基本特性参数-讲义
- 格式:ppt
- 大小:6.71 MB
- 文档页数:5
@FB321伏安特性实验讲义电学元件的伏安特性测量(FB321型电阻元件V-A特性实验仪)实验讲义杭州精科仪器有限公司电学元件的伏安特性测量电路中有各种电学元件,如线性电阻、半导体二极管和三极管,以及光敏、热敏和压敏元件等。
知道这些元件的伏安特性,对正确地使用它们是至关重要的。
利用滑线变阻器的分压接法,通过电流和电压表正确地测出它们的电压与电流的变化关系称为伏安测量法(简称伏安法)。
伏安法是电学中常用的一种基本测量方法。
【实验目的】1.验证欧姆定律。
2. 掌握测量伏安特性的基本方法。
3.学会直流电源、电压表、电流表、电阻箱等仪器的正确使用方法。
【实验原理】1. 电学元件的伏安特性:在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。
在欧姆定律R=式中,电压U的单位为伏特,电流I U•I的单位为安培,电阻R的单位为欧姆。
一般以电压为横坐标和电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
34对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。
这类元件称为线性元件,如图1所示。
至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线。
这类元件称为非线性元件,如图2所示为某非线性元件的伏安特性。
在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电压和通过的电流均不超过额定值。
此外,还必须了解测量时所需其它仪器的规格(如电源、电压表、电流表、滑线变阻器等的规格),也不得超过其量程或使用范围。
根据这些条件所设计的线路,可以将测量误差减到最小。
2.实验线路的比较与选择:在测量电阻R 的伏安特性的线路中,常有两种接法,即图3(a )中电流表内接法和图3(b )中电流表外接法。
电压表和电流表都有一定的内阻(分别设为VR 和AR )。
断路器机械特性试验报告讲义1. 引言本讲义为断路器机械特性试验报告,旨在对断路器的机械特性进行测试和评估。
断路器作为电力系统中的重要保护设备,其机械特性对系统的运行安全起着至关重要的作用。
通过机械特性试验,可以评估断路器的动作性能、触发特性以及工作可靠性,为正常运行和维护断路器提供重要依据。
本讲义将从试验目的、试验原理、试验设备、试验步骤和试验结果几个方面进行详细阐述,以期对断路器机械特性试验有更深入的理解。
2. 试验目的断路器机械特性试验的目的在于评估断路器在运行状态下的机械性能,包括断路器的动作速度、触发特性和工作可靠性等关键指标。
通过试验结果的分析和比较,可以了解断路器在不同负载条件下的性能表现,为确定断路器是否符合设计要求提供依据。
3. 试验原理断路器机械特性试验主要包括以下几个方面的原理:3.1 断路器动作速度原理断路器动作速度是指断路器在发生故障时从完全关闭到完全打开的时间。
动作速度的测试通过测量断路器的机械传动装置运动的时间来确定。
通常使用接触间距测量设备来记录接触点之间的距离变化,并根据时间和距离的关系计算出动作速度。
3.2 断路器触发特性原理断路器的触发特性是指断路器在受到外部故障信号时的触发条件和时间。
触发特性的测试通常通过模拟外部故障信号来激活断路器,并记录激活时间和触发条件。
通过对多组测试数据的分析,可以确定断路器的触发特性。
3.3 断路器工作可靠性原理断路器的工作可靠性是指断路器在长期运行过程中的可靠性和稳定性。
工作可靠性的评估通常通过长时间运行试验来完成。
在试验过程中,对断路器进行多次启动和关闭操作,并观察其性能变化和故障情况,以评估其工作可靠性。
4. 试验设备为完成断路器机械特性试验,需要以下设备:•断路器测试装置:用于模拟断路器的运行状态,并记录断路器的动作速度、触发特性和工作可靠性等参数。
•接触间距测量设备:用于测量断路器接触点之间的间距变化,并记录时间和距离的关系。
LD/LED 的P-I-V 特性测试(313实验室)一、实验教学目的:1.学习LED 和LD 的工作原理和基本特性;2.测试LED/LD 的P-I (功率-电流)特性和V-I (电压-电流)特性,并计算阈值电流和微分量子效率;3.了解温度对阈值电流和输出功率的影响。
二、实验仪器:LED 发光二极管,LD 激光二极管,LD/LED 电流源,光功率计,万用表。
三、实验原理1、LED 工作原理发光二极管是大多由Ⅲ-Ⅳ族化合物,如GaAs (砷化镓)、GaP (磷化镓)、GaAsP (磷砷化镓)等半导体制成的,其核心是PN 结。
因此它具有一般P-N 结的I-N 特性,即正向导通,反向截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N 区注入P 区,空穴由P 区注入N 区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1.1所示。
由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生。
假设发光是在P 区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
我们把发光的复合量与总复合量的比值称为内量子效率G N rqi =η (1.1)式中,Nr 为产生的光子数,G 为注入的电子-空穴对数。
但是,产生的光子又有一部分会被LED 材料本射吸收,而不能全部射出器件之外。
作为一种发光器件,我们更感兴趣的是它能发出多少光子,表征这一性能的参数就是外量子效率G N Tqe =η (1.2)式中,N T 为器件射出的光子数。
发光二极管所发之光并非单一波长,如图1.2所示。
由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。
太阳能电池基本特性的测量太阳能的利用和太阳能电池特性研究是21世纪新型能源开发的重点课题。
