【必考题】数学高考模拟试卷(含答案)
- 格式:doc
- 大小:1.29 MB
- 文档页数:21
高考模拟复习试卷试题模拟卷第1课时等差数列的前n项和课后篇巩固探究A组1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设Sn是等差数列{an}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{an}的通项公式为an=2n37,则Sn取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{an},{bn}的前n项和分别为An与Bn,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{an}是等差数列,Sn为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{an}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=2,a1=20,∴S10=10a1+d=0=110.答案:1107.在等差数列{an}中,前n项和为Sn,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶S奇=3015=15,于是d=3.答案:39.若等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{an}的首项a1和公差d;(2)求数列{an}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=2.(2)S10=10×a1+d=10.10.导学号33194010已知数列{an}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为Sn,求Sn的最大值;(3)当Sn是正数时,求n的最大值.解(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得<d<,又d∈Z,∴d=4.(2)∵d<0,∴{an}是递减数列.又a6>0,a7<0,∴当n=6时,Sn取得最大值,即S6=6×23+×(4)=78.(3)Sn=23n+×(4)>0,整理得n(252n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{an}为等差数列,公差d=2,Sn为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11S10=a11=0,a11=a1+10d=a1+10×(2)=0,所以a1=20.答案:B2.(全国1高考)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3②,得(2115)d=24,即6d=24,所以d=4.答案:C3.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{an}的通项公式是an=12n,其前n项和为Sn,则数列的前11项和为()A.45B.50C.55D.66解析:∵Sn=,∴=n,∴的前11项和为(1+2+3+…+11)=66.故选D.答案:D5.已知等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=.解析:设等差数列{an}的公差为d,则an=1+(n1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=.又a4=1+3×,ak=1+(k1)d,由ak+a4=0,得+1+(k1)d=0,将d=代入,可得k=10.答案:106.已知数列{an}为等差数列,其前n项和为Sn,且1+<0.若Sn存在最大值,则满足Sn>0的n的最大值为.解析:因为Sn有最大值,所以数列{an}单调递减,又<1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足Sn>0的n的最大值为19.答案:197.导学号33194012在等差数列{an}中,a1=60,a17=12,求数列{|an|}的前n项和.解数列{an}的公差d==3,∴an=a1+(n1)d=60+(n1)×3=3n63.由an<0得3n63<0,解得n<21.∴数列{an}的前20项是负数,第20项以后的项都为非负数.设Sn,Sn'分别表示数列{an}和{|an|}的前n项和,当n≤20时,Sn'=Sn==n2+n;当n>20时,Sn'=S20+(SnS20)=Sn2S20=60n+×32×n2n+1260.∴数列{|an|}的前n项和Sn'=8.导学号33194013设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.(1)求数列{an}的通项公式及前n项和公式;(2)设数列{bn}的通项公式为bn=,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{an}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以an=1+(n1)×2=2n1,Sn=n×1+×2=n2.(2)由(1)知bn=,所以b1=,b2=,bm=.若b1,b2,bm(m≥3,m∈N)成等差数列,则2b2=b1+bm,所以,即6(1+t)(2m1+t)=(3+t)(2m1+t)+(2m1)(1+t)(3+t),整理得(m3)t2(m+1)t=0,因为t是正整数,所以(m3)t(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
【必考题】数学高考试卷(含答案)一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .3.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .134.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16 C .1112D .25245.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( ) A .1B .-1C .2D .-26.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-7.函数y =2x sin2x 的图象可能是A .B .C .D .8.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .809.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直10.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<11.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________14.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.15.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 16.