高中数学专题:定积分问题
- 格式:pptx
- 大小:2.62 MB
- 文档页数:40
高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
定积分定义计算例题定积分是高中数学中比较重要的一个概念,也是数学中的一个重要工具。
下面是一些定积分的定义和计算例题:1. 定积分的定义:定积分是指在一定区间内,曲线和坐标轴之间的面积。
表示为:$int_a^bf(x)dx$。
其中,$a$和$b$是积分区间的两个端点,$f(x)$是被积函数。
2. 定积分的计算方法:(1) 划分区间:将积分区间分成若干个小区间。
(2) 求出每个小区间的面积:用等式$S=frac{1}{2}(y_1+y_2)(x_2-x_1)$求出每个小区间的面积。
(3) 将每个小区间的面积相加:$int_a^bf(x)dx=sum_{i=1}^nfrac{1}{2}(y_i+y_{i+1})(x_{i+1}-x _i)$。
3. 计算例题:例1:计算$int_0^{pi/2}sin x dx$。
解:因为$sin x$在区间$[0,pi/2]$上单调递增,所以可以将积分区间划分成若干个小区间。
设划分的小区间为$[x_i,x_{i+1}]$,则$x_i=ifrac{pi}{10}$,$x_{i+1}=(i+1)frac{pi}{10}$。
每个小区间的面积为:$frac{1}{2}(sin x_i+sin x_{i+1})cdotfrac{pi}{10}$将每个小区间的面积相加,得到:$int_0^{pi/2}sin x dxapproxsum_{i=0}^9frac{1}{2}(sinx_i+sin x_{i+1})cdotfrac{pi}{10}approx1$例2:计算$int_0^1frac{1}{1+x^2}dx$。
解:因为$frac{1}{1+x^2}$在区间$[0,1]$上单调递减,所以可以将积分区间划分成若干个小区间。
设划分的小区间为$[x_i,x_{i+1}]$,则$x_i=icdot0.1$,$x_{i+1}=(i+1)cdot0.1$。
每个小区间的面积为:$frac{1}{2}left(frac{1}{1+x_i^2}+frac{1}{1+x_{i+1}^2}right) cdot0.1$将每个小区间的面积相加,得到:$int_0^1frac{1}{1+x^2}dxapproxsum_{i=0}^9frac{1}{2}left(fra c{1}{1+x_i^2}+frac{1}{1+x_{i+1}^2}right)cdot0.1approx0.78$。
高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。
一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。
定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。
那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。
二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。
例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。
然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。
这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。
在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。
定积分在物理中的应用(时间:25分,满分50分)班级 姓名 得分1. 一物体在力F (x )=⎩⎪⎨⎪⎧10x 3x +x(单位:N)的作用下沿与F (x )相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为( ) A .44 J B .46 J C .48 J D .50 J【答案】 B2.做直线运动的质点在任意位置x 处,所受的力F (x )=1+e x,则质点沿着与F (x )相同的方向,从点x 1=0处运动到点x 2=1处,力F (x )所做的功是( ) A .1+e B .e C.1e D .e -1【答案】 B【解析】 W =ʃ10F (x )d x =ʃ10(1+e x )d x =(x +e x )|10=(1+e)-1=e.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度 为( ). A.1603 m B.803 m C.403 m D.203m 【答案】 A【解析】 由v =40-10t 2=0⇒t 2=4,t =2. ∴h =⎰2(40-10t 2)d t =⎝⎛⎭⎪⎫40t -103t 3⎪⎪⎪20=80-803=1603(m).4.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 J B .850 J C .825 J D .800 J 【答案】 C 【解析】 W =⎰105F (x )d x =⎰105(3x 2-2x +5)d x =(x 3-x 2+5x )⎪⎪⎪105=(1 000-100+50)-(125-25+25)=825(J).5.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251t+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 ( ) A .1+25ln 5 B .8+25ln 113C .4+25ln 5D .4+50ln 2 【答案】C6.变速直线运动的物体的速度v (t )=5-t 2,前2 s 所走过的路程为________. A.1603 B.223 C.403 D.203【答案】 B【解析】 设前2 s 所走过的路程为x (2),∴x (2)=⎰2v (t )d t =⎰2(5-t 2)d t ,∴x (2)=⎝⎛⎭⎪⎫5t -13t 3⎪⎪⎪20=223. 7.若1 N 的力能使弹簧伸长2 cm ,则使弹簧伸长12 cm 时克服弹力所做的功为________. 【答案】 0.36 J【解析】 弹簧的伸长与所受到的拉力成正比,设F =kx ,求得k =50,∴F (x )=50x . ∴W =ʃ0.12050x d x =25x 2|0.12=0.36 (J). 