高三数学多面体与正多面体
- 格式:docx
- 大小:16.25 KB
- 文档页数:3
什么是多面体有哪些常见类型在我们的日常生活和数学世界中,多面体是一个常见而又有趣的概念。
那到底什么是多面体呢?简单来说,多面体是由多个平面多边形所围成的立体图形。
多面体的每个平面多边形都被称为多面体的面,两个面的公共边叫做多面体的棱,多条棱的公共顶点叫做多面体的顶点。
多面体有着各种各样的类型,下面我们就来介绍一些常见的多面体。
首先,我们来认识一下棱柱。
棱柱是一个相当常见的多面体类型。
它有两个互相平行且全等的底面,侧面都是平行四边形。
如果棱柱的底面是三角形,那就叫做三棱柱;底面是四边形,那就是四棱柱,以此类推。
比如,我们常见的长方体就是一种四棱柱,它的六个面都是矩形。
接下来是棱锥。
棱锥有一个多边形的底面,其余各面都是有一个公共顶点的三角形。
如果底面是三角形,那就是三棱锥,也叫四面体,因为它有四个面。
如果底面是四边形,那就是四棱锥。
棱锥的顶点到底面的距离叫做棱锥的高。
还有棱台,棱台可以看作是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分就是棱台。
棱台的上下底面是相似的多边形。
再说说正多面体。
正多面体是指各个面都是全等的正多边形,并且各个多面角都是全等的多面角。
正多面体只有五种,分别是正四面体、正六面体(也就是正方体)、正八面体、正十二面体和正二十面体。
正四面体的四个面都是等边三角形,它是最简单也是最对称的正多面体。
正方体大家就更熟悉了,六个面都是正方形,十二条棱长度相等,八个顶点。
正八面体是由八个等边三角形围成的,它有六个顶点。
正十二面体有十二个正五边形的面,二十个顶点。
正二十面体则由二十个等边三角形组成,有十二个顶点。
多面体在我们的生活中有着广泛的应用。
在建筑设计中,许多建筑物的外形都可以看作是由不同的多面体组合而成。
比如,一些现代的体育馆、展览馆,其独特的造型往往包含了各种多面体的元素。
在包装设计中,多面体的结构也经常被运用,以达到节省材料、增加稳定性等目的。
在数学研究中,多面体的性质和相关定理也是一个重要的领域。
探索多面体的特征多面体是一个有限的三维几何体,它由若干个多边形所围成,每个多边形都共用一个边。
多面体的研究已经有很长的历史,并且在数学、物理学、工程学等领域都有重要的应用。
本文将探讨多面体的特征,包括面、边、顶点的数量以及欧拉公式和分类等。
一、多面体的面、边和顶点多面体由若干个面所组成,每个面都是一个多边形。
我们以正多边形为例来讨论多面体的特征。
如果一个多面体的面都是正多边形,并且每个顶点处的多个面都可见,则称之为凸多面体。
凸多面体的特点是每个面都向外凸出,并且所有顶点都在多面体的内部。
多面体的边是面和面之间的边界线段,它们连接了相邻的面。
每两个相邻的面共享一个边。
边的数量等于所有面内部的边的数量之和。
顶点是多面体中的角点,它们是相邻的边的交点。
顶点的数量等于所有面内部的角点数量之和。
二、欧拉公式欧拉公式是研究多面体特征的重要定理,它由瑞士数学家欧拉在18世纪提出。
欧拉公式表明,对于任何一个凸多面体,它的面数、边数和顶点数之间满足以下关系:面数 + 顶点数 = 边数 + 2这个公式被认为是将面、边和顶点联系在一起的重要定理,它描述了多面体的拓扑性质。
欧拉公式也被应用在其他领域,比如图论和计算几何等。
三、多面体的分类根据多面体的特征,我们可以将其进行分类。
首先,根据面的形状,多面体可以分为正多面体和非正多面体两种类型。
正多面体是指所有的面都是正多边形的多面体。
最著名的正多面体是四面体、六面体、八面体、十二面体和二十面体。
正多面体具有对称性和规则性的特点,它们的所有边长和内角都相等。
非正多面体则是指除了正多边形以外的多边形组成的多面体。
非正多面体的面可以是任意形状的多边形,它们的边长和内角可以不相等。
其次,根据多面体的拓扑结构,多面体可以分为闭合多面体和开放多面体。
闭合多面体是指所有的面都是由完全封闭的多边形所构成的多面体,它们没有任何的挖空部分。
闭合多面体包括正多面体和非正多面体,它们由有限数量的面所组成。
高三第一轮复习数学---多面体一、教学目标:了解多面体、正多面体的概念,了解多面体的欧拉公式,并利用欧拉公式解决有关问题;二、教学重点: 1、欧拉公式 (如何运用) 2、割补法求体积三、教学过程:(一)主要知识:1、若干个平面多边形围成的几何体,叫做多面体.2、把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体. 3、表面经过连续变形可变为球面的多面体叫做简单多面体。