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.17.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.18.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则PC PA ⋅的最小值为_______.19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 22.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为1231x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是22sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值. 24.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围. 25.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.26.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明; ()2求二面角M EF D --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项.由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.2.C解析:C 【解析】 【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形. 【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项. 故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 考点:三视图.3.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C.本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.4.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 5.B解析:B 【解析】 【分析】先根据向量垂直得到a (a +2b ),=0,化简得到a b =﹣2,再根据投影的定义即可求出. 【详解】∵平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ), ∴a (a +2b ),=0, 即()2·20a a b += 即a b =﹣2∴向量b 在向量a 方向上的投影为·22a b a -==﹣1, 故选B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.6.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.7.D解析:D分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令()2sin 2xf x x =, 因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.8.C解析:C 【解析】分析:写出103152rrr r T C x -+=,然后可得结果详解:由题可得()5210315522rrrr r rr T C x C xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2= 所以22552240rr C C =⨯=故选C.点睛:本题主要考查二项式定理,属于基础题。
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
高考前模拟考试卷含参考答案理科数学(三)第Ⅰ卷满分150分,考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}220M x x x =->,{}2,1,0,1,2N =--,则等于M N =I( )A .∅B .{}1C .{}0,1D .{}1,0,1- 【答案】B【解析】由M 中不等式变形得()20x x -<,解得02x <<,即()02M =,,{}1M N ∴=I ,故选B .2.下列命题中,x ,y 为复数,则正确命题的个数是( )①若220x y +=,则0x y ==; ②若i x a =+,i y b =+,a ,b ∈R 且a b >,则x y >;③i 1i x y +=+的充要条件是1x y ==. A .0 B .1 C .2 D .3 【答案】A【解析】由x ,y 在复数集中可得,对于①,若220xy +=,则0x y ==,错误,如1x =,i y =,故①错误;②中的复数不能比较大小,故②错误.③i 1i x y +=+中i x =,i y =-时也成立,故③错误.故选A . 3.设n S 为等比数列{}n a 的前n 项和,4816a a =,则63S S =( )A .98B .9C .98或78 D .9或7-【答案】C【解析】根据题意,在等比数列{}n a 中有4116q =,解得12q =或12-,则6398S S =或78.故选C .4.某几何体的三视图如图所示,则其体积为( )33122正视图侧视图俯视图A .4B .8C .12D .24【答案】A【解析】由三视图可知:该几何体为四棱锥,由体积公式易得()()111232134322V ⎡⎤=⨯+⨯⨯=⎢⎥⎣⎦.故选A . 5.已知1tan 4tan θθ+=,则2πcos 4θ⎛⎫+= ⎪⎝⎭( ) A .12B .13C .14D .15【答案】C【解析】根据诱导公式得到2π1sin 2cos 42θθ-⎛⎫+=⎪⎝⎭,1sin cos 1tan 4sin 2tan cos sin 2θθθθθθθ+==+⇒=,结合两式得到2π1cos 44θ⎛⎫+=⎪⎝⎭.故答案为:C .6.已知函数()22f x x x=+,执行如图所示的程序框图,则输出的k 值是( )开始输出k 结束否是0S =0k =25?42S >1k k =+()1S S f k =+A .4B .5C .6D .8 【答案】C 【解析】()22f x xx=+,()111122f x x x ⎛⎫∴=- ⎪+⎝⎭,从而模拟程序运行,可得程序框图的功能是求111111112511232221242S k k k k ⎛⎫⎛⎫=-++-=+-->⎪ ⎪+++⎝⎭⎝⎭L 时k 的最小值,解得5k >,k ∈N ,则输出k 的值是6.故选C .7.如图,在圆O 中,若3AB =,4AC =,则AO BC ⋅u u u r u u u r的值等于( )A .8-B .72-C .72D .8【答案】C【解析】如图所示,过点O 作OD BC ⊥交BC 于点D ,连接AD ,则D 为BC 的中点,0OD BC ⋅=u u u r u u u r,∴()12AD AC AB=+u u u r u u u r u u u r .