双偏振多普勒天气雷达和cinrad—sa对比分析
- 格式:pdf
- 大小:3.19 MB
- 文档页数:5
双线偏振雷达和相控阵天气雷达技术的发展和应用刘黎平;胡志群;吴翀【摘要】分析了美国下一代天气雷达WSR-88D的偏振技术升级改造进展情况、以及相控阵天气雷达的发展现状,讨论了这两项技术在灾害天气监测和预警中的作用,特别对在降水估测、相态识别、龙卷识别和预警中的影响。
指出了我国双线偏振雷达和相控阵天气雷达的现状和发展趋势,讨论了新技术应用效果,为这两项技术的进一步应用提供了参考。
%The Polarimetric upgrades to NEXRAD radar (WSR-88D) and development of phased-array radar in USA are reviewed, the application of the two radars on watching and warning of severe weather are analyzed, especially in quantitative precipitation estimate (QPE) and hydrometer classiifcation of dual polarization radar, tornado watching and warning with phased-array radar. The current status and development of dual polarization radar and phased-array radar in China are presented in this paper. This paper is value for application of these two kinds of radars.【期刊名称】《气象科技进展》【年(卷),期】2016(006)003【总页数】6页(P28-33)【关键词】双线偏振雷达;相控阵天气雷达;降水估测和相态识别;龙卷监测和预警【作者】刘黎平;胡志群;吴翀【作者单位】中国气象科学研究院灾害天气国家重点实验室,北京 100081;中国气象科学研究院灾害天气国家重点实验室,北京 100081;中国气象科学研究院灾害天气国家重点实验室,北京 100081【正文语种】中文中国气象局已经建设的新一代天气雷达业务网在灾害天气监测、短时临近预报、人工影响天气、水文和地质灾害以及军事气象等方面发挥了重要作用,其探测能力与美国的下一代天气雷达(WSR-88D)相当。
CINRAD-SAD双偏振雷达非降水回波识别技术CINRAD/SAD双偏振雷达非降水回波识别技术随着气象雷达技术的不断发展,CINRAD/SAD双偏振雷达已成为一种高性能的大气观测工具。
其能够提供非常详细的气象信息,不仅可以准确地识别降水回波,还可以识别非降水回波,如辐射雾、雾霾、沙尘等气象现象。
本文将详细探讨CINRAD/SAD双偏振雷达非降水回波的识别技术。
CINRAD/SAD双偏振雷达非降水回波的识别主要基于其不同的散射特征。
传统的CINRAD/SAD双偏振雷达只能通过反射率因子来识别降水回波,但对于非降水回波的识别存在一定的局限性。
为了克服这一问题,双偏振雷达加入了偏振参数,如差分反射率、相位差等。
这些偏振参数能够提供更加详细和丰富的信息,从而实现对非降水回波的准确识别。
CINRAD/SAD双偏振雷达非降水回波的识别主要包括两个步骤:特征提取和分类判别。
特征提取是指从雷达数据中提取出有用的信息,如反射率因子、差分反射率、相位差等。
这些信息可以通过信号处理技术,如滤波器、多普勒频移校正等进行处理,提取出有意义的特征。
分类判别是指根据特征提取的结果,使用分类算法将非降水回波和降水回波进行区分。
常用的分类算法有模式识别、人工神经网络、支持向量机等。
在CINRAD/SAD双偏振雷达非降水回波识别中,差分反射率是一个非常重要的参数。
差分反射率是指垂直和水平偏振回波的反射率差值,可以很好地反映出回波颗粒的形状和大小。
通常情况下,辐射雾、雾霾等非降水回波的差分反射率较小,而沙尘等非降水回波的差分反射率较大。