一切凸多面体都是简单多面体。
4、每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同的数目的棱的凸多面体,叫做正多面体.5、如果简单多面体的顶点数为V,面数为F,棱数为E,那么V+F-E=2,这个公式叫做欧拉公式.6思维方式: 空间想象及转化思想特别注意: 研究多面体时,不要脱离棱柱棱锥的概念和性质,而要以它们为基础去认识多面体,并讨论多面体的特点和性质.欧拉公式的适用范围为简单多面体. (二)例题分析: 例1:(1)给出下列命题①正四棱柱是正多面体②直四棱柱是简单多面体③简单多面体就是凸多面体④以正四面体各面中心为顶点的四面体仍为正四面体,其中真命题个数为( )个A.1 B.2 C.3 D.4(2)一个凸多面体的棱数为30,面数为12,则它的各面多边形的内角总和为__ 解:(1) B(2)同欧拉公式V=E-F+2=20,所以内角总和为(V-2)×360°=6480°. 思考题:一个多面体,每个面的边数相同且小于6,每个顶点出发的棱数也相同,若各个面的内角总和为3600°,求这个多面体的面数、顶点数及棱数.(20,12,30)思维点拨:运用公式V+F-E=2例2: 已知某金属元素的单晶体外形是简单几何体,此晶体有三角形和八边形两种晶面,如果此晶体有24个顶点,以每个顶点为一端都有三条棱,计算此晶体的两种晶面的数目.解:由于晶体各面不都是边数相同的多边形,因此面数是两种多边形面数之和,棱数仍然是各面边数总和的一半,另一方面,由顶点数及每一顶点发出的棱数也可求出多面体的棱数,设三角形晶面x 个,八边形晶面有y 个,则F=x+y ,同时V=24,∴E=36,由欧拉公式:24+(x+y)-36=2, x+y=14, E=21(3x+8y)=36, ∴x=8, y=6.说明:2,2kV E k nF E n ==条棱则过一个顶点有边形则每个面为例3: 连结正方体相邻面的中心,得到一个正八面体,那么这个正八面体与正方体的体积之比是______解:设正方体棱长为1,则正八面体的棱长为22,体积为6121)22(3122=⨯⨯⨯.所以体积之比为1:6.思维点拨:研究多面体时,不要脱离棱柱棱锥,特别是计算体积时.挖掘:(1)正八面体相邻两个面所成二面角的大小_____.(31arccos -π)(2)棱长为1正八面体的对角线长为_____.(2)例4:三个12×12的正方形,如图,都被连接相邻两边中点的直线分成A、B两片(如图),把6片粘在一个正六边形的外面,然后折成多面体(如图),求此多面体的体积.解:(一)补成一个正方体,如图,V=31221⨯=864(二)补成一个直三棱锥,如图,V=V 大三棱锥-3V 小三棱锥=864.思维点拨:割补法是求多面体体积的常用方法.思考题:如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为( ) (A )29 (B )5 (C )6 (D )215解:D(三)巩固练习: 1:(1)给出下列命题①正四棱柱是正多面体②直四棱柱是简单多面体③简单多面体就是凸多面体④以正四面体各面中心为顶点的四面体仍为正四面体,其中真命题个数为( )个A.1 B.2 C.3 D.4(2)每个顶点处棱都是3条的正多面体共有________种(3)一个凸多面体的棱数为 30,面数为12,则它的各面多边形的内角总和为__ 解:(1) B (2)3(3)由欧拉公式V=E-F+2=20,所以内角总和为(V-2)×360°=6480°.2、已知某金属元素的单晶体外形是简单几何体,此晶体有三角形和八边形两种晶面,如果此晶体有24个顶点,以每个顶点为一端都有三条棱,计算此晶体的两种晶面的数目.解:由于晶体各面不都是边数相同的多边形,因此面数是两种多边形面数之和,棱数仍然是各面边数总和的一半,另一方面,由顶点数及每一顶点发出的棱数也可求出多面体的棱数,设三角形晶面x 个,八边形晶面有y 个,则F=x+y ,同时V=24,∴E=36,由欧拉公式:24+(x+y)-36=2, x+y=14, E=21(3x+8y)=36, ∴x=8, y=6.3、一个简单多面体,每个面的边数相同,每个顶点出发的棱数也相同,若各个面的内角总和为3600°,求这个多面体的面数、顶点数及棱数. 解:设每个面的边数为x ,每个点出发的棱数为y 。
课时14:多面体与正多面体一:复习目标 1:理解多面体与正多面体的概念,熟悉五种正多面体。
