4-密码算法 分类和使用
- 格式:ppt
- 大小:809.00 KB
- 文档页数:69
密码公式大全摘要:1.密码公式的定义和作用2.常见密码公式的分类和示例3.密码公式的优缺点分析4.如何使用密码公式大全5.密码公式大全的实际应用案例正文:密码公式是指用于加密和解密信息的一种算法,它在信息安全领域具有重要的作用。
密码公式大全则汇集了各种常见的密码公式,为用户提供了便利的查询和学习工具。
一、密码公式的定义和作用密码公式,又称加密算法,是一种将明文信息通过特定的算法转换为密文信息的过程。
通过密码公式,可以有效保护信息的安全性,防止信息在传输过程中被非法获取。
二、常见密码公式的分类和示例常见的密码公式可以分为对称加密算法和非对称加密算法两大类。
1.对称加密算法:指加密和解密使用同一密钥的加密算法。
常见的对称加密算法有:- AES(高级加密标准)- DES(数据加密标准)- 3DES(三重数据加密算法)2.非对称加密算法:指加密和解密使用不同密钥的加密算法。
常见的非对称加密算法有:- RSA(拉普拉斯- 希尔伯特- 亚当斯)- ECC(椭圆曲线密码算法)三、密码公式的优缺点分析密码公式的优点在于可以有效保护信息的安全性,防止信息泄露。
然而,密码公式也存在一定的缺点,如算法复杂度高、计算量大等。
四、如何使用密码公式大全用户可以通过查阅密码公式大全,了解各种加密算法的原理和实现方法,根据实际需求选择合适的加密算法进行加密和解密。
五、密码公式大全的实际应用案例密码公式大全在现实生活中的应用案例非常广泛,例如:1.互联网支付:在用户进行网上支付时,银行和支付平台会采用密码公式对用户的银行卡信息进行加密,确保资金安全。
2.信息传输:企业或个人在发送敏感信息时,可以采用密码公式对信息进行加密,防止信息在传输过程中被非法获取。
密码学基础(一)常见密码算法分类对称算法是指一种加密密钥和解密密钥相同的密码算法,也称为密钥算法或单密钥算法。
该算法又分为分组密码算法(Block cipher)和流密码算法(Stream cipher)。
•分组密码算法o又称块加密算法o加密步骤一:将明文拆分为 N 个固定长度的明文块o加密步骤二:用相同的秘钥和算法对每个明文块加密得到 N 个等长的密文块o加密步骤三:然后将 N 个密文块按照顺序组合起来得到密文•流密码算法o又称序列密码算法o加密:每次只加密一位或一字节明文o解密:每次只解密一位或一字节密文常见的分组密码算法包括 AES、SM1(国密)、SM4(国密)、DES、3DES、IDEA、RC2 等;常见的流密码算法包括 RC4 等。
•AES:目前安全强度较高、应用范围较广的对称加密算法•SM1:国密,采用硬件实现•SM4:国密,可使用软件实现•DES/3DES:已被淘汰或逐步淘汰的常用对称加密算法二、非对称密码算法(Asymmetric-key Algorithm)非对称算法是指一种加密密钥和解密密钥不同的密码算法,也称为公开密码算法或公钥算法。
该算法使用一个密钥进行加密,另一个密钥进行解密。
•加密秘钥可以公开,又称为公钥•解密秘钥必须保密,又称为私钥常见非对称算法包括 RSA、SM2(国密)、DH、DSA、ECDSA、ECC 等。
三、摘要算法(Digest Algorithm)算法是指将任意长度的输入消息数据转换成固定长度的输出数据的密码算法,也称为哈希函数、哈希函数、哈希函数、单向函数等。
算法生成的定长输出数据称为摘要值、哈希值或哈希值,摘要算法没有密钥。