又AO AD DO =+uu u r u u u r u u u r ,BC AC AB =-u u u r u u u r u u u r ,()()()12AO BC AD DO BC AD BC AC AB AC AB⋅=+⋅=⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()222211743222AC AB =-=⋅-=u u u r u u u r ,故选C .8.实数a ,b ,c 满足221a a c b =+--且210a b ++=,则下列关系式成立的是( )A .c b a >>B .c a b >>C .a c b >>D .c a b >> 【答案】A 【解析】∵210a b ++=,∴211a b --≤-=,又∵221a a cb =+--,∴()2120a cb -=-≥>,∴c b >,∴22131024b a b b b ⎛⎫-=++=++> ⎪⎝⎭,∴b a >,综上,可得c b a >>.故选A .9.已知变量x ,y 满足约束条件302303x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则112y x ≥+的概率是( )A .34B .35C .12D .59【答案】D【解析】由变量x ,y 满足约束条件302303x y x y x +-≥-+≥≤⎧⎪⎨⎪⎩,画出可行域如图所示,则112y x ≥+的几何意义是可行域内的点与()10Q -,连线的斜率不小于12,由图形可知,直线3x =与直线210x y -+=的交点为()32B ,,直线230x y -+=与3x =的交点为()33C ,,∴112y x <+的概率是2249AB AC =,则112y x ≥+的概率是45199-=.故选D .10.已知定义在R 上的函数()f x ,()g x ,其中()g x 为偶函数,当0x >时,()0g x '>恒成立;且()f x 满足:①对x ∀∈R ,都有((33f x f x =-;②当33x ⎡∈-⎣,时,()33f x x x=-.若关于x 的不等式()()22g f x g a a ≤-+⎡⎤⎣⎦对3323322x ⎡∀∈---⎢⎣,恒成立,则a 的取值范围是( ) A .R B .[]01,C .13313322⎡-+⎢⎣D .][()01-∞+∞U ,,【答案】D【解析】∵函数()g x 满足:当0x >时,()0g x '>恒成立,∴函数()g x 为R 上的偶函数,且在[)0+∞,上为单调递增函数,且有()()g x g x =,∴()()22g f x g a a ≤-+⎡⎤⎣⎦,33232322x ⎡∈---⎢⎣,恒成立()22f x a a ⇔≤-+恒成立,只要使得定义域内()2max min|2|f x a a ≤-+,由((33f x f x +=,得()()23f x f x +=,即函数()f x 的周期23T =,∵33x ⎡⎤∈-⎣⎦,时,()33f x x x =-,求导得()()()233311f x x x x ==+'--,该函数过点()30-,,()00,,()30,,如图,且函数在1x =-处取得极大值()12f -=,在1x =处取得极小值()12f =-,即函数()f x 在R 上的最大值为2,33232322x ⎡⎤∈---⎢⎥⎣⎦Q ,,函数的周期是23,∴当33232322x ⎡⎤∈---⎢⎥⎣⎦,时,函数()f x 的最大值为2,由222a a ≤-+,即222a a ≤-+,则20a a -≥,解得1a ≥或0a ≤.故选D .11.已知在三棱锥P ABC -中,90BAC ∠=︒,4AB AC ==,10PA =,2PC =,侧面PAC ⊥底面ABC ,则三棱锥P ABC -外接球的表面积为( ) A .24π B .28π C .32π D .36π 【答案】D 【解析】如图,取BC 的中点D ,连接AD ,过P 作PE ⊥平面ABC ,交AC 于点E ,过E 作EF BC ∥,交AD 于点F,以D 为原点,DB 为x 轴,AD 为y 轴,过D 作平面ABC的垂线为z 轴,建立空间直角坐标系,则11616222DA DB DC ===+=,2222AP AE PC CE-=-,即()221024AE AE -=--,解得3AE =,1CE =,1PE =,322AF EF ==()2200B ,,,322122P ⎛⎫-- ⎪ ⎪⎝⎭,,,设球心()0,0,O t ,则OB OP =,∴()()()22222322220000122t t ⎛⎫⎛⎫-+-=++++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得1t =-,∴三棱锥P ABC -的外接球的半径()()22220013R =-++=,∴三棱锥P ABC -外接球的表面积为24π4π936πS R==⨯=.故选D .12.在双曲线2222:1(00)x y C a b a b -=>>,的右支上存在点A ,使得点A 与双曲线的左、右焦点1F ,2F 形成的三角形的内切圆P 的半径为a ,若12AF F △的重心G 满足12PG F F ∥,则双曲线C 的离心率为( ) A .2 B .3 C .2D .5【答案】C 【解析】如图,由PG 平行于x 轴得G P y y a ==,则33A G y y a ==,所以12AF F △的面积()121123222S c a AF AF c a =⋅⋅=⋅++⋅,又122AF AF a -=,则12AF c a =+,22AF c a =-,由焦半径公式1AAF a ex =+,得2A x a =,因此()23A a a ,代入双曲线方程得2222491a a a b -=,可得3b a =,222c a b a =+=,即2c e a ==.故选C .第Ⅱ卷本卷包括必考题和选考题两部分。
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
2021届高三高考数学模拟测试卷(五)【含答案】第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{0,1}M =,{|01}N x x =<≤,则M N ⋃=( ) A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞【答案】A 【解析】 【分析】利用并集的定义求解即可. 【详解】∵集合{0,1}M =,集合{|01}N x x =<≤,∴{|01}M N x x ⋃=≤≤,即M N ⋃=[0,1]. 故选:A 【点睛】本题考查了并集的定义与计算问题,属于基础题. 2.命题:p x ∀∈R ,220x x ->的否定为( ). A .x ∀∈R ,220x x -≤ B .x ∀∈R ,220x x -< C .x ∃∈R ,220x x -> D .x ∃∈R ,220x x -≤【答案】D 【解析】 命题p 的否定,将“x ∀∈R ”变成“x ∃∈R ”,将“220x x ->” 变成“220x x -≤”. 故选D .点睛:(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“,()x M p x ∀∈”是真命题,需要对集合M 中的每个元素x ,证明()p x 成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个0x x =,使0()p x 成立即可,否则就是假命题. 3.