2:掌握正多面体的(等量关系、垂直关系)点、线、面位置关系。
3:运用割补法(补形法)求正多面体的体积。
二:知识梳理:正多面体:每个面都是有相同边数的正多边形,每个顶点为端点都有相同棱数的凸多面体 正多面体的类型:正四面体、正六面体、正八面体、正十二面体、正二十面体。
求正多面体体积的常用方法:割补法(补形法) 三:课前预习:1:每个顶点处棱都是3条的正多面体共有 ( ) A :2种 B :3种 C :4种 D :5种 2:棱长都是a 的正四面体111C B A Q ABC P --与,使面ABC 与面111C B A 重合得到一个 多面体,则这个多面体 ( ) A :是正六面体 B :是正多面体,但不是正六面体 C :不是正多面体 D :平行六面体。
3:已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体的 表面积为T ,则ST 等于 ( )A :91 B :94 C :41 D :314:在棱长为1的正四面体ABCD 中,,E F 分别是,BC AD 的中点,则AE CF ⋅=( )A :12-B :12C :34- D :05:正四面体的中心到底面的距离与这四面体的高的比是 。
6在正方体1111D C B A ABCD -中,N M 、分别是111BB B A 、的中点,则直线AM 与CN 所成的余弦值是___________________。
四:例题分析:例1:如图,已知正四面体P -ABC 中,棱AB 、PC 的中点分别是M 、N . (1)求异面直线BN 、PM 所成的角;(2)求BN 与面ABC 所成的角.CB MPNA例2::已知一个正八面体的棱长为a ,(1)求相邻两面中心的距离及两个相对面之间的距离;(2)若一个正四面体与该正八面体的棱长相等,把它们拼起来,使一个表面重合,所得的多面体有多少个面?3:在棱长为a 的正四面体A-BCD 内,作一个正三棱柱A 1B 1C 1—A 2B 2C 2,当A 1取在什么位置时,正三棱柱的体积最大?最大值是多少?FA DC E B五:反馈练习1:点O 为正四面体A-BCD 内一点,且OA=OB=OC=OD ,则∠AOB 的余弦值为 ( ) A :-31 B :31 C :-21 D :212:棱长为a 的正方体中,连接相邻两个面的中心,以这些线段为棱的正八面体的体积( )A :33aB :34aC :36aD :312a3:以正方体的顶点为顶点作正四面体,则正方体的表面积与正四面体的表面积之比为( )A :3:1B :1:3C :3:2 4:在棱长为1的正方体1111D C B A ABCD -中,O 为正方体的中心,F E 、分别为BC AB 、 的中点,则异面直线EF O C 与1的距离为__________________。
正多面体的性质和计算公式正多面体是指所有的面都是相等正多边形,且每个顶点所围成的角都相等的立体图形。
正多面体具有一些独特的性质和计算公式,下面将对这些内容进行详细论述。
一、性质1. 对称性:正多面体具有高度的对称性。
它的每个面都可以通过旋转或镜像变换重合于另一个面。
这种对称性使得正多面体在美学和设计领域具有广泛应用。
2. 面数、棱数和顶点数的关系:设正多面体的面数为F,棱数为E,顶点数为V。
根据多面体的性质,有以下关系式:F + V = E + 23. 欧拉公式:欧拉公式是指正多面体的面数、棱数和顶点数之间的关系。
根据欧拉公式,有以下等式成立:F + V - E = 24. 边长和面积:正多面体的边长可以通过计算每个面的边长来获得。
每个面上的正多边形的边长相等。
正多面体的表面积可以通过计算每个面的面积来获得,然后将各个面的面积求和。
5. 角度:正多面体的每个顶点所围成的角都相等。
不同正多面体的内角度度数不同,具体计算需要注意。
6. 对角线和体积:正多面体的对角线是连接不相邻顶点的线段。
正多面体的体积可以通过计算其底面积与高的乘积来获得,其中高是从底面到顶点的垂直距离。
二、计算公式1. 正多面体的边长计算:假设正多面体的面是正n边形,则正多面体的边长L可以通过以下公式计算:L = S / n其中,S表示正多面体的面积。
2. 正多面体的面积计算:正多面体面积的计算公式取决于具体的形状。
常见的正多面体包括立方体、正四面体、正六面体等,它们的面积计算公式如下: - 立方体的面积:A = 6a^2,其中a表示边长。
- 正四面体的面积:A = √3a^2,其中a表示边长。
- 正六面体的面积:A = 6 √3 a^2,其中a表示边长。