算法通常用于判断数据的完整性,即对数据进行哈希处理,然后比较汇总值是否一致。
摘要算法主要分为三大类:MD(Message Digest,消息摘要算法)、SHA-1(Secure Hash Algorithm,安全散列算法)和MAC(Message Authentication Code,消息认证码算法);另国密标准 SM3 也属于摘要算法。
密码学算法1. 密码学概述基本认知1. 科学密码学是科学、有严格的规范,设计密码学算法需要具备深厚的数学知识2. 公开密码学算法的实现原理是公开的,经过长时间的考验3. 相对安全计算机处理速度越来越快,某个密码学算法的数学基础可能受到挑战,现阶段安全密码算法,未来可能就不安全了4. 攻击⽅法多样⼤部分密码学算法需要秘钥,最简单的破解⽅法就是获取秘钥(暴⼒破解、彩虹表等)5. 应⽤标准未来正确使⽤密码学算法,并依据标椎使⽤(⽐如:PKCS),可以不了解密码学算法原理,但必须掌握应⽤标准6. 不⽐具备很强数学知识很多密码学算法并⾮计算机专家创建,⽽是数学家.(不妨碍我们使⽤密码学算法)7. 解决特定问题每种算法都有应⽤场景,解决特定的问题⽬标1. 机密性信息在存储,运输、处理过程中的安全保密,要求信息不会泄露给未经授权的⼈.对称加密算法和公开秘钥算法都能保护机密性2. 完整性接受⽅接受到的信息就是发送⽅发送的原始信息,如数据被篡改,接受⽅有策略数据被篡改,那传输的数据就具备完整性.在密码学中,主要使⽤消息验证码(MAC)算法保证完整性3. 不可抵赖性在密码学中,使⽤数字签名技术避免抵赖4. ⾝份验证通信双⽅(发送⽅、接收⽅)必须确保对端就是通信对象.在密码学中,⼀般使⽤数字签名确认⾝份常⽤密码库1. MIRACL由Shamus软件公司开发,包括了:RSA、AES、DSA、ECC和Diffie-Hellman秘钥交换算法2. CryptoAPI微软在Windows中的⼀个安全加密应⽤框架密码应⽤程序接⼝,密码服务提供者模块3. OpenSSL开放源代码的软件库包,三个只要的功能部分:SSL协议库、应⽤程序以及密码算法库2. 密码学算法分类类型哈希算法(Hash)1. 国内:SM32. 国际:MD5、SHA-1、SHA-2、SHA-33. 说明:SM3的256位保密强度⾼于MD5对称加密算法1. 国内:SM1、SM4、ZUC2. 国际:DES、3DES、AES3. 说明:SM1的128位保密强度和性能与AES相当,SM4的128位已升级为国际标准公开秘钥算法1. 国内:SM22. 国际:RSA、ECC3. 说明:SM2的256位基于ECC算法,安全性⽐RSA1024有明显优势随机数类型1. 真正的随机数⽣成器硬件⽣成效率⾼、随机性、不可预测性、不可重现性需要物理设备获取2. 伪随机数⽣成器软件⽣成效率⾼、随机性通过算法获取3. 密码学伪随机数⽣成器软件⽣成效率⾼、随机性、不可预测性⽤于密码学⼯作原理1. ⽣成器内部维护⼀个状态(internal state),其数值来源于外部,成为熵:动态时间、温度、声⾳变化等2. 伪随机数内部状态来源模拟的数值,称为种⼦(seed)可⽣成密码学随机数的算法1. 块密码算法CTR模式:对称加密算法2. 摘要函数:单向性3. 流密码算法:对称加密算法⽤途1. 密钥对称加密算法、公开密钥算法、MAC算法都会⽤到密钥,密钥本质上是⼀个随机数2. 初始化向量(IV)块密码算法中很多迭代模式会使⽤(IV)3. nonce块密码算法中的CTR模式、AEAD加密模式也会⽤到nonce4. salt基于⼝令的加密算法会⽤到,通过salt⽣成⼀个密钥Hash函数加密基元1. 