8.质点直线运动瞬时速度的变化律为v (t )=-3sin t ,则t 1=3至t 2=5时间内的位移是________.(精确到 0.01)【答案】 3.82 m 【解析】 s =⎰53v (t )d t =⎰53(-3sin t )d t =3cos t ⎪⎪⎪53=3(cos 5-cos 3)≈3.82 m.9.一质点做直线运动,其瞬时加速度的变化规律为()2cos a t A t ω=-,在t =0时,v (0)=0,s (0)=A ,其中A 、ω为常数,求质点的位移方程.【解析】()()2()0(cos )t ta t dt A t dt v t v ω==--⎰⎰,∴()220|sin sin t v t A t A t ωω=-=-.∴()()2()0(sin )ttv t dt A t dt s t s ω==--⎰⎰,∴()22cos s t A A t A ωω-=-.∴()22cos s t A A t A ωω=+-.∴质点的位移方程为()22cos s t A A t A ωω=+-,t ∈[0,+∞).10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求 (1)P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)P 从原点出发,经过时间t 后又返回原点时的t 值.s 1=ʃ40(8t -2t 2)d t -ʃ64(8t -2t 2)d t=(4t 2-23t 3)|40-(4t 2-23t 3)|64=1283.当t =6时,点P 的位移为ʃ60(8t -2t 2)d t =(4t 2-23t 3)|60=0.(2)依题意知ʃt0(8t -2t 2)d t =0, 即4t 2-23t 3=0,解得t =0或t =6,t =0对应于P 点刚开始从原点出发的情况,t =6是所求的值.所以,t =6.。
定积分的计算班级 姓名一、利用几何意义求下列定积分 (1)dx x ⎰11-2-1 (2)dx x ⎰22-4(3)dx x ⎰22-2x (4)()dx x x ⎰-24二、定积分计算 (1)()dx ⎰107-2x (2)()d x ⎰+21x2x 32(3)dx ⎰31x 3(4)dx x ⎰ππ-sin (5)dx x ⎰e 1ln (6)dx ⎰+1x 112(7)()d x x x⎰+-10232 (8)()dx 2311-x ⎰ (9)dx ⎰+11-2x x 2)((10)()d x x ⎰+212x1x (11)()d x x x ⎰-+11-352x (12)()d xe e x x ⎰+ln2x -e(13)dx x ⎰+ππ--cosx sin )( (14)dx ⎰e1x 2(15)dx x ⎰21-x sin -2e )((16)dx ⎰++21-3x1x x 2 (17)dx ⎰21x13 (18)()dx 22-1x ⎰+三、定积分求面积、体积1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。
2.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积4.如图求由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的图形的面积.5、求函数f(x)=⎩⎪⎨⎪⎧x +1 (-1≤x<0)cosx (0≤x ≤π2)的图象与x 轴所围成的封闭图形的面积。
6.将由曲线y =x 2,y =x 3所围成平面图形绕x 周旋转一周,求所得旋转体的体积。
7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。
8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积。
(每日一练)2023高中数学定积分易错题集锦单选题1、∫(√4−x 2+sinx)1−1dx =( ) A .π3+2√3B .π3+√3C .2π3+√3D .π+√3 答案:C解析:结合几何意义求得定积分.∫(√4−x 2+sinx)1−1dx = ∫(√4−x 2)1−1dx +∫(sinx )1−1dx , ∫(sinx )1−1dx =(−cosx )|−11=(−cos1)−[−cos (−1)]=−cos1+cos1=0.y =√4−x 2,x 2+y 2=22(y ≥0),表示圆心在原点,半径为2的圆的上半部分.A(1,√3),B(−1,√3)在圆上,所以∠AOB =π3, 所以∫(√4−x 2)1−1dx =16×π×22+2×(12×1×√3)=2π3+√3. 所以∫(√4−x 2+sinx)1−1dx = 2π3+√3. 故选:C2、∫2x+3x+22−1dx =( )A .2+ln2B .3−ln2C .6−ln2D .6−ln4答案:D解析:先求出不定积分,再代入上下限来求定积分.由题,∫2x+3x+2d x 2−1=∫(2−1x+2)d x 2−1 =[2x −ln(x +2)]|−12 =(4−ln4)−(−2−ln1)=6−ln4. 故选:D小提示:本题考查定积分的运算,属于基础题.3、∫√16−x 240dx 等于( ) A .π4B .πC .2πD .4π答案:D解析:利用定积分的几何意义将∫√16−x 2dx 40转化为求圆的面积问题即可. ∫√16−x 240dx 表示的是圆x 2+y 2=16的上半部分与直线x =0与x =4及x 轴围成的图形的面积,即圆x 2+y 2=16的面积的14,所以∫√16−x 2d x 40=4π, 故选:D.小提示:本题考查定积分的几何意义计算定积分,解题的关键在于讲定积分转化为几何意义,进而求解,是基础题..4、如图,阴影部分是由x 轴、y 轴、直线x =1、曲线y =e x 围成的,在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为( )A .e 3B .4−e 3C .3−e 3D .e−13答案:B解析:利用定积分计算出阴影部分区域的面积,并计算出矩形OABC 的面积,利用几何概型的概率公式可计算出所求事件的概率.由题意可知,阴影部分区域的面积为S =∫e x 10dx =e x |01 =e −1,矩形OABC 的面积为S □OABC =1×3=3,因此,所求概率为P =1−S S □OABC =1−e−13=4−e 3.故选:B.小提示: 本题考查几何概型概率的计算,考查利用定积分计算曲边梯形的面积,考查计算能力,属于基础题.5、∫[√1−(x −1)2−x]d x 2=( )A .π4−1B .π4−2C .π2−1D .π2−2 答案:D解析:根据定积分的几何意义求∫√1−(x −1)2d x 20,由微积分基本定理求∫x d x 20,即可求解.∫[√1−(x −1)2−x]d x 20=∫√1−(x −1)2d x 20−∫x d x 20,由y =√1−(x −1)2可得:(x −1)2+y 2=1 (y ≥0)表示以(1,0)为圆心,半径等于1 的上半圆,所以∫√1−(x −1)2d x 20的值为该圆面积的一半,所以∫√1−(x −1)2d x 20=π×12×12=π2,∫x d x 20=12x 2|02=12×22−0=2, 所以∫[√1−(x −1)2−x]d x 20=π2−2, 故选:D.。