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-【答案】C 【解析】 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠,所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-.故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.4.已知变量x ,y 满足{2x −y ≤0x −2y +3≥0x ≥0 ,则z =log 4(2x +y +4)的最大值为( )A .2B .32C .23D .1【答案】B 【解析】试题分析:根据题中所给的约束条件,画出相应的可行域,可以求得2x +y +4在点(1,2)处取得最大值8,所以z 的最大值为log 48=32,故选B . 考点:线性规划.5.设0a >,0b >,2lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( ) A .22B .3 C .4D .9【答案】D 【解析】∵2lg4a 与lg2b 的等差中项, ∴2lg 4lg 2a b =+, 即2lg 2lg 42lg 2aba b+=⋅=,∴21a b +=.所以212122()(2)55249b a a b a b a b a b+=++=++≥+= 当且仅当22b a a b =即13a b ==时取等号, ∴21a b+的最小值为9. 6.《中国好歌曲》的五位评委给一位歌手给出的评分分别是:118x =,219x =,320x =,421x =,522x =,现将这五个数据依次输入如图程序框进行计算,则输出的S 值及其统计意义分别是( )A .2S =,即5个数据的方差为2B .2S =,即5个数据的标准差为2C .10S =,即5个数据的方差为10D .10S =,即5个数据的标准差为10【答案】A 【解析】 【分析】算法的功能是求()()()22212202020i S x x x =-+-+⋯+-的值,根据条件确定跳出循环的i 值,计算输出S 的值. 【详解】由程序框图知:算法的功能是求()()()22212202020i S x x x =-+-+⋯+-的值, ∵跳出循环的i 值为5, ∴输出S =()()()2221[1820192020205⨯-+-+- ()()2221202220]+-+-= ()14101425⨯++++=.故选A. 【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键,属于基础题. 7.十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A 为圆O 上一个定点,在圆周上随机取一点B ,连接AB ,所得弦长AB 大于圆O 的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( ) A .15B .14C .13D .12【答案】C 【解析】 【分析】由题意画出图形,求出满足条件的B 的位置,再由测度比是弧长比得答案. 【详解】解:设“弦AB 的长超过圆内接正三角形边长”为事件M , 以点A 为一顶点,在圆中作一圆内接正三角形ACD ,则要满足题意点B 只能落在劣弧CD 上,又圆内接正三角形ACD 恰好将圆周3等分, 故1()3P M =故选:C . 【点睛】本题考查几何概型的意义,关键是要找出满足条件弦AB 的长度超过圆内接正三角形边长的图形测度,再代入几何概型计算公式求解,是基础题.8.椭圆221169x y +=的两个焦点为1F ,2F ,过2F 的直线交椭圆于A 、B 两点,若6AB =,则11AF BF +的值为( )A .10B .8C .16D .12【答案】A 【解析】 【分析】由椭圆的定义可得:12122AF AF BF BF a +=+=,即可得出. 【详解】由椭圆的定义可得:121228AF AF BF BF a +=+==,()()1122221616610AF BF a AF a BF AB ∴+=-+-=-=-=,故选A . 【点睛】本题考查了椭圆的定义及其标准方程,考查了推理能力与计算能力,属于中档题.9.如图是一个几何体的三视图,根据图中的数据(单位:cm ),可知此几何体的体积是( )A .324cmB .364cm 3C .3(62522)cm +D .3(248582)cm +【答案】B 【解析】由三视图可知,该几何体是如下图所示的四棱锥,故体积为16444433⨯⨯⨯=3cm .故选B.10.已知函数()sin f x x =,将()f x 的图象上的所有点的横坐标缩短到原来的12,纵坐标扩大为原来的3倍,再把图象上所有的点向上平移1个单位长度,得到函数()y g x =的图象,则函数()g x 的周期可以为( ) A .2πB .πC .32π D .2π【答案】B 【解析】 【分析】先利用三角函数图象变换规律得出函数()y g x =的解析式,然后由绝对值变换可得出函数()y g x =的最小正周期.【详解】()sin f x x =,将函数()y f x =的图象上的所有点的横坐示缩短到原来的12,可得到函数sin 2y x =的图象,再将所得函数图象上所有点的纵坐标扩大为原来的3倍,得到函数3sin 2y x=的图象,再把所得图象向上平移1个単位长度,得到()3sin 21g x x =+,由绝对值变换可知,函数()y g x =的最小正周期为22T ππ==,故选:B. 【点睛】本题考查三角函数变换,同时也考查三角函数周期的求解,解题的关键就是根据图象变换的每一步写出所得函数的解析式,考查推理能力,属于中等题.11.过曲线22122:1(0,0)x y C a b a b-=>>的左焦点1F 作曲线2222:C x y a +=的切线,设切点为,M 延长1F M 交曲线23:2(0)C y px p =>于点,N 其中13,C C 有一个共同的焦点,若10,MF MN +=则曲线1C 的离心率为( ). A 51+ B 5C 21+ D 2【答案】A 【解析】 【分析】设双曲线的右焦点的坐标为()2,0F c ,利用O 为12F F 的中点,M 为1F N 的中点,可得OM 为12NF F 的中位线,从而可求1NF ,再设()x,y N ,过点1F 作x 轴的垂线,由勾股定理得出关于,a c 的关系式,最后即可求得离心率. 【详解】设双曲线的右焦点为2F ,则2F 的坐标为(),0c .因为曲线1C 与3C 有一个共同的焦点,所以曲线3C 的方程为24y cx =.因为10MF MN +=, 所以1MF MN NM =-=, 所以M 为1F N 的中点, 因为O 为12F F 的中点, 所以OM 为12NF F 的中位线,所以OM ∥2NF .因为|OM |=a ,所以22NF a =.又21NF NF ⊥,122F F c =, 所以()()221222NF c a b =-=.设N (x ,y ),则由抛物线的定义可得2x c a +=, 所以2x a c =-.过点F 1作x 轴的垂线,点N 到该垂线的距离为2a , 在1RtF PN 中,由勾股定理得22211||+||||F P PN F N =,即22244y a b +=,所以2224(2)44()c a c a c a -+=-, 整理得210e e --=,解得512e =. 故选A . 