基于密码学Hash算法产⽣的其他密码算法:MAC消息验证码、伪随机数⽣成器、基于⼝令的加密算法、数字签名等等Hash特性1. 摘要/散列/指纹=hash(消息)2. 相同的消息获得相同摘要值、速度快、单向性(不可逆)、原始消息变化摘要值也会变化、不同摘要值不同Hash算法⽤途1. ⽂件⽐较2. ⾝份校验Hash算法分类1. MD5算法:MD5、输出值长度:128⽐特、输⼊值最⼤长度:⽆限制、说明:实践中已经产⽣碰撞,理论上不具备弱抗碰撞性2. SHA-1算法:SHA-1、输出值长度:160⽐特、输⼊值最⼤长度:2的64次⽅减⼀⽐特、说明:实践中已经产⽣碰撞3. SHA-2算法:SHA-256、输出值长度:256⽐特、输⼊值最⼤长度:2的64次⽅减⼀⽐特、说明:安全使⽤算法:SHA-512、输出值长度:512⽐特、输⼊值最⼤长度:2的128次⽅减⼀⽐特、说明:安全使⽤算法:SHA-224、输出值长度:224⽐特、输⼊值最⼤长度:2的64次⽅减⼀⽐特、说明:安全使⽤算法:SHA-384、输出值长度:384⽐特、输⼊值最⼤长度:2的128次⽅减⼀⽐特、说明:安全使⽤4. SHA-3算法:SHA3-256、输出值长度:256⽐特、输⼊值最⼤长度:2的64次⽅减⼀⽐特、说明:安全使⽤算法:SHA3-512、输出值长度:512⽐特、输⼊值最⼤长度:2的128次⽅减⼀⽐特、说明:安全使⽤算法:SHA3-224、输出值长度:224⽐特、输⼊值最⼤长度:2的64次⽅减⼀⽐特、说明:安全使⽤算法:SHA3-384、输出值长度:384⽐特、输⼊值最⼤长度:2的128次⽅减⼀⽐特、说明:安全使⽤对称加密算法原理1. 密⽂=E(明⽂、算法、秘钥)2. 明⽂=D(密⽂、算法、秘钥)3.分类1. 块密码算法:DES、3DES、AES2. 流密码算法:RC4模式1. ECB(Electronic Codebook)、特点:运算快速,⽀持并⾏处理,需要填充、说明:不推荐使⽤2. CBC(Cipher Block Chaining)、特点:⽀持并⾏处理,需要填充、说明:推荐使⽤3. CFB(Cipher Feedback)、特点:⽀持并⾏处理,不需要填充、说明:不推荐使⽤4. OFB(Output Feedback)、特点:迭代运算使⽤流密码模式,不需要填充、说明:不推荐使⽤5. CTR(Counter)、特点:迭代运算使⽤流密码模式,⽀持并⾏处理,不需要填充、说明:推荐使⽤6. XTS(XEX-based tweaked-codebook)、特点:不需要填充、说明:⽤于本地硬盘存储解决⽅案中标准1. 填充标准:明⽂长度必须是分组长度的倍数,如不是倍数,则必须有填充机制2. PKCS#7填充:可处理的分组长度是1到255个字节3. AES算法使⽤标准,⽐如:AES-128-CBC-PKCS#7,其中秘钥长度128,分组模式CBC,填充标准PKCS#7,AES算法默认分组128bit消息验证码Hash算法能够完成密码学⽬标之⼀的完整性校验,但却不能避免消息被篡改,为避免消息被篡改,需要⽤到消息验证码.