3. 正多面体的体积计算:正多面体体积的计算公式也取决于具体的形状。
常见的正多面体体积计算公式如下:- 立方体的体积:V = a^3,其中a表示边长。
- 正四面体的体积:V = a^3 / 6√2,其中a表示边长。
高三数学第一轮复习讲义 多面体和球【知识归纳】1、多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体。
围成多面体的各个多边形叫做多面体的面。
多面体的相邻两个面的公共边叫做多面体的棱。
(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线。
(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体。
2、正多面体:(1)定义:每个面都是有相同边数的正多边形,每个顶点为端点都有相同棱数的凸多面体,叫做正多面体。
(2)正多面体的种类:只有正四面体、正六面体、正八面体、正十二面体、正二十面体五种。
其中正四面体、正八面体和正二十面体的每个面都是正三角形,正六面体的每个面都是正方形,正十二面体的每个面都是正五形边,如下图:正四面体 正六面体 正八面体 正十二面体 正二十面体 3、球的截面的性质:用一个平面去截球,截面是圆面;球心和截面圆的距离d 与球的半径R 及截面圆半径r 之间的关系是r =22d R -。
提醒:球与球面的区别(球不仅包括球面,还包括其内部)。
4、球的体积和表面积公式:V =234,34R S R ππ=。
【基础训练】(1).若正棱锥的底面边长与侧棱长都相等,则该棱锥一定不是 ( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥(2).一个凸多面体的面数为8,各面多边形的内角总和为16π,则它的棱数为 A .24 B .22 C .18 D .16( ) (3).若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是A .2 B .4 C .6 D .8 ( ) (4).已知一个简单多面体的每个面均为五边形,且它共有30条棱,则此多面体的面数F 和顶点数V 分别等于 ( ) A .F=6,V=26 B .F=8,V=24 C .F=12,V=20 D .F=20,V=12 (5)在半径为10cm 的球面上有C B A ,,三点,如果︒=∠=60,38ACB AB ,则球心O 到平面ABC 的距离为__ __;(6)已知球面上的三点A 、B 、C ,AB=6,BC=8,AC=10,球的半径为13, 则球心到平面ABC 的距离为____ __ (7).一个水平放置的圆柱形贮油桶,桶内有油部分占底面一头的圆周长的41,则油桶直立时,油的高度与桶的高之比是 A .41 B .π2141- C .81 D .π2181-( )(8)在球内有相距9cm 的两个平行截面,面积分别为49πcm 2则球的表面积为___ ___; (9)三条侧棱两两垂直且长都为1的三棱锥P-ABC 内接于球O ,求球O 的表面积与体积;(10)已知直平行六面体1111D C B A ABCD -的各条棱长均为3,︒=∠60BAD ,长为2的线段MN 的一个端点M 在1DD 上运动,另一端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹(曲面)与共一顶点D 的三个面所围成的几何体的体积为为__ ____; 【例题选讲】【例1】已知三棱锥的底面是边长为1的正三角形,两条侧棱长为213, 试求第三条侧棱长的取值范围.【例2】已知简单多面体的顶点数.面数.数分别为V .F . E . 多面体的各面为正x 边形,过同一顶点的面数为y . 求证: .21111=-+E y x)【例3】如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a . (Ⅰ)求证:直线A 1D ⊥B 1C 1; (Ⅱ)求点D 到平面ACC 1的距离;(Ⅲ)判断A 1B 与平面ADC 的位置关系, 并证明你的结论.【例4】如图,在三棱锥ABC —S 中,⊥SA 平面ABC ,1==AC AB ,2=SA ,D 为BC 的中点.(1)判断AD 与SB 能否垂直,并说明理由; (2)若三棱锥ABC —S 的体积为63,且BAC ∠为 钝角,求二面角A BC ——S 的平面角的正切值;(3)在(Ⅱ)的条件下,求点A 到平面SBC 的距离.【例5】.过半径为R 的球面上一点P 引三条长度相等的弦PA 、PB 、PC ,它们间两两夹角相等。