【点睛】解答本题时注意以下几点:(1)求双曲线的离心率时,可根据题中给出的条件得到关于,,a b c 的关系式,再结合222a b c +=得到,a c 间的关系或关于离心率e 的方程(或不等式),由此可得离心率的取值(或范围).(2)本题中涉及的知识较多,解题时注意将题中给出的关系进行转化,同时要注意圆锥曲线定义在解题中的应用.12.函数()f x 满足()()1,,2x e f x f x x x ⎡⎫=+∈+∞⎢⎣'⎪⎭, ()1f e =-,若存在[]2,1a ∈-,使得31232f a a e m ⎛⎫-≤--- ⎪⎝⎭成立,则m 的取值( )A .2,13⎡⎤⎢⎥⎣⎦B .2,3⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞ D .12,23⎡⎤⎢⎥⎣⎦【答案】A 【解析】 由题意设()()x f x g x e =,则()()1()xf x f xg x e x-'='=,所以()ln g x x c =+(c 为常数).∵()1f e =-,∴(1)(1)1f g c e==-=,∴()()(1ln )x x f x g x e e x =⋅=-+, ∴1()(ln 1)xf x e x x =+-'.令1()ln 1h x x x =+-,则22111()x h x x x x-=-=,故当112x <<时,()0,()h x h x '<单调递减;当1x >时,()0,()h x h x '>单调递增.∴()(1)0h x h ≥=,从而当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,()0f x '≥,∴()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.设[]3()32,2,1a a a e a ϕ=---∈-,则2()333(1)(1)a a a a ϕ'=-=+-,故()a ϕ在(2,1)--上单调递增,在(1,1)-上单调递减,所以max ()(1)a e ϕϕ=-=-. ∴不等式31232f a a e m ⎛⎫-≤--- ⎪⎝⎭等价于12(1)f e f m ⎛⎫-≤-= ⎪⎝⎭,∴1211122m m ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得213m ≤≤,故m 的取值范围为2[,1]3.选A .点睛:本题考查用函数的单调性解不等式,在解答过程中首先要根据含有导函数的条件构造函数()()x f x g x e =,并进一步求得函数()f x 的解析式,从而得到函数()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的单调性.然后再根据条件中的能成立将原不等式转化为12(1)f f m ⎛⎫-≤ ⎪⎝⎭,最后根据函数的单调性将函数不等式化为一般不等式求解即可.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2024年4月高三数学(文)全国卷模拟考试卷试卷满分150分,考试时间120分钟。
2024.4注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设21ii i z +=+,则z =()A .12B .1CD2.设集合{}{}20,4A x x B x x =≥=≤,则A B = ()A .[]2,0-B .[]22-,C .[]0,2D .[)2,0-3.函数()2ln 1f x x x =-的大致图象为()A.B.C.D .4.若关于,x y 的不等式组1020x x y kx y ≤⎧⎪+≥⎨⎪+-≤⎩表示的平面区域是直角三角形区域,则实数k =()A .1-B .1C .1-或0D .0或15.已知命题“[]21,4,e 0xx m x∀∈--≥”为真命题,则实数m 的取值范围为()A .(],e 2-∞-B .41,e 2⎛⎤-∞- ⎝⎦C .[)e 2,-+∞D .41e ,2⎡⎫-+∞⎪⎢⎣⎭6.下图是某全国性冰淇淋销售连锁机构的某款冰淇淋在2023年1月至8月的月销售量折线图(单位:杯),则下列选项错误的是()A .这8个月月销售量的极差是3258B .这8个月月销售量的中位数是3194C .这8个月中2月份的销量最低D .这8个月中销量比前一个月增长最多的是4月份7.已知向量()1,1a =- ,()3,4b =-,则cos ,a a b -= ()A .52626B .52626-C .2613D .26138.已知角π3α+的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点13,22P ⎛⎫ ⎪ ⎪⎝⎭,则πcos 6α⎛⎫-= ⎪⎝⎭()A .32B .12-C .12D .329.某导航通讯的信号可以用函数()23sin 43f x x π⎛⎫=- ⎪⎝⎭近似模拟,若函数()f x 在[]0,m 上有3个零点,则实数m 的取值范围为()A .211π,π312⎡⎫⎪⎢⎣⎭B .211π,π312⎡⎤⎢⎥⎣⎦C .117π,π126⎡⎫⎪⎢⎣⎭D .117π,π126⎡⎤⎢⎥⎣⎦10.已知231ln ,,e 23a b c -===,则,,a b c 的大小关系为()A .a b c >>B .a c b >>C .b a c>>D .b c a>>11.分形几何学是美籍法国数学家伯努瓦・曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第5行的黑心圈的个数是()A .12B .13C .40D .12112.在三棱锥D APM -中,524,,,π6AD MP MP AP MP DP APD ==⊥⊥∠=,则三棱锥D APM -的外接球的表面积为()A .17πB .28πC .68πD .72π二、填空题:本题共4小题,每小题5分,共20分.13.在区间[]3,4-上随机取一个数x ,若x a ≤的概率为47,则=a .14.已知函数()f x 的导函数()()()214f x x x x a '=+++,若1-不是()f x 的极值点,则实数=a .15.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.已知椭圆2222:1(0)x yC a b a b+=>>的面积为6π,点P 在椭圆C 上,且P 与椭圆上、下顶点连线的斜率之积为49-.记椭圆C 的左、右两个焦点分别为12,F F ,则12PF F △的面积可能为.(横线上写出满足条件的一个值)16.如图,在ABC 中,π6DAC ∠=,2,AC CD D ==为边BC 上的一点,且AD AB ⊥,则AB =.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:60分.17.某校为了了解学生每周参加课外兴趣班的情况,随机调查了该校1000名学生在2023年最后一周参加课外兴趣班的时长(单位:分钟),得到如图所示的频率分布直方图.直方图中,,a b c 成等差数列,时长落在区间[)80,90内的人数为200.(1)求出直方图中,,a b c 的值;(2)估计样本时长的中位数(精确到0.1)和平均数(同一组中的数据用该组区间的中点值代替);(3)从参加课外兴趣班的时长在[)60,70和[)80,90的学生中按照分层抽样的方法随机抽取6人进行问卷调查,再从这6人中随机抽取2人进行参加兴趣班情况的深入调查,求被抽到的2人中参加课外兴趣班的时长在[)60,70和[)80,90恰好各一人的概率.18.