消息验证码⾮常重要,⼀般结合加密算法⼀起使⽤消息验证码的模型:MAC值 = mac(消息、密钥)MAC⼀般和原始消息⼀起传输,原始消息可以选择加密,也可以选择不加密,通信双⽅会以相同的⽅式⽣成MAC值,然后进⾏⽐较MAC算法种类:CBC-MAC算法和HMAC算法,http中使⽤最多的为HMAC算法.1. CBC-MAC算法:CBC-MAC算法从块密码算法的CBC分组模式演变⽽来,简单的说就是最后⼀个密钥分组的值就是MAC值2. HMAC算法:使⽤Hash算法作为加密基元,结合Hash算法有多种变种(HMAC-SHA-1、HMAC-SHA256、HMAC-SHA512)对称算法和MAC算法结合加密算法不能提供完整性,加密的同时必须引⼊MAC算法避免消息被篡改结合对称加密算法和MAC算法提供机密性额完整性的模式叫Authenticated Encryption(AE)加密模式,有三种:1. E&M模式:消息分别进⾏加密运算和MAC运算,然后将两个运算结果结合起来发送2. MtE模式:先对消息进⾏MAC计算,然后将消息和MAC值组合,再进⾏加密,最终加密值发送出去(http使⽤)3. EtM模式:先对消息进⾏加密得到密⽂,然后对密⽂再计算MAC值,最终将密⽂和MAC值组合在⼀起发送保证数据加密和完整性的三种模式:1. AEAD模式:在底层组合了加密算法和MAC算法,同事保证数据加密和完整性.2. CCM模式:使⽤CBC-MAC算法保证完整性,使⽤AES算法CTR模式保证加密3. GCM模式:GHASH进⾏MAC运算,AES算法CTR模式进⾏加密运算,拥有⼗分不错的效率和性能公开密钥算法特点:1. 功能不⼀样:对称算法主要⽤于加密和解密,⽽公开秘钥算法可以⽤于加密解密、秘钥协商、数字签名2. 运算速度很慢:相⽐对称加密算法来说,公开秘钥算法尤其是RSA算法运算⾮常慢3. 秘钥是⼀对:对称加密算法中,密钥是⼀串数字,加密者和解密者使⽤同样的密钥.公开密钥算法是⼀对,分别为公钥和私钥标准:1. RSA算法主要使⽤PKCS#I定义了两种机制处理填充问题,从⽽保证同样的明⽂、同样的密钥经过RSA加密,每次的密⽂都是不⼀样的2. 两种填充机制分别是RSAES-PKCSI-VI_5和RSAES-OAEP,⽬前推荐使⽤的填充标准是RSAES-OAEP,OpenSSL命令⾏默认使⽤的标准是RSAES-PKCSI-VI_5秘钥(安全性)是什么?1. 对称加密算法、MAC算法使⽤的密钥就是⼀串数字2. 公开密钥算法中的密钥四⼀对,由多个部分组成,但是本质上也可以认为由多个数字组成作⽤1. 名称:对称加密算法秘钥、作⽤:加密解密、说明:秘钥不能泄露2. 名称:⾮对称加密算法秘钥、作⽤:加密解密、说明:公钥可以公开,秘钥不能泄露3. 名称:MAC算法加密、作⽤:消息验证、说明:秘钥不能泄露4. 名称:数字签名算法秘钥、作⽤:⾝份验证、说明:公钥可以公开,秘钥不能泄露5. 名称:会话秘钥、作⽤:加密解密、说明:密钥不能泄密,该密钥⼀般配合对称加密算法进⾏加密解密6. 名称:基于⼝令的密钥、作⽤:进⾏权限校验,加密解密等、说明:⼝令不能泄密⽣命周期1. ⽣成(伪随机数⽣成器⼝令加密[PBE]算法、伪随机数⽣成器)2. 存储(静态秘钥[长期秘钥]、动态秘钥[会话秘钥])3. 解密4. 传输(硬编码在代码中⼝头、邮件)(秘钥协商算法[不⽤存储])秘钥协商算法密钥协商算法就是为解决密钥分配、存储、传输等问题,其也是公开秘钥算法的⼀种秘钥协商算法种类1. RSA秘钥协商算法:⾸先使⽤客户端⽣成⼀个会话秘钥,然后使⽤公钥加密发哥服务器,服务器解密会话秘钥.接下来服务端和客户端使⽤对称加密算法和会话秘钥加解密数据.2. DH秘钥协商算法:DH算法在进⾏密钥协商的时候,通信双⽅的任何⼀⽅⽆法独⾃计算出会话密钥,通信双⽅各⾃保留⼀部分关键信息,再将另外⼀部分信息告诉对⽅,双⽅有了全部信息告诉对⽅,双⽅有了全部信息才能共同计算出相同的会话密钥.ECC1. 