高中定积分的计算在高中数学学习中,定积分是一个重要的概念和计算方法。
它不仅在数学领域有着广泛的应用,而且在物理、经济等其他学科中也具有重要意义。
本文将介绍高中定积分的基本概念、计算方法和一些常见的应用场景。
一、定积分的基本概念定积分是微积分中的重要内容,是对曲线下面积的一种度量。
定积分的计算可以理解为将曲线下的面积划分为无限多个无穷小的矩形,并将这些矩形的面积加起来,得到整个曲线下的面积值。
在高中数学中,定积分可以用下面的形式表示:∫[a,b] f(x) dx其中,f(x)表示被积函数,[a,b]表示积分区间,dx表示积分的自变量。
定积分的结果是一个数值,表示被积函数在积分区间内的曲线下面积。
二、定积分的计算方法高中定积分的计算方法主要有三种:几何法、代数法和牛顿-莱布尼茨公式。
1. 几何法:这种方法利用几何图形的面积性质来计算定积分。
常见的几何图形包括矩形、三角形、梯形等。
通过将曲线下的面积分割成这些几何图形,然后计算它们的面积并相加,就可以得到定积分的值。
2. 代数法:代数法是通过对被积函数进行积分运算来计算定积分。
这种方法可以利用积分的基本性质和常见函数的积分公式来进行计算。
通过将被积函数进行积分并确定积分上下限,就可以得到定积分的结果。
3. 牛顿-莱布尼茨公式:这是一种基于导数和原函数的关系来计算定积分的方法。
根据牛顿-莱布尼茨公式,如果一个函数F(x)是f(x)的原函数,那么在积分区间[a,b]上,有:∫[a,b] f(x) dx = F(b) - F(a)这种方法适用于已知被积函数的原函数的情况,可以直接通过求原函数的差值来计算定积分。
三、定积分的应用场景高中数学的定积分不仅仅是一种计算方法,还具有一些实际应用场景。
以下是一些常见的应用示例:1. 面积计算:定积分可以用来计算曲线下的面积,例如计算二次曲线的面积、圆的面积等。
2. 长度计算:通过对曲线方程求导得到曲线的斜率,再利用定积分计算曲线的弧长。
一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .133.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 17.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .29.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 10.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________. 17.定积分()12xx e dx +=⎰__________.18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.若,则的值是__________.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 24.计算曲线223y x x =-+与直线3y x所围图形的面积.25.在(332x x11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221()()22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.10.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b,设ab t ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.11.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.【分析】利用数列的极限的运算法则转化求解即可【详解】解:当|t|≥2时可得可得t =﹣2当|t|<2时可得:综上可得:实数t 的取值范围是:﹣22)故答案为﹣22)【点睛】本题考查数列的极限的运算法则的 解析:[)2,2-【分析】利用数列的极限的运算法则,转化求解即可. 【详解】解:当|t |≥2时,n+1nn n-1n 2-t lim =22+t→∞,可得2n 22()11t lim 2121n t t t→∞⨯--==⎛⎫+ ⎪⎝⎭ ,可得t =﹣2. 当|t |<2时,n+1nn n-1n 2-t lim =22+t→∞可得: 22()2lim 211?()2n n tt t →∞+=+ , 综上可得:实数t 的取值范围是:[﹣2,2). 故答案为[﹣2,2). 【点睛】本题考查数列的极限的运算法则的应用,考查计算能力.14.【解析】【分析】先求出两曲线的交点再由面积与定积分的关系利用定积分即可求解【详解】由题意令解得交点坐标为所以曲线围成的图形的面积【点睛】本题主要考查了利用定积分求解曲边形的面积其中解答中根据题设中的 解析:1【解析】 【分析】先求出两曲线,x y e y e ==的交点,再由面积与定积分的关系,利用定积分即可求解. 【详解】由题意,令x y ey e=⎧⎨=⎩,解得交点坐标为(1,)e , 所以曲线,,0xy e y e x ===围成的图形的面积110()()|1x xS e e dx ex e =-=-=⎰.【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题设中的条件建立面积的积分表达式,利用定积分的计算准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.18.