第6章 系统建模与仿真的校核、验证及确认
- 格式:ppt
- 大小:1.52 MB
- 文档页数:19
第六章建模与仿真的校核、验证与确认由于仿真技术具有的优越性——可操纵性、可重复性、灵活性、安全性、经济性,且又不受环境条件和空域场地的限制,其应用越来越广泛,同时它本身的准确性和置信度也愈来愈引起人们的广泛重视。
建模与仿真的校核、验证与确认(Verification,Validation and Accreditation,VV A)技术正是在这种背景下被提出的。
VV A技术的应用能提高和保证仿真置信度,降低由于仿真系统在实际应用中的模型不准确和仿真置信度水平低所引起的风险。
本章介绍VV A的基本概念和方法以及对仿真结果的统计分析方法。
6.1 VV A技术建模与仿真的正确性和置信度是仿真的生命线,没有一定置信度的仿真和仿真系统,其结果是毫无意义的,甚至可能造成错误的决策。
建模与仿真的校核、验证和确认技术的应用是保证和提高仿真置信度的有效途径。
校核的目的和任务是证实模型从一种形式转换成另一种形式的过程具有足够的精确度;验证是从预期应用的角度来确定模型表达实际系统的准确程度,其目的和任务是根据建模和仿真的目的和目标,考察模型在其作用域内是否准确地代表了实际系统;确认是一项相信并接受某一模型的权威性决定,它表明决策部门已确认该模型适用于某一特定的目的。
国外早在20世纪60年代开始对模型的有效性问题进行研究,并在概念和方法性研究方面取得了许多重要成果。
以美国为例:例如美国国防部成功地对“爱国者”导弹半实物仿真模型进行了确认,还有BGS(Battle Group Simulation)、LDWSS(Laser Designator/Weapon System Simulation)等武器仿真系统都经过了确认和验证;美国宇航局(NASA)对TCV(Terminal Configured Vehicle)仿真系统进行了专门的确认;美国国防部对“星球大战”计划及其后续的“战区导弹防御计划”中的仿真项目都拟订并实施了相应的VV A计划。
《生物建模仿真》学习指南一、学习目的《生物建模仿真》是生物医学工程本科的专业基础课程,也是现代生物科学、医学、医学等相关专业教育教学的重要内容之一。
建模与仿真是分析、研究和设计各类系统,特别是诸如生命系统这类复杂系统的重要知识结构。
本课程的学习目的:1. 学习系统建模与计算机仿真的基本理论和方法。
2. 通过学习生物建模仿真的典型实例,学习和培养解决生物建模仿真实际问题的创新能力和实践能力。
二、课程理论部分学习指南课程理论学习分两个部分:第一部分包括第1章到第6章,内容是数学模型建模的基本理论和方法,计算机仿真的基本理论和方法,以及建模与仿真的校核、验证和确认(VV A)技术。
第二部分从第7章到第10章,通过学习生物系统建模仿真的4个典型范例,以点带面,培养应用建模仿真的基本理论与方法,解决生物系统实际问题的能力。
以下是理论课每个知识结构的主要内容、知识点、重点难点和学习质量的自我监测指标。
第1章生物建模仿真概论1. 学习目的了解建模仿真基本概念及生物建模仿真的研究与应用进展动态。
2. 学习内容(1)系统模型的定义、分类。
(2)系统仿真的基本概念、基本步骤、分类和计算机仿真。
(3)生物建模与仿真的研究与应用进展动态。
3. 知识点系统模型,计算机仿真4. 重点与难点系统建模的基本原理:模型与系统的相似性,根据建模要求定义相似性。
第2章系统的数学模型和建模方法2.1 数学模型的分类1. 学习目的学习数学模型的状态集合分类和时间集合分类。
2. 学习内容(1)数学模型的状态集合分类和时间集合分类。
(2)连续状态模型:连续时间模型,离散时间模型。
3. 知识点连续状态模型与离散事件模型,连续时间与离散时间模型4. 重点与难点连续状态模型中的连续时间模型,及其对应的时间离散计算机仿真模型。
5. 学习质量的自我监测标准:本章节自测与评估。
2.2 连续状态系统模型1. 学习目的学习连续状态系统中连续时间数学模型基本概念及其4类模型的数学表达式,了解对应的离散时间模型基本概念。
【关键字】系统《建模与仿真》课程教学大纲(Modeling and Simulation)课程编码:学分:2.5总学时:40适用专业:工业工程先修课程:生产计划与控制、工程统计学、工程数学、运筹学、计算机编程技术一、课程的性质、目的和任务《建模与仿真》是面向工程实际的应用型课程,是工业工程系的主导课程之一。
学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。
本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理。
并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能。
使学生了解计算机仿真的基本步骤。
结合本课程的特点,使学生掌握或提高系统化分析问题和解决问题的能力,为系统化管理生产打下根底。