为了保证DH的密钥对不被破解,提升安全性的主要⼿段就是增加密钥对的长度,但是长度越长,性能越低.为了解决性能问题,就有了椭圆曲线密码学(Elliptic Curv e Cryptography),简称ECC.2. ECC是新⼀代公开秘钥算法,主要优点就是安全性,极短的密钥能够提供很⼤的安全性,同时性能也很⾼.⽐如224⽐特的ECC密钥和2048⽐特的RSA密钥可以达到同样的安全⽔平,由于ECC密钥具有很短的长度,运算速度⾮常快.3. 在具体应⽤的时候,ECC可以结合其他公开密钥算法形成更快、更安全的公开密钥算法,⽐如结合DH密钥协商算法组成ECDH密钥协商算法,结合数学签名DSA算法组成ECDSA数字签名算法.4. ECC本质上就是⼀个数学公式,任何⼈基于公式都可以设计出椭圆曲线.[尽量选择性能更⾼、安全系数更⾼的命名曲线]数字签名1. 公开密钥算法的另外⼀种⽤途就是数字签名技术2. 解决⽅案:RSA签名算法DSA签名算法3. 数字签名⽤途防篡改:数据不会被修改,MAC算法也有这个特点防抵赖:消息签署者不能抵赖防伪造:发送的消息不能够伪造,MAC算法也有这个特点4. 数字签名流程:⽣成流程1. 发送者对消息计算摘要值2. 发送者⽤私钥对摘要值进⾏签名得到签名值3. 发送者将原始消息和签名值⼀同发给接受者4.验证流程1. 接收者接收到消息后,拆分出消息和消息签名值A2. 接收者使⽤公钥对消息进⾏运算得到摘要值B3. 接收者对摘要值B和签名值A进⾏⽐较,如果相同表⽰签名验证成功,否则就会验证失败4.3. 密码学算法应⽤场景算法安全预测摩尔定律应⽤场景Hash算法(信息摘要算法)1. 算法:MD5、SHA-1、SHA-2、SHA-32. 性能:机密性、完整性3. 应⽤场景:存储账号和⼝令(hash算法加salt)⽣成信息摘要,校验数据完整对称加密算法1. 算法:DES、3DES、AES、RC42. 性能:机密性3. 应⽤场景:对效率有要求的实时数据加密通信(使⽤VPN或者代理进⾏加密通信时)⼤批量数据加密时HTTP加密通讯时公开秘钥算法1. 算法:RSA、DSA、ECC2. 性能:机密性3. 应⽤场景:秘钥加密数字签名单向加密双向加密消息验证码(MAC)1. 算法:CBC-MAC、HMAC2. 性能:完整性3. 应⽤场景:对机密性要求不⾼,只保障完整性和不被篡改时数字签名算法1. 算法:RSA数字签名算法、DSA数字签名算法、ECDSA数字签名算法2. 性能:⾝份验证、不可抵赖性3. 应⽤场景:防篡改防抵赖防伪造4. 密码学算法安全性和性能秘钥长度与算法安全安全的关键要素是秘钥的长度,理论上秘钥越长就越安全,但是秘钥越长性能就下降很多密码学算法性能性能和安全是密码学算法重要指标,在选择时尽量选择安全性⾼的算法,在此基础上在选择性能⾼的算法5. 总结机密性对称算法公开秘钥算法完整性Hash函数算法MAC:基于Hash函数算法、基于对称算法(CBC)数字签名算法⾝份验证HMAC数字签名算法不可抵赖性数字签名算法。
1、密码体制分类及典型算法描述密码体制分为三类:1、换位与代替密码体质2、序列与分组密码体制3、对称与非对称密钥密码体制。
典型算法描述:2、试对代替密码和换位密码进行安全性分析。