如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 为正方形,四边形CDEF 为等腰梯形,EF CD ,且平面ABCD ⊥平面,224CDEF AD DE EF ===.(1)证明:AE CE ⊥;(2)求三棱锥E BDF -的体积.19.已知n S 为正项数列{}n a 的前n 项和,13a =且2111322n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)若()1(1)1n nn a b n n +=-+,求{}n b 的前10项和10T .20.已知抛物线2:2(04)C x py p =<<的焦点为F .点()4,P m 在抛物线C 上,且5PF =.(1)求p ;(2)过焦点F 的直线1l 交抛物线C 于,A B 两点,原点为O ,若直线,OA OB 分别交直线2l :332y x =-于,M N 两点,求线段MN 长度的最小值.21.已知函数()()()211e 12x f x a x a =+-+∈R .(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)设()1212,x x x x <是函数()y f x '=的两个零点,求证:122x x +>.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为3cos ,23sin x y αα=⎧⎨=+⎩(其中α为参数).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 2sin 2ρθρθ+=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)已知点()0,1T ,直线l 与曲线C 交于,A B 两点,求TA TB -的值.[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且满足9444a b c ++=.(1)求114100c a b+-的最小值;(2)求证:22216941a b c ++≥.1.B【分析】利用分母实数化对z 进行化简,从而得到答案.【详解】由题意可得()()221i 1i (1i)2ii i i i 1i 1i 12z +++=====-+--+-,所以1z =.故选:B .2.C【分析】先化简集合B ,再利用集合的交集运算求解.【详解】解:因为{}0,A x x =≥{}[]242,2B xx =≤=-∣,所以[]0,2A B = ,故选:C 3.B【分析】根据定义域、特殊值可以对选项进行排除,从而得到正确选项.【详解】因为()f x 的定义域为()(),11,∞∞-⋃+,故排除C ;又()36ln20f =>,故排除A ;13ln 022f ⎛⎫-=-< ⎪⎝⎭,故排除D .故选:B .4.C【分析】由已知,关于,x y 的不等式组表示的平面区域是直角三角形区域,则直线20kx y +-=垂直于直线0y x +=或直线20kx y +-=垂直于直线1x =,从而得到k 值.【详解】由题意,当直线20kx y +-=垂直于直线0y x +=时,表示的平面区域是直角三角形区域,所以1k =-.当直线20kx y +-=垂直于直线1x =时,表示的平面区域是直角三角形区域,所以0k =.故选:C .5.A【分析】分离参数2e xm x ≤-,求函数()[]2e ,1,4xf x x x=-∈的最小值即可求解.【详解】因为命题“[]21,4,e 0xx m x ∀∈--≥”为真命题,所以[]21,4,e x x m x∀∈≤-.令()[]2e ,1,4,e xx f x x y x =-∈=与2y x=-在[]1,4上均为增函数,故()f x 为增函数,当1x =时,()f x 有最小值,即()1e 2m f ≤=-,故选:A .6.B【分析】先将数据按从小到大的顺序排列,再根据极差,中位数的定义可判断A 和B ;根据折线图可判断C 和D.【详解】将数据按从小到大的顺序排列:707,1533,1598,3152,3436,3533,3740,3965,对于A ,极差是39657073258-=,故A 正确;对于B ,因为850%4⨯=,所以中位数是第四个数和第五个数的平均数,即3152343632942+=,故B 错误;对于C ,这8个月中2月份的销量最低,故C 正确;对于D ,这8个月中销量比前一个月增长最多的是4月份,增加了1619,故D 正确.故选:B .7.B【分析】根据向量的坐标运算,先求()a ab ⋅- ,再分别求a r 和a b - ,利用()cos ,a a b a a b a a b⋅--=⋅-求解.【详解】因为()1,1a =- ,()3,4b =-,所以()2,3a b -=-,a =-= a b ,所以()cos ,a a b a a b a a b⋅--=⋅-==.故选:B 8.D【分析】利用三角函数的定义可求出πsin 3α⎛⎫+ ⎪⎝⎭的值,再根据诱导公式求解即可.【详解】因为角π3α+的终边经过点12P ⎛ ⎝⎭,所以πsin 32α⎛⎫+ ⎪⎝⎭,所以ππππcos cos sin 63232ααα⎛⎫⎛⎫⎛⎫-=+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D.9.A【分析】先求出函数的零点,然后根据()f x 在[]0,m 上有3个零点,则即可求出实数m 的取值范围.【详解】令2π4π,3x k k -=∈Z ,得ππ,64k x k =+∈Z ,所以函数()f x 的零点为ππ,64k x k =+∈Z ,可知()f x 在[)0,∞+上的零点依次为π5π2π11π,,,,612312x =,若()f x 在[]0,m 上有3个零点,则211π,π312m ⎡⎫∈⎪⎢⎣⎭.故选:A .10.A【分析】利用当0x >时,ln 1x x ≤-判断a b >,通过函数1y x=在是减函数判断b c >.【详解】当0x >时,设()ln 1f x x x =-+,则()11f x x'=-,当01x <<时,()0f x ¢>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,所以()()10f x f ≤=,也就是说当0x >时,ln 1x x ≤-,用1x 代替x ,可得11ln 1x x≤-,即1ln 1x x ≥-,所以321ln1233>-=,即a b >.又知2211e 3e->=,所以b c >,所以a b c >>.故选:A 11.C【分析】本题是一个探究型的题目,从图①中读取信息:白球分形成两白一黑,黑球分型成一白两黑;由图②,从第二行起,球的总个数是前一行的3倍,白球的个数是前一行白球个数的两倍加上黑球的个数,黑球的个数是前一行黑球个数的两倍加上白球的个数.由此建立递推关系求解得到结果.【详解】设题图②中第n 行白心圈的个数为n a ,黑心圈的个数为n b ,依题意可得13n n n a b -+=,且有111,0a b ==,所以{}n n a b +是以111a b +=为首项,3为公比的等比数列,13n n n a b -∴+=①;又12n n n a a b +=+,12n n n b b a +=+,故有11n n n n a b a b ++=--,∴{}n n a b -为常数数列,且111a b -=,所以{}n n a b -是以111a b -=为首项,1为公比的等比数列,1n n a b ∴-=②;由①②相加减得:1312n n a -+∴=,1312n n b --=;所以4531402b -==.