一元二次方程的解法大全
- 格式:doc
- 大小:228.00 KB
- 文档页数:6
一元二次方程有哪些解法?解法怎么用?1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.如:解方程:x^2+2x+1=0利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]怎样求解一元二次方程(四种)怎样求一元二次方程aX²+bX+c=0(a≠0)的在实数域上的解(即实根)?我提供四种方法一、公式法二、配方法三、直接开平方法四、因式分解法下面我一一讲解!•一元二次方程aX²+bX+c=0(a≠0)1.1先判断△=b²-4ac,若△<0原方程无实根;2. 2 若△=0,原方程有两个相同的解为:X=-b/(2a);3. 3 若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
一元二次方程方程解法一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知实数且a≠0。
解一元二次方程的方法有很多种,例如因式分解、配方法、求根公式等。
本文将以解一元二次方程为主题,详细介绍其中的几种解法。
一、因式分解法对于一元二次方程ax^2 + bx + c = 0,如果能够将其因式分解成两个一次因式的乘积,则可以通过使得两个因式分别等于0来求得方程的解。
具体步骤如下:1. 将方程ax^2 + bx + c = 0进行因式分解,得到(ax + m)(nx + n) = 0;2. 使得(ax + m) = 0和(nx + n) = 0分别成立,得到两个一次方程的解;3. 求得的解即为原方程的解。
二、配方法对于一元二次方程ax^2 + bx + c = 0,如果无法直接因式分解,可以使用配方法将其转化为一个完全平方的形式。
具体步骤如下:1. 将方程ax^2 + bx + c = 0左右两边同时乘以一个适当的常数k,使得方程左边的二次项系数变为一个完全平方;2. 将方程左边的三项进行配方,得到一个完全平方;3. 化简方程,得到一个关于x的一次方程;4. 解一次方程,求得的解即为原方程的解。
三、求根公式对于一元二次方程ax^2 + bx + c = 0,可以使用求根公式来直接求解。
求根公式是指根据方程的系数a、b、c,通过公式x = (-b ± √(b^2 - 4ac)) / 2a来计算方程的解。
具体步骤如下:1. 根据方程的系数a、b、c,计算出判别式D = b^2 - 4ac;2. 判断判别式D的值,若D > 0,则方程有两个不相等的实数根,若D = 0,则方程有两个相等的实数根,若D < 0,则方程无实数根;3. 根据求根公式,计算出方程的解。
四、完全平方式对于一元二次方程ax^2 + bx + c = 0,如果无法直接因式分解,也无法使用配方法,可以通过完全平方式来求解。
第一节解一元二次方程的几种方法
1.直接开平方法:利用平方根的定义,直接开平方求一元二次方程的根的方法叫做直接开平方法。
例题1. 解方程(x+3)2=81
解:两边开平方,得x+3=8
即x+3=8或x+3=-8
所以x=5或x=-11
2.因式分解法:因式分解法就是利用因式分解的手段求出方程解的方法。
例题2. 解方程x2+4x+3=0
解:原方程变形为(x+1)(x+3)=0
即x+1=0或x+3=0
所以x=-1或x=-3
3配方法:对于一个一元二次方程,首先利用恒等变形,通过配方把它花为一边含有未知数的完全平方形式,另一边是非负数,再用开平方法解方程的方法就是配方法。
例题3 解方程x2-6=4x
解:移项得x2+4x=6
配方得x2+4x+22=6+22
即(x+2)2=10
x+2=10
±
所以x=-12或x=8
4公式法:由一元二次方程的一般形式ax2+bx+c=0(a≠0),应用配方
法可推出一元二次方程的求根公式为X=
a ac
b b
2
4 2-
±
-例题4 解方程x2+5x+6=0
b2-4ac=52-4×6=1
x=(﹣5±1)/2
即x=﹣3或x=﹣2。
一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。
一元二次方程的解法汇总一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知常数,且a ≠ 0。
解一元二次方程是数学中非常重要的一部分,它在实际问题中的应用广泛,如物理、经济学等领域。
本文将对一元二次方程的解法进行汇总,包括求解公式、配方法、因式分解法和图像法等。
1. 求解公式法求解公式法是最常用的解一元二次方程的方法。
根据一元二次方程的定义可知,其解可以通过求根公式来得到。
一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac)) / 2a。
其中,±表示两个解,分别对应加号和减号。
这个公式又称为二次方程的根公式,可以直接带入方程的系数a、b、c来计算方程的解。