1.单表代替的优缺点优点: 明文字符的形态一般将面目全非缺点: (A) 明文的位置不变; (B) 明文字符相同,则密文字符也相同; 从而导致:(I) 若明文字符e被加密成密文字符a,则明文中e的出现次数就是密文中字符a的出现次数; (II) 明文的跟随关系反映在密文之中. 因此,明文字符的统计规律就完全暴露在密文字符的统计规律之中.形态变但位置不变 2. 多表代替的优缺点优点: 只要(1) 多表设计合理,即每行中元互不相同,每列中元互不相同.(这样的表称为拉丁方表) (2) 密钥序列是随机序列即具有等概性和独立性。
这个多表代替就是完全保密的。
等概性:各位置的字符取可能字符的概率相同独立性在其它所有字符都知道时也判断不出未知的字符取哪个的概率更大。
2. 多表代替的优缺点密钥序列是随机序列意味着1密钥序列不能周期重复2密钥序列必须与明文序列等长3这些序列必须在通信前分配完毕4大量通信时不实用5分配密钥和存储密钥时安全隐患大。
缺点周期较短时可以实现唯密文攻击。
换位密码的优缺点优点: 明文字符的位置发生变化;缺点: (A) 明文字符的形态不变;从而导致: (I) 密文字符e的出现频次也是明文字符e的出现次数; 有时直接可破! (如密文字母全相同) 换位密码优缺点总结:位置变但形态不变. 代替密码优缺点总结: 形态变但位置不变3、ADFGX密码解密过程分析1918年第一次世界大战已经接近尾声。
为了挽回日趋不利的局面德军集中了500万人的兵力向协约国发动了猛烈的连续进攻。
采用一种新密码ADFGX密码体制。
该密码用手工加解密费时不多符合战地密码的基本要求。
进行了两次加密有两个密钥一个是代替密钥棋盘密钥一个是换位密钥。
其结果是把前面代替加密形成的代表同一明文字符的两个字母分散开破坏密文的统计规律性。
加密和解密(1):常⽤数据加密和解密⽅法汇总数据加密技术是⽹络中最基本的安全技术,主要是通过对⽹络中传输的信息进⾏数据加密来保障其安全性,这是⼀种主动安全防御策略,⽤很⼩的代价即可为信息提供相当⼤的安全保护。
⼀、加密的基本概念"加密",是⼀种限制对⽹络上传输数据的访问权的技术。
原始数据(也称为明⽂,plaintext)被加密设备(硬件或软件)和密钥加密⽽产⽣的经过编码的数据称为密⽂(ciphertext)。
将密⽂还原为原始明⽂的过程称为解密,它是加密的反向处理,但解密者必须利⽤相同类型的加密设备和密钥对密⽂进⾏解密。
加密的基本功能包括:1. 防⽌不速之客查看机密的数据⽂件;2. 防⽌机密数据被泄露或篡改;3. 防⽌特权⽤户(如系统管理员)查看私⼈数据⽂件;4. 使⼊侵者不能轻易地查找⼀个系统的⽂件。
数据加密是确保计算机⽹络安全的⼀种重要机制,虽然由于成本、技术和管理上的复杂性等原因,⽬前尚未在⽹络中普及,但数据加密的确是实现分布式系统和⽹络环境下数据安全的重要⼿段之⼀。
数据加密可在⽹络OSI七层协议(OSI是Open System Interconnect的缩写,意为开放式系统互联。
国际标准组织(国际标准化组织)制定了OSI模型。
这个模型把⽹络通信的⼯作分为7层,分别是物理层、数据链路层、⽹络层、传输层、会话层、表⽰层和应⽤层。
)的多层上实现、所以从加密技术应⽤的逻辑位置看,有三种⽅式:①链路加密:通常把⽹络层以下的加密叫链路加密,主要⽤于保护通信节点间传输的数据,加解密由置于线路上的密码设备实现。
根据传递的数据的同步⽅式⼜可分为同步通信加密和异步通信加密两种,同步通信加密⼜包含字节同步通信加密和位同步通信加密。
②节点加密:是对链路加密的改进。
在协议传输层上进⾏加密,主要是对源节点和⽬标节点之间传输数据进⾏加密保护,与链路加密类似.只是加密算法要结合在依附于节点的加密模件中,克服了链路加密在节点处易遭⾮法存取的缺点。