故选:C .12.C【分析】根据线面垂直判定定理,证明线面垂直并作图,明确外接球的球心位置,利用正弦定理求得底面外接圆的半径,结合图中的几何性质,求得外接球的半径,可得答案.【详解】由题意可知,,MP PA MP PD ⊥⊥.且,PA PD P PA ⋂=⊂平面PAD ,PD ⊂平面PAD ,所以MP ⊥平面PAD .设ADP △的外接圆的半径为r ,则由正弦定理可得2sin AD r APD =∠,即42sin150r ︒=,所以4r =.设三棱锥D APM -的外接球的半径为R ,则222(2)(2)R PM r =+,即2(2)46468R =+=,所以217R =,所以外接球的表面积为24π68πR =.故选:C .13.2【分析】根据几何概型的概率公式,根据长度之比即可求解.【详解】显然0a ≥.区间[]3,4-长度是7,区间[]3,4-上随机取一个数,x x a ≤的解集为[],a a -,区间长度为2a ,所以x a ≤的概率为2477a =,所以2a =.故答案为:214.3【分析】设()24h x x x a =++,依题意有()10h -=,解出a 的值并检验即可.【详解】由()()()214f x x x x a '=+++,设()24h x x x a =++,若1-不是函数()f x 的极值点,则必有()10h -=,即140a -+=,所以3a =.当3a =时,()()()()22143(1)3f x x x x x x =+++=++',故当3x >-时,()0f x '≥,当3x <-时,()0f x '<,因此3x =-是()f x 的极值点,1-不是极值点,满足题意,故3a =.故答案为:315.2(答案不唯一,在内的任何数都可以)【分析】根据给定条件,求出ab ,结合斜率坐标公式求出,,a b c ,再求出焦点三角形面积的范围即得.【详解】由椭圆2222:1(0)x y C a b a b+=>>的面积为6π,得π6πab =,解得6ab =,设点00(,)P x y ,显然00x ≠,由2200221x y a b+=,得2222002b y b x a -=,椭圆C 的上、下顶点坐标分别为(0,),(0,)b b -,则2220002200049y b y b y b b x x x a -+-⋅==-=-,即2249b a =,解得3,2a b ==,半焦距c =12PF F △的面积12001|2|2||PF F S c y y =⨯⨯= ,而0(2,2)y ∈-且00y ≠,因此12(0,PF F S ∈ ,所以12PF F △的面积可能为2.故答案为:216【分析】在ACD 中由正弦定理求出ADC ∠,即可求出ACD ∠,再代入求出AB ,最后由ABD △为等腰直角三角形得解.【详解】由题可知,在ACD 中,由正弦定理得sin sin sin CD AD ACDAC ACD ADC==∠∠∠,即2πsin sin sin6AD ACD ADC ==∠∠,得2sin 2ADC ∠=,又AC CD >,由图可得ADC ∠为钝角,所以3π4ADC ∠=,所以π4ADB =∠,则πππ4612ACD ∠=-=,则π2sinππππππ124sin 4sin cos cos sin π464646sin 6AD ⎛⎫⎛⎫===-= ⎪ ⎪⎝⎭⎝⎭,又AD AB ⊥,所以ABD △为等腰直角三角形,则AB AD ==.17.(1)0.04,0.03,0.02a b c ===(2)71.7,73(3)815【分析】(1)先求出c ,再利用面积和为1求出0.07a b +=,再结合等差数列求解a ,b ;(2)利用左右面积相等求中位数,由频率乘组距求和得平均数;(3)由分层抽样确定[)60,70和[)80,90的人数,再利用列举法求解概率.【详解】(1)由已知可得2001000100.02c =÷÷=,则()0.0050.020.005101a b ++++⨯=,即0.07a b +=,又,,a b c 成等差数列,20.02b a ∴=+,解得0.04,0.03a b ==.(2)()()0.0050.04100.450.5,0.0050.040.03100.750.5+⨯=++⨯= ,设中位数为x ,且[)70,80x ∈,()()0.0050.0410700.030.5x ∴+⨯+-⨯=,解得71.7x ≈,即中位数为71.7;平均数为()550.005650.04750.03850.02950.0051073⨯+⨯+⨯+⨯+⨯⨯=;(3)由(1)知:2:1a c =,按照分层抽样随机抽取6人中,参加课外兴趣班的时长在[)60,70内的有2643⨯=人,记为,,,A B C D ,参加课外兴趣班的时长在[)80,90内的有1623⨯=人,记为,x y .从,,,,,x y A B C D 中随机抽取2人的所有基本事件有:()()()()()()(),,,,,,,,,,,,,x y x A x B x C x D y A y B ,()()()()()()()(),,,,,,,,,,,,,,,y C y D A B A C A D B C B D C D ,共15种,其中,被抽到的2人中参加课外兴趣班的时长在[)60,70和[)80,90的恰好各一人的事件有:()()()()()()()(),,,,,,,,,,,,,,,x A x B x C x D y A y B y C y D ,共8种.所以被抽到的2人中参加课外兴趣班的时长在[)60,70和[)80,90的恰好各一人的概率为815.18.(1)证明见解析(2)3【分析】(1)由面面垂直得到线面垂直,再得到线线垂直,利用勾股定理求出线段长度,最后利用线段长度符合勾股定理证明线线垂直;(2)转换顶点,以B 为顶点,以DEF 为底面,从而13--==⨯⨯ E BDF B DEF DEF V V S BC 即可得到体积.【详解】(1)连接AC ,平面ABCD ⊥平面CDEF ,平面ABCD ⋂平面,CDEF CD AD CD =⊥,AD ⊂面ABCD ,AD ∴⊥平面CDEF ,又DE ⊂平面CDEF ,则AD DE ⊥,ADE ∴V 是直角三角形,即AE =.在梯形CDEF 中,作EH CD ⊥于H ,则1,DH EH ==CE ==.又AC =222AC CE AE =+,AE CE ∴⊥.(2)BC CD ⊥ ,平面ABCD ⊥平面CDEF ,平面ABCD ⋂平面CDEF CD =,BC ⊂面ABCD ,BC ∴⊥平面CDEF .由(1)知11222DEF S EF EH =⨯⨯=⨯=△,11433--==⨯⨯=⨯ E BDF B DEF DEF V V S BC .19.(1)21n a n =+(2)1011【分析】(1)已知n S 与n a 的关系求通项公式,用退位作差,再利用平方差公式进行化简,最后对1n =时进行检验,得到数列{}n a 是等差数列,从而写出通项公式;(2)根据n a 得到n b ,观察数列通项公式特点,裂项,进而得到前10项和10T .【详解】(1)由题意知:2111322n n n S S a +++=-,即()21123n n n S S a +++=-,当2n ≥时,()2123n n n S S a -+=-,两式相减,可得()()1120n n n n a a a a +++--=,因为0n a >,可得()122n n a a n +-=≥.