2. 配方法当一元二次方程的系数不方便使用求解公式的时候,可以采用配方法来求解。
配方法的基本思想是将一元二次方程的二次项与一次项相乘,使其变为一个完全平方的形式。
具体步骤如下:- 将一元二次方程写成a(x^2 + b/a*x) + c = 0的形式,其中b为一次项的系数。
- 将方程中的b/a*x一项配方,即加上一个常数使其变为一个完全平方的形式。
- 将方程中的常数项与刚刚配方得到的项合并,得到一个完全平方的二次项。
- 将方程进行因式分解,得到一个一次项与一个完全平方的二次项相乘的形式。
- 令一次项与完全平方的二次项分别等于0,解得方程的解。
3. 因式分解法因式分解法是一种利用因式分解的方法来解一元二次方程的方法。
当一元二次方程的系数较为复杂时,可以尝试使用因式分解法来求解。
具体步骤如下:- 将一元二次方程写成(a1x + b1)(a2x + b2) = 0的形式,其中a1、a2、b1、b2为已知常数。
- 将方程进行因式分解,得到两个一次项相乘的形式。
- 令每个一次项等于0,解得方程的解。
4. 图像法图像法是一种通过观察二次函数的图像来求解一元二次方程的方法。
根据二次函数的图像特征,可以直观地确定一元二次方程的解。
一元2次方程4种解法
标题:四种解法揭示一元二次方程的奥秘
引言:一元二次方程是数学中的重要概念,它可以用来解决很多实际问题。
本文将介绍四种不同的解法,帮助读者更好地理解和应用一元二次方程。
第一种解法:因式分解法
当一元二次方程可以被因式分解为两个一次因子时,我们可以通过将方程两边因式分解后,令每个因子等于零来求解方程。
这种解法适用于一元二次方程的解为整数或分数的情况。
第二种解法:配方法
对于一元二次方程,如果无法直接因式分解,我们可以采用配方法。
通过将方程两边用合适的常数进行配方,将方程转化为完全平方的形式,从而求解方程。
这种解法适用于无理数根的情况。
第三种解法:求根公式法
一元二次方程的求根公式是解决方程的重要工具。
该公式是通过将方程转化为标准形式后,利用公式计算出方程的根。
这种解法适用于无法通过因式分解或配方法求解的复杂方程。
第四种解法:图像法
通过绘制一元二次方程的图像,我们可以直观地看出方程的解。
根据图像的形状和位置,我们可以判断方程有几个解,以及解的范围。
这种解法适用于对方程的整体特征有较好了解的情况。
结论:通过以上四种解法,我们可以更全面地理解和应用一元二次方程。
无论是因式分解法、配方法、求根公式法还是图像法,都可以帮助我们解决不同类型的一元二次方程。
掌握这些解法,可以提高我们解决实际问题的能力,并在数学学习中更加得心应手。
一元二次方程的解法大全【直接开平方法解一元二次方程】
把方程ax2+c=0(a≠0),
这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:
1.9x2-25=0;
2.(3x+2)2-4=0;
4.(2x+3)2=3(4x+3).
解:1.9x2-25=0
9x2=25
2.(3x+2)2-4=0
(3x+2)2=4
3x+2=±2
3x=-2±2
∴x1=x2=3.
4.(2x+3)2=3(4x+3)
4x2+12x+9=12x+9
4x2=0
∴x1=x=0.
【配方法解一元二次方程】
将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如
x2+
例:用配方法解下列方程:
1.x2-4x-3=0;2.6x2+x=35;
3.4x2+4x+1=7;4.2x2-3x-3=0.
解:1.x2-4x-3=0
x2-4x=3
x2-4x+4=3+4
(x-2)2=7
2.6x2+x=35
3.4x2+4x+1=7
4.2x2-3x-3=0
【公式法解一元二次方程】
一元二次方程ax2+bx+c=0(a
广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法
=0(a≠0)的求根公式。
例:用公式法解一元二次方程:
2.2x2+7x-4=0;
4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x).
2.2x2+7x-4=0
∵a=2,b=7,c=-4.
b2-4ac=72-4×2×(-4)=49+32=81
4.x2-a(3x-2a+b)-b2=0(a-2b≥0)
x2-3ax+2a2-ab-b2=0
∵a=1,b=-3a,c=2a2-ab-b2
b2-4ac=(-3a)2-4×1×(2a2+ab-b2)
=9a2-8a2-4ab+4b2
=a2-4ab+4b2
=(a-2b)2
当(a-2b≥0)时,得
【不完全的一元二次方程的解法】
在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:
例:解下列一元二次方法:
3.(m2+1)x2=0;4.16x2-25=0.
3.(m2+1)x2=0;其中m2+1>0,x2=0.
∴x1=x2=0.4.16x2-25=0
6x2=25。