通过设置合适的差分反射率阈值,可以将非降水回波与降水回波进行区分。
相位差也是CINRAD/SAD双偏振雷达非降水回波识别中的一个重要参数。
相位差是指垂直和水平方向的回波之间的相位差异。
通常情况下,辐射雾、雾霾等非降水回波的相位差较小,而沙尘等非降水回波的相位差较大。
通过设置合适的相位差阈值,可以进一步提高非降水回波的识别准确率。
天气雷达能对比分析07553学位论文天气雷达性能对比分析毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
常规天气雷达与新一代多普勒天气雷达对比分析发表时间:2020-08-07T04:03:39.485Z 来源:《科技新时代》2020年5期作者:詹继锋[导读] 在进行天气预测和自然灾害预防方面,天气雷达发挥了很大的作用,更先进的天气雷达对人们的生活也起着为更好的帮助作用。
云南省曲靖市气象局邮政655000摘要:在进行天气预测和自然灾害预防方面,天气雷达发挥了很大的作用,更先进的天气雷达对人们的生活也起着为更好的帮助作用。
本文中将通过对比研究常规的天气雷达(以常规天气雷达713型为例)和新一代的多普勒天气雷达(以CINRAD/SB型为例),分析新一代多普勒雷达存在的优点。
关键词:常规天气雷达;新一代多普勒天气雷达;对比分析;优势前言随着现代科学技术的不断进步,先进的设备被运用到各个领域当中。
人们发明研究了天气雷达,对未来的天气进行了有效的预测,同时也规避了很多将要发生的危险,新一代多普勒天气雷达的发明运用使侦测到的数据更加准确,取得更好的效果[1]。
本文将对新一代多普勒天气雷达的优点通过与常规天气雷达比较,希望能够加深人们对新一代多普勒天气雷达的认识和了解,为研究的学者提供参考和借鉴。
一天气雷达的探测方式在天气雷达进行工作的过程中,主要是通过发射声波的方式来进行探测的[2]。
常规的天气雷达通过发射声波至某地的天空中,通过对返回的降水回波幅度信息进行分析研究,达到监测即将降雨的位置、云层的结构、降水的强度等;而新一代的多普勒天气雷达则具备更多的功能,在对返回的降水回波进行分析的同时,新一代多普勒天气雷达还能对发射声波以及降水回波返回的频率进行计算,对其变化信息进行检测,得到探测地区的垂直气流速度、风速以及风速的地区分布差异、降水和强对流降水中的风场结构特征、降水粒子谱等信息[3]。
二常规天气雷达和新一代多普勒天气雷达的结构和特点(一)常规天气雷达的结构和特点以713型为例的常规天气雷达,是一种非相参体制雷达,它的主要元件是其中的磁控管,由磁控管输出大功率的射频信号,通过分析降水回波的强度进行天气的检测。
C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析C波段双偏振多普勒天气雷达原理及主要偏振参数应用分析一、引言雷达技术是现代气象学中非常重要的观测手段之一,可以提供大气中降水、风场以及悬浮颗粒物等信息。
而C波段双偏振多普勒天气雷达作为目前气象雷达中应用较多的类型之一,具备了高分辨率、高灵敏度等优势。
本文将详细介绍C波段双偏振多普勒天气雷达的原理及其主要偏振参数的应用分析。
二、C波段双偏振多普勒天气雷达原理C波段双偏振多普勒天气雷达是基于双偏振技术的,通过观测目标散射的双向偏振特性,来获得降水和颗粒物的物理参数。
其基本工作原理可以分为以下几个步骤:1. 天线发射和接收信号C波段双偏振多普勒天气雷达的天线首先发送一个具有一定频率和极化状态的微波波束,这个波束会与大气中的目标相互作用,然后被目标散射回来。
2. 接收信号的极化分离雷达接收到回波信号后,首先需要进行极化分离,将水平极化和垂直极化信号分离出来,以获得目标的双向极化特性。
3. 目标退偏振比计算在完成极化分离后,可以利用修正的双偏振天线系数,计算目标的退偏振比。
这个参数可以描述目标相对于水平和垂直方向的散射强度差别。
4. 目标的径向速度估计利用多普勒频移原理,可以根据接收到的回波信号的频率偏移,计算出目标在雷达天线方向上的径向速度。
通过多普勒频移,我们可以判断目标是否在向雷达靠近或远离。
5. 目标的径向散射强度估计利用雷达接收到的信号,可以计算出目标的径向散射强度。