【解析】试题分析:联立交点所以围成的图形为直线的左上方和曲线所围成的区域面积为考点:1定积分的应用---求曲边梯形的面积;2微积分基本定理【方法点晴】求曲边梯形的步骤:①画出草图在直角坐标系中画出直 解析:323【解析】 试题分析:联立2{230y x x y =--=,交点(1,1)A -,(9,3)B ,所以围成的图形为直线的左上方和曲线所围成的区域,面积为322332111132(23)(3)|(399)(13)333S y y dy y y y --=+-=+-=+---+=⎰.考点:1.定积分的应用---求曲边梯形的面积;2.微积分基本定理.【方法点晴】求曲边梯形的步骤:①画出草图,在直角坐标系中画出直线或曲线的大致图象;②联立方程,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示为若干个定积分的和;④计算定积分,写出答案.由于本题中,若对x 进行定积分,2,y x y x ==±,有些麻烦,这里就转化为对y 进行定积分,要容易很多.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x x x x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=. 于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =.所以()2f x x x =+. (2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立. 即221x x x λ+<+在[]0,1x ∈上恒成立. 令()221x x h x x +=+,[]0,1x ∈ 可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==.∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1)800()4(010)25f x x x x =+≤≤+;(2)当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元.【解析】试题分析:(I )根据c (0)=8计算k ,从而得出f (x )的解析式;(II )利用基本不等式得出f (x )的最小值及等号成立的条件.试题(1)当0x =时,()085k c ==,∴40k =. 由题意知,()4020425f x x x ⨯=++,即()()800401025f x x x x =+≤≤+. (2)∵()()800401025f x x x x =+≤≤+∴()()21600'425f x x -=++,令()'0f x =,即()242516000x +-=, ∴7.5x =. 当[)0,7.5x ∈时,()'0f x <,当(]7.5,10x ∈时,()'0f x >,当7.5x =时,()f x 取得最小值. ()min 80047.57027.55f x =⨯+=⨯+. 所以,当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元. 23.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)124t ≤≤ 【解析】试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t的取值范围是124t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t的取值范围为124t ≤≤+ 24.92. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题由23{23y x y x x =+=-+解得03x x ==及.从而所求图形的面积332200[(3)(23)](3)S x x x dx x x dx =+--+=-+⎰⎰3230139=|322x x ⎛⎫-+= ⎪⎝⎭. 考点:定积分. 25.67 【分析】 先求()332x x -11展开式的通项公式,其中有2项有理项,确定概率1α6=,根据定积分的计算法则,先求出被积函数x α的原函数,再分别将积分上下限代入求差,即可求出结果.【详解】解:T r +1=11r C ·(3x )11-r ·()32x -r =11r C ·311-r ·(-2)r ·,r =0,1,…,11,共12项其中只有第4项和第10项是有理项,故所求概率为21α126==. 111716600066=|=77x dx x dx x α∴=⎰⎰ 【点睛】本题考查利用二项展开式的通项公式解决二项式展开式的特定项问题、考查古典概型的概率公式,考查定积分的计算.解题关键是熟练应用二项式展开式的通项公式,找出符合条件的项数.26.(1)1m ≤-;(2)4a ≤.【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减,当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立,故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。
年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bab aba dx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰102xdx 表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e xd x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,137 3.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3πC.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y=sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2-2≤x <02cos x 0≤x ≤π2的图象与x 轴所围成的图形面积S 为( )A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12 B.14 C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S1+S2最小.。