界面重复,包括四个子界面,Shell/Heads用于设置壳体的各项参数,Covers用于设置管箱端盖的各项参数,Tubesheets用于设置管板的类型和各项参数,Flanges页面用于设置法兰的类型。
列方式等。
度等。
、管程数等。
、方位等。
面高度等。
例1.1设计一台单相水平放置的BEM管壳式换热器,用燃料油预热锅炉给水,工艺数据和物性数据见下表。
工艺数据和物性数据工艺流体冷流体(Boiler Feedwater)热流体(Fuel Oil)单位总质量流率进/出口温度进/出口密度比热进/出口粘度进/出口导热系数进口压力(绝)允许压降污垢热阻5910050/165.3501.50.000088284000213/168879.4/909.82.34/2.181.94/3.370.1/0.1071210.0005kg/h℃kg/m3kJ/kg·KmPa·sW/m2·Kbarbarm2·K/W1.建立和保存文件(1)依次点击开始|所有程序|Aspen Tech|Exchanger Design and Rating V8.0|Exchanger Design and Rating User Interface,点击菜单栏中的File|New,或者点击菜单栏上的图标,出现如下的页面。
(2)选择New子页面下的第一项Shell&Tube Exchanger(Shell&Tube),点击OK,进入Shell&Tube|Console页面,在Console页面可以设置和浏览主要的设计参数,并可以在运行后浏览所设计的换热器的主要参数和草图,在此页面中的选项均有缺省值。
本题选择在专门的输入页面输入数据。
(3)点击File|Save As,选择保存位置,输入文件名称,本题中,将文件名设为Example1.1_Single phase heat exchanger_BEM_Design.EDR,点击保存文件。
2.初始设置(1)点击工具栏下的单位设置下拉列表,选择SI;也可以从菜单栏中,点击Tool|Program Settings,在General页面下,将SI度量单位设置为默认,即Unit of Measure项下的Default set of the units of measure选择SI,然后点击OK即可。
这样设置后,在之后的管壳式换热器计算中,SI度量单位将成为默认单位制。
(2)在数据浏览区点击进入Input|Problem Definition|Application Options|Application Options页面,在General下,将Calculation mode选项设为Design(设计模式),将Location of hot fluid选项设为Tube side,其余选项保持默认设置。
3.输入工艺数据点击进入Input|Problem Definition|Application Options|Process Data 页面,或者点击工具栏的Next按钮,输入工艺数据:4.输入物性数据点击进入Input|Property Data|Hot Stream Compositions|Composition 页面,或者点击下一步按钮,输入热流体的物性,因为热流体组分未知,且题中给出了热流体的物性数据,所以,用自定义的方法得到热流体的物性数据。
在Physical property package的下拉列表中选择User specified properties选项。
点击进入Input|Property Data|Hot stream Properties|Properties页面,或者点击下一步按钮,输入两个温度下的物性数据;此题只给出了一个压力下的物性数据,故在Pressure Levels框点击选中第二个压力数据,然后点击Delete Set按钮,将软件默认的第二个压力删除。
点击进入Input|Property Data|Cold Stream Compositions|Composition 页面,或者点击下一步按钮,输入冷流体的物性。
冷流体为较简单的纯物质水,在此选择软件默认的B-JAC数据库。
点击Databank按钮,出现Search Chemical Components页面,找到所需的组分Water,点击选中,然后点击Add按钮,最后点击OK按钮。
点击进入Input|Property Data|Cold Stream Properties|Properties页面,点击Get Properties按钮,程序将在默认的压力和温度范围内计算水的物性。