又因为13a =,当1n =时,()212223S S a +=-,即2222150a a --=,解得25a =或23a =-(舍去),所以212a a -=(符合),从而12n n a a +-=,所以数列{}n a 表示首项为3,公差为2的等差数列.所以数列{}n a 的通项公式为21n a n =+.(2)由题意得()()1112111(1)(1)(1)111n n n n n a n b n n n n n n ++++⎛⎫=-=-=-+ ⎪+++⎝⎭,所以10123910T b b b b b =+++++ 111111111110112233491010111111⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-++-+=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以101011T =.20.(1)2p =【分析】(1)根据点P 在抛物线C 上符合抛物线的方程和抛物线的定义得到两个方程,联立可解得p ;(2)联立直线1l 方程与抛物线方程得到,A B 两点坐标关系,表示出直线,OA OB ,分别与直线2l 方程联立得到,M N 两点横坐标,再由距离公式表示出线段MN 长度,整理后转换成二次函数求最值问题,进而得到线段MN 长度的最小值.【详解】(1)因为点()4,P m 在C 上,所以162pm =,因为5PF =,所以由抛物线定义得52p PF m ==+,解得4,2m p ==或1,8m p ==(舍).所以2p =.(2)由(1)知,抛物线C 的方程为24x y =,()0,1F .若直线AB 的斜率不存在,则与抛物线只有一个交点,不合题意,所以直线AB 的斜率存在,设直线AB 的斜率为k ,()11,A x y ,()22,B x y ,则直线1l 的方程为1y kx =+,联立214y kx x y=+⎧⎨=⎩消去y 得2440x kx --=,所以12124,4x x k x x +==-,从而有21x x -==由2114x y =得直线OA 的方程1114y x y x x x ==,联立143260x y x x y ⎧=⎪⎨⎪--=⎩解得1126M x x =-,同理2126N x x =-.所以1126N M N M MN x x x =-=-=-=-322443k k==--令()430k t t -=≠,则43tk -=,所以5MN ==,当且仅当1425,254t t==即34k =-时等号成立,所以线段MN 【点睛】方法点睛:圆锥曲线中线段(距离)类的最值(范围)问题(1)几何法:利用圆锥曲线的定义、几何性质及平面几何中的定理、性质等进行求解;(2)代数法:把要求最值的几何量或代数式表示为一个或几个参数的函数,利用函数、不等式的知识进行求解.21.(1)230x y -+=(2)证明见解析【分析】(1)求导得斜率,再利用点斜式求直线并化简即可;(2)由导函数的两个零点得()()12121e e x x x x a +=++和()()21211e e x xx x a -=+-,得到21211e e x x x x a -+=-,转化为证明()212121e e 2e e x x x xx x +->-,换元21t x x =-,证明()()2e 20th t t t =-++>即可.【详解】(1)当1a =时,()()212e 1,2e 2x xf x x f x x =-+=-',则()()03,02f f '==,则切线方程为32y x -=,因此曲线()y f x =在点()()0,0f 处的切线方程为230x y -+=.(2)证明:函数()()121e ,,xf x a x x x =+-'是()y f x '=的两个零点,所以()()12121e ,1e x xx a x a =+=+,则有()()12121e e x x x x a +=++,且()()21211e e x xx x a -=+-,由12x x <,得21211e e x x x x a -+=-.要证122x x +>,只要证明()()121e e2x x a ++>,即证()212121e e 2e e x x x x x x +->-.记21t x x =-,则0,e 1t t >>,因此只要证明e 12e 1t t t +⋅>-,即()2e 20tt t -++>.记()()2e 2(0)t h t t t t =-++>,则()()1e 1th t t '=-+,令()()1e 1t t t ϕ=-+,则()e tt t ϕ'=,当0t >时,()e 0tt t ϕ'=>,所以函数()()1e 1tt t ϕ=-+在()0,∞+上递增,则()()00t ϕϕ>=,即()()00h t h ''>=,则()h t 在()0,∞+上单调递增,()()00h t h ∴>=,即()2e 20tt t -++>成立.【点睛】关键点点睛:本题考查利用导数证明不等式,关键是利用零点代换得21211e e x x x x a -+=-,进而换元求解函数最值即可证明.22.(1)220x y +-=,22(2)9x y +-=【分析】(1)利用极坐标和直角坐标的转化公式可得直线l 的直角坐标方程,利用消参法可得曲线C 的普通方程;(2)求出直线l的参数方程515x y ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数),联立曲线C 的普通方程,可得根与系数的关系式,利用t 的几何意义,即可求得答案.【详解】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入cos 2sin 2ρθρθ+=,得220x y +-=,所以直线l 的直角坐标方程为220x y +-=;由曲线C 的参数方程为3cos ,23sin x y αα=⎧⎨=+⎩(其中α为参数),化为3cos 23sin x y αα=⎧⎨-=⎩,平方相加得曲线C 的普通方程为22(2)9x y +-=;(2)由(1)可得点()0,1T 在直线l 上,由此可得直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=+⎪⎩(其中t 为参数),将其代入曲线C的普通方程中得280t -=,设点A 对应的参数为1t ,点B 对应的参数为2t,则12128t t t t +==-,所以12,t t 一正一负,所以12125TA TB t t t t -=-=+=.23.(1)125(2)证明见解析【分析】(1)结合已知等式,将114100c a b +-化为11944100a b a b ⎛⎫⎛⎫+++- ⎪⎪⎝⎭⎝⎭,利用基本不等式,即可求得答案;(2)利用柯西不等式,即可证明原不等式.【详解】(1)因为,,a b c 均为正实数,9444a b c ++=,所以1111114944944100100100c a b a b a b a b a b ⎛⎫⎛⎫+-=+++-=+++- ⎪ ⎪⎝⎭⎝⎭1245≥=,当且仅当1914100a a b b ⎧=⎪⎪⎨⎪=⎪⎩,即111,,3205a b c ===时等号成立.(2)证明:根据柯西不等式有()()22222229344(944)16a b ca b c ++++≥++=,所以22216941a b c ++≥.当且仅当3344a b c ==,即416,4141a b c ===时等号成立,即原命题得证.。