数学必修二多面体知识点
数学必修二中关于多面体的知识点包括:
1. 多面体的定义:多面体是由平面多边形围成的立体图形,其中每个多边形都与它相
邻的多边形共有一条边,并且任意两个平面多边形都可以通过共有的边连接起来。
2. 多面体的分类:根据面的形状和特点,多面体可以分为正多面体和非正多面体。
3. 正多面体:所有面都是相等的正多边形,并且每个顶点都是以同样长度的棱相交的。
常见的正多面体有四面体、六面体和八面体。
4. 非正多面体:其中至少有一个面不是正多边形。
例如,五边形棱锥和五边形棱台就
是非正多面体。
5. 多面体的性质:
- 多面体的面数、顶点数和边数满足欧拉公式:面数 + 顶点数 - 边数 = 2。
- 正多面体的晶体系统有限个,非正多面体的晶体系统无穷个。
- 正多面体的所有内角相等,非正多面体的内角不等。
- 定理:正多面体的面数、顶点数和边数都是可以正整数的。
6. 多面体的展开图:将多面体的各个面展开到一个平面上,连接相邻的面的边,形成
的图形称为多面体的展开图。
展开图可以帮助我们计算多面体的表面积和体积。
7. 多面体的表面积和体积计算:
- 表面积:正多面体的表面积等于每个面积乘以面的个数,非正多面体的表面积等于每个面积乘以面的个数再除以2。
- 体积:对于正多面体,可以使用公式V = (1/3) * S * H来计算体积,其中S为底
面积,H为高。
对于非正多面体,需要将其分解为等腰三角形棱锥或棱台来计算体积。
以上是数学必修二中关于多面体的一些主要知识点,希望能对你有所帮助。
高三数学多面体与正多面体
9.11多面体与正多面体
【教学目标】
了解多面体、正多面体的概念
【知识梳理】
1若干个平面多边形围成的几何体,叫做多面体.
2把多面体的任何一个面伸展为平面,如果所有其他各面都
在这个平面的同侧,这样的多面体叫做凸多面体.
3每个面都是有相同边数的正多边形,且以每个顶点为其一
端都有相同的数目的棱的凸多面体,叫做正多面体.
4.正多面体有且只有5种:正四面体、正六面体、正八面体、正十二面体、正二十面体
【点击双基】
1.一个正方体内有一个内切球面,作正方体的对角面,所得
截面图形是
答案:B
2.正多面体只有_____________种,分别为
________________.
答案:5 正四面体、正六面体、正八面体、正十二面体、
正二十面体
3.在正方体ABCD-A1B1C1D1中,M、N分别是A1B1、BB1的中
点,则直线AM与CN所成的角的余弦值是_____________.
解析:过N作NP∥AM交AB于点P,连结C1P,解三角形即可. 答案:
【典例剖析】
【例1】已知甲烷CH4的分子结构是中心一个碳原子,外围有4个氢原子(这4个氢原子构成一个正四面体的四个顶点).设中心碳原子到外围4个氢原子连成的四条线段两两组成的角为θ,则cosθ等于
A.-
B.
C.-
D.
解析:将正四面体嵌入正方体中,计算易得
cosθ==-(设正方体的棱长为2).
答案:A
【例2】试求正八面体二面角的大小及其两条异面棱间的距离.
解:如图,设正八面体的棱长为4a,以中心O为原点,对角线DB、AC、QP为x轴、y
轴、z轴建立空间直角坐标系,则A(0,-2a,0)、B(2a,0,0)、C(0,2a,0)、P(0,0,2a),设E为BC的中点,连结PE、QE、OE,则∠PEQ=2∠PEO即为所求二面角的平面角,∵OE=2a,OP=2a,∴tan∠PEO=,∠PEQ=2arctan.设n=(x,y,z)是AB与PC的公垂线的一个方向向量,则有n・=x+y=0,n・=y-z=0,解得
n=(-1,1,1),所以向量=(-2a,2a,0)在n上的射影长d==即为所求.
特别提示
由于正多面体中的等量关系、垂直关系比较多,所以便于建
立直角坐标系,运用解析法处理.要注意恰当选取坐标原点,一般取其中心或顶点(如正四棱柱).
【例3】三个12×12 cm的正方形,如图,都被连结相邻两边中点的直线分成A、B两片〔如图(1)〕,把6片粘在一
个正六边形的外面〔如图(2)〕,然后折成多面体〔如图(3)〕,求此多面体的体积.
解法一:补成一个正方体,如图甲,V=V正方体=×123=864 cm3.
甲乙
解法二:补成一个三棱锥,如图乙,V=V大三棱锥-3V小三
棱锥=864 cm3.
思考讨论
补形的方法可将不规则的几何体转化成规则的几何体,这是
求多面体体积的常用方法.
【知识方法总结】。