这个参数可以反映目标散射微波的能力,从而进一步了解目标的强度和大小。
三、主要偏振参数应用分析C波段双偏振多普勒天气雷达的主要偏振参数包括退偏振比和线性偏振比。
这些参数在气象研究中有着广泛的应用。
1. 退偏振比的应用退偏振比是衡量目标散射极化特性的重要参数。
在气象雷达中,退偏振比常用于识别和区分不同种类的降水。
例如,在雷达图像中,雪花和冰雹的退偏振比可以有较大的差异,利用退偏振比可以准确区分这两种降水类型。
C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析C波段双偏振多普勒天气雷达的原理主要包括发射系统、接收系统和信号处理系统三部分。
发射系统通过天线向大气中发射一束电磁波,波长通常在2-4厘米之间。
接收系统接收被大气散射回来的电磁波,其中包含了与水滴、冰晶等天气粒子的相互作用信息。
信号处理系统对接收的电磁波进行处理和分析,提取出天气现象的相关信息,如降水率、降水类型、风速、风向等。
C波段双偏振多普勒天气雷达的主要应用之一是降水类型的判别。
偏振参数可以用来区分不同类型的降水,如雨、雪、冰雹等。
一般来说,雨滴的偏振特性与雪花和冰晶有所不同,因此可以通过观测不同偏振参数的变化来区分不同类型的降水。
例如,线偏振比参数可以用来判断降水中的冰晶含量,而差分反射率可以用来反映降水类型的不均匀性。
另外,C波段双偏振多普勒天气雷达还可以用于测量降水的强度和速度。
降水强度可以通过测量反射率来估计,而降水速度可以通过多普勒频移来计算。
多普勒频移是由于降水粒子的运动引起的频率变化,可以通过测量接收到的电磁波的频率来确定。
通过对多普勒频移的分析,可以得到降水中的风速和风向等信息。
此外,C波段双偏振多普勒天气雷达还可以用于探测风暴等大气现象。
风暴具有强烈的垂直运动和雷暴活动,这些现象在雷达观测中通常表现为强反射信号和强多普勒频移信号。
通过分析不同偏振参数的变化,可以获得风暴的空间结构和演变特征,从而提供强对流天气的监测和预警。
总而言之,C波段双偏振多普勒天气雷达通过观测和分析不同的偏振参数,可以用于判别降水类型、测量降水强度和速度,以及检测风暴等大气现象。
这些信息对于天气预报和气象灾害预警具有重要意义。
CINRAD/SA雷达天线的辐射特性分析及其支持双线偏振升级的可行性研究梁海河1徐宝祥1刘黎平1高玉春2张建云3梁赞明41 中国气象科学研究院,北京, 1000812 中国气象局大气探测技术中心,北京, 1000813 北京敏视达雷达有限公司,北京, 1000854 中国电子科技集团第54研究所,石家庄, 050068摘要文中较全面地测量了CINRAD/SA天线的水平和垂直共极化和交叉极化辐射数据,分析了CINRAD/SA天线的主瓣、旁瓣、交叉极化电平等天线辐射特性,并与美国WSR-88D雷达双线偏振改造前后的辐射特性进行了比较,提出了CINRAD/SA双线偏振升级后降低旁瓣电平的几个措施,讨论了同时发射和同时接收双线偏振收发体制下,由天线水平和垂直偏振辐射不均衡产生的Z DR误差和偏振交叉耦合项ICPR值。
结果表明:(1) CINRAD/SA雷达天线具有较好的辐射性能,主瓣波束较均匀,旁瓣和交叉极化电平优于设计指标值;(2) CINRAD/SA的天线辐射性能接近于WSR 88D,CINRAD/SA天线经调整后旁瓣电平应可以满足双线偏振升级要求;(3)Z DR误差和ICPR值足够小且在统计误差范围内,能满足CINRAD/SA双线偏振改造对测量精度的要求;(4) 现用天线的辐射性能可支持CINRAD/SA双线偏振升级。
文中还讨论了天线馈源支撑杆对辐射特性的影响,建议CINRAD/SA天线的偏振改造仍采用三杆支撑方式,由此产生的水平和垂直偏振与高旁瓣脊间的不匹配,可计入系统误差,通过定标予以消除。
关键词:CINRAD/SA,雷达天线,辐射特性,双线偏振。
初稿时间:2005年8月30日;修改稿时间:2005年11月25资助课题:国家自然科学基金“新一代天气雷达监测沙尘暴的能力和方法研究(40475011)”项目和北京敏视达雷达有限公司“CINRAD/SA双线偏振升级预研究”项目。
作者简介:梁海河,男, 1966年生,博士,研究员,主要从事多普勒天气雷达探测技术和方法研究。