二、教学基本要求具体在教学过程中要求学生应该达到:1.全面了解本课程的性质与任务、框架内容以及理论和方法;2.掌握仿真的概率统计根底知识。
3.掌握供理论模型建模方法。
4.掌握仿真模型的设计与实现方法。
5.熟练应用建模理论,对排队系统、库存系统、加工制造系统进行建模仿真。
三、教学内容与学时分配离散事件系统仿真是仿真技术的重要领域,在规划论证、方案评估、计划调度、加工制造、产品试验、生产培训、训练模拟、管理决策等方面得到广泛应用。
本课程深入地介绍了离散事件系统建模仿真的理论、方法和技术,突出对理论建模方法和计算机实现技术的讲解,对离散事件系统建模仿真的发展和应用情况做了比较详尽的介绍。
具体教学内容如下:第一章绪论 4学时本章分析了系统和制造系统定义、组成与特点,介绍了系统建模与仿真的基本概念和使用步骤,并给出应用案例。
本章教学目标:本章教学基本要求:了解常用术语及常用的仿真软件,了解仿真技术的的发展状况及应用。
理解系统与制造系统的定义及系统建模与仿真的概念及系统、模型与仿真之间的关系。
掌握制造系统建模与仿真的基本概念及基本步骤。
建模与仿真的校核与验证技术1引言近年来, 系统仿真技术得到了飞速发展, 越来越广泛地应用于军事、经济乃至社会生活与生成的各个部门, 在科学研究、工程设计、装备论证等方面发挥着日益重要的作用。
与此同时, 人们对建模与仿真 ( Modeling and Simulation, M& S) 的正确性和可信度也越来越关注。
校核、验证与确认( Verification, Validation and Accreditation,VV&A)的核心问题就是为M&S应用于特定目的的可信度评估提供依据, 并能够有效地降低风险、减少开支、增加用户对模型与仿真的信心。
校核 ( Verification) 是确定仿真模型和有关数据代表开发者的概念描述和技术要求准确程度的过程。
验证(Validation) 是从模型的应用目的出发, 确定模型和有关数据代表真实世界正确程度的过程。
确认( Accreditation) 是官方正式地接受一个模型、仿真以及有关数据应用于特定目的。
校核、验证与确认的共同目标是提高模型与仿真的可信度。
校核与验证的技术与方法是指在建模与仿真过程中为完成V&V工作而采用的各种技术、方法的总称。
建模与仿真融合了建模技术、系统科学、信息技术、软件工程和其它有关专门领域知识, 因此对建模与仿真的校核与验证应该充分吸收有关领域成功的测试与评估方法。
美国国防部公布的VV& A 建议实践指南中归纳了75种校核与验证技术和方法, 分为非正规技术、静态技术、动态技术和正规技术四大类。
尽管这些类包含了一些相同的特点, 而且个别 V&V 技术可能与其它技术存在重叠, 但其复杂性、数学和逻辑上的正规性总体上是逐渐增加的。
2非正规校核与验证技术非正规 V&V 技术使用比较普遍。
之所以称为非正规, 是因为这种技术使用的方法和工具更加依赖于人主观的推理和评估, 而不是严谨的数学推理。
1、系统(system):是一组对象的集合或总称;由诸多相互作用、相互依存的要素按照一定规律构成的集合体,它们共同组成具有特定结构和功能的整体。
它具有以下特点:①由两个或两个以上要素组成。
②构成系统的要素之间具有一定的联系,并在系统内部形成特定的结构。
③具有边界。
④系统具有特定的功能,具有存在的价值和作用,并且系统功能受到系统结构和环境的影响。
三要素:(1) 实体:组成系统的元素、对象。
(2) 属性:实体的特征。
(3) 活动:系统由一个状态到另一个状态的变化过程。
理解:组成系统的实体之间相互作用而引起的实体属性的变化,通常用状态变量来描述。
研究系统主要研究系统的动态变化。
除了研究系统的实体属性活动外,还需要研究影响系统活动的外部条件,这些外部条件称之为环境。
系统分类:1)连续系统是指系统状态随时间发生连续性变化的系统(电力生产、供电网络、石油炼制、自来水生产、电路系统等)。
2)离散事件系统是指只有当在某个时间点上有事件(event)发生时,系统状态才会发生改变的系统。
系统状态的变化只发生在离散的时间点上,且状态通常会保持一段时间。
此外,系统状态的变化也会引发新的事件。
(毛坯到达、加工开始、加工完成、设备故障等;服务系统中的顾客到达、接受服务等)2、计算机仿真(系统仿真)概念:针对真实系统建立模型,然后在模型上进行试验,用模型代替真实系统,从而研究系统性能的方法称为系统仿真。
研究对象可以是实际的系统,也可以是设想中的系统。
1)包含了系统建模、仿真建模和仿真实验三个基本活动。
联系这三个活动的是系统仿真的三要素:系统、模型、计算机(硬件和软件)。
2)系统、模型与仿真三者之间有着密切联系。
其中,系统是要研究的对象,模型是系统在某种程度和层次上的抽象,而仿真是通过对模型的试验以便分析、评价和优化系统。
3、仿真技术的主要用途:(1) 优化系统设计。
(2) 系统故障再现,发现故障原因。
(3) 验证系统设计的正确性。