图 论
- 格式:ppt
- 大小:1.42 MB
- 文档页数:76
图论的发展及其在生活中的应用数学与应用数学张佳丽指导教师刘秀丽摘要E要介绍了图论的起源与发展及其生活中的若干应用,如:渡河问题、旅游推销员问题、最小生成树问题、四色问题、安排问题、中国邮递员问题。
同时也涉及到了几种在图论中应用比较广泛的方法,如:最邻近法、求最小生成树的方法、求最优路线的方法等。
关键词图论生活问题应用Graph Theory Development and the Application in LifeMathematics and applied mathematics ZhangJialiTutor LiuXiuliAbstractThis papermainly introduces the origin and development of graph theory and its several applications in our life, such as:crossing river problem traveling salesman problem,minimum spanning tree problem, fourcolor problem • arrangement problem» Chinese postman problem. It alsoresearchesseveral methodsthat are more widely applied in graph theory.for example:the method of most neighboringjhe method of solving theminimum spanning tree, the method of the best route, and so on.Key wordsgraph theorylifeproblemapplication引言图论是一门古老的学科,是数学中有广泛应用的一个分支,与其他的数学分支,如群论、矩阵论、概率论、拓扑学、数分析等有着密切的联系.图论中以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系.事实上,任何一个包含了二元关系的系统都可以用图论来模拟.而且,图论能把纷杂的信息变的有序、直观、清晰.山于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点间连接与否尤为重要,而图形的位置、大小、形状及连接线的曲直长短则无关紧要.图论在自然科学、社会科学等各个领域都有广泛的应用.随着科学的发展,以及生产管理、军事、交通运输等方面提出了大量实际的需要,图论的理论及其应用研究得到飞速发展。
集合论与图论基础题在数学中,集合论和图论是两个重要的分支。
集合论研究元素的归类和组织,而图论研究元素之间的关系和连接。
本文将通过一些基础题目来介绍集合论和图论的基本概念和应用。
1. 集合论1.1. 基本概念在集合论中,我们首先需要了解集合的概念及其相关术语。
一个集合是由一些确定的元素组成的整体。
通常用大写字母表示集合,而集合中的元素用小写字母表示。
例如,集合A={1, 2, 3}表示一个包含元素1、2和3的集合。
1.2. 集合的运算在集合论中,还有一些常见的集合运算:并集、交集和补集。
- 并集(Union):将两个或多个集合中的元素合并成一个集合。
记作A∪B,表示包含了属于集合A或集合B的所有元素。
- 交集(Intersection):将两个或多个集合中共有的元素取出来,形成一个新的集合。
记作A∩B,表示包含了同时属于集合A和集合B的所有元素。
- 补集(Complement):给定一个全集U和一个集合A,A对于U 的补集是指在U中但不在集合A中的元素组成的集合。
记作A'或者A^c,表示不属于A的所有元素。
1.3. 集合的关系在集合论中,还可以通过比较集合的元素来描述集合之间的关系。
- 包含关系:如果集合A中的所有元素都属于集合B,我们称集合A是集合B的子集,记作A⊆B。
- 相等关系:如果两个集合A和B具有相同的元素,互相包含对方的所有元素,我们称它们相等,记作A=B。
- 真子集:如果集合A是集合B的子集,但集合A和集合B不相等,我们称集合A是集合B的真子集,记作A⊂B。
2. 图论2.1. 基本概念图是由一些顶点和连接这些顶点的边组成的数学结构。
图论研究顶点和边之间的关系及其相关性质。
2.2. 有向图与无向图图可以分为有向图和无向图两种类型。
- 有向图:图中的边有方向,连接顶点A和顶点B的边从A指向B,记作(A, B)。
- 无向图:图中的边没有方向,连接顶点A和顶点B的边可以从A到B,也可以从B到A,不加箭头表示。
第四篇图论
什么是图论
定义
✓图论(Graph Theory)是数学的一个分支。
它以图为研究对象。
✓图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系;用点表示事物,用连接两点的线表示相应两个事物间的关系。
✓从一般意义而言,它描述了客观世界中的拓扑结构。
什么是图论
人们常称1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler)发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专著《有限图与无限图理论》,这是图论发展史上的重要的里程碑,它标志着图论将进入突飞猛进发展的新阶段。
哥尼斯堡七桥问题
18 世纪在哥尼斯堡城( 今俄罗斯加里宁格勒) 的普莱格尔河上有7 座桥,将河中的两个岛和河岸连结,如图所示。
城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7 座桥,而每座桥只许通过一次,最后仍回到起始地点。
这就是著名的哥尼斯堡七桥问题。
图论的应用
计算机科学、物理学、化学、运筹学、信息论、控制论、网络通讯、社会科学以及经济管理、军事、国防、工农业生产等方面都得到广泛的应用。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专著《有限图与无限图理论》,这是图论发展史上的重要的里程碑,它标志着图论将进入突飞猛进发展的新阶段。
图论的知识体系概图
第十章图的基本概念
本章各节间的关系概图
图的基本概念在计算机科学技术相关领域的应用。
图论任课教师:王磊基础教学部数学教研室图论发展史图论在现代科学技术中有着广泛的应用,如:网络设计、计算机科学、信息科学、密码学、DNA 的基因谱的确定和计数、工业生产和企业管理中的优化方法等都广泛的应用了图论及其算法。
首先我们通过图的发展过程来了解一下图论所研究的内容。
图论起源于1736年的一个游戏----哥尼斯城堡七桥问题。
七桥问题C包含两个要素:对象(陆地)及对象间的二元关系(是否有桥连接)C转化A DEuler1736年B A DB图论中讨论的图问题:是否能从四块陆地中的任一块开始,通过每座桥恰好一次再回到起点?转化是否能从任意一个顶点开始,通过每条边恰好一次再回到起点?问题一:四色问题四色问题是世界近代三大数学难题之一。
四色问题的内容是:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
它的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。
”进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
1976年6月,美国伊利诺大学哈肯与阿佩尔在两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。
然而,真正数学上的严格证明仍然没有得到!数学家仍为此努力,并由此产生了多个不同的图论分支。
问题二:Hamilton问题Hamilton问题源于1856年,英国数学家H amilton 设计了一个名为周游世界的游戏:他用一个正十二面体的二十个端点表示世界上的二十座大城市(见图),要求游戏者找一条沿着十二面体的棱通过每个端点恰好一次的行走路线。