目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已大量用于民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。
太阳能是一种清洁、“绿色”能源,因此,世界各国十分重视对太阳能电池的研究和利用。
本实验的目的主要是探讨太阳能电池的基本特性,太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。
【实验目的】1. 在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线,并求得电压和电流关系的经验公式。
2. 测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路电流(I sc)、开路电压(U OC)、最大输出功率P m及填充因子FF ,[FF P m /(I SC ? U OC )]。
填充因子是代表太阳能电池性能优劣的一个重要参数。
3. 测量太阳能电池的光照特性:测量短路电流I sc和相对光强度J/J0之间关系,画出I sc与相对光强J/J o之间的关系图;测量开路电压U OC和相对光强度J/J o之间的关系,画出U OC与相对光强J/J o之间的关系图。
【实验原理】太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U与通过电流I的关系式为:I l°?(e u 1) (1)(1) 式中,I o和是常数。
由半导体理论,二极管主要是由能隙为E c E V的半导体构成,如图1所示。
E c为圉丄电子■和夸冗在电场的作用下产哇光申潼半导体导电带,E V 为半导体价电带。
当入射光子能量大于能隙时,光子会被半导体吸收, 产生电子和空穴对。
电子和空穴对会分别受到二极管之内电场的影响而产生光电流。
假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源) 、一个理想二极管、一个并联电阻 只前与一个电阻R s 所组成,如图2所示。
实验讲义请实验前复习实验三半导体材料霍尔效应测量分析(一)实验目的:掌握用霍尔效应测量仪测量半导体材料样品的霍尔系数和电阻率(电导率)的基本原理和方法,由测量数据确定半导体样品中载流子类型,求出载流子浓度及霍尔迁移率。
(二)教学基本要求:掌握半导体材料的电阻率、电导率、霍尔系数、衬底浓度、迁移率等理论概念;了解霍尔效应测试系统的工作原理及测试方法。
掌握产生霍尔效应原理以及消除由于样品置于磁场中产生的几中副效应的测量方法。
熟悉霍尔效应测量仪装置的使用方法,测出样品的电阻率和霍尔系数,判断样品导电类型,计算出霍尔样品的载流子浓度及霍尔迁移率,对结果和误差进行分析。
(三)半导体材料霍尔效应的物理基础掌握要点:1、半导体材料的霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成横向电场。
下图显示了半导体材料中的霍尔效应。
半导体霍尔效应示意图 a. N型半导体 b. P型半导体若在X方向通以电流Is,在Y方向加磁场B,则在Z方向,即试样A、A`电极两侧就开始聚积异号电荷,从而产生相应的附加电场。
电场的指向取决于试样的导电类型。
显然,该电场阻止载流子继续向侧面偏移。
当载流子所受的横向电场力FE 与洛仑兹力FB 相等时,样品两侧电荷的积累就达到平衡,故有:H eE =e B ν其中EH 为霍耳电场,是载流子在电流方向上的平均漂移速度。
设试样的长为,宽为b ,厚度为d ,载流子浓度为n ,则:S I ne bd ν=//H H S H S V E b I B ned R I b d ===即霍尔电压VH (A ,A`电极之间的电压)与ISB 乘积成正比,与试样厚度d 成反比。
比例系数RH=1/ne 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
只要测出VH (伏)以及知道Is (安),B (高斯)和d (厘米),可按下式计算RH(3厘米/库仑)。
西北工大875流体力学讲义第一章绪论(基本概念及参数)第一节流体的连续介质模型流体是由无数分子构成的,实质是不连续的,为了能够应用高等数学连续函数来描述流的运动规律,将本来不连续的流体看成是有没有间隙的流体微团(质点)构成的。
在连续性介质假设之下,流体的各种参数都可以看成空间和时间的单值连续函数:在宏观上,流体微团足够小,以至于其体积可以忽略不计。
在微观上要足够大,使得所包容的流体分子的平均物理属性有意义。
当流体流动所涉及到的物体的尺寸能够和分子的平均自由行程和脂分子间的距离相比拟时,流体的连续介质模型不再适用。
第二节作用在流体的力作用在流体上的力有两类:一类是某重力场作用的结果,称为质量力,也称体积力,其大小流体的质量(体积)成正比。
重力场中的重力是质量力,在用动静法来研究有关问题时虚加在流体质点上的惯性力也是质量力。
单位流体的质量力可表示为:其单位为加速度单位:m/s2。
另一类是表面力,是分离体以外的其他物体通过分离体的表面作用在分离体上的力。
一个是剪切应力,一个是法向应力。
在液体与异相物质接触的自由表面上还有表面张力,它是一种特殊类型的表面力,它不是接触面以外物质的作用结果,而恰恰是由液体内的分子对处于表面层的分子的吸引而产生的。
液体自由表面上单位长度的流体线所受到的拉力称为表面张力系数,记作σ,单位是N/m。
液体与固体壁面接触时,在液体表面与固壁面的交界处作液体表面的切面,此切面与固壁面在液体内部所夹的角度θ称为接触角。
当液体表面发生弯曲时,液体内部的压强p与外部的流体介质的压强p0之差与曲面的两个主曲率半径R1 和R2有关:此式称为拉普拉斯表面张力方程。
第三节流体的粘性流体粘性:流体流动时流体质点发生相对滑移产生摩擦力的性质,称为流体的黏性。
动力粘度:流体的粘性大小可用流体的动力粘度来表示,即牛顿内摩擦定律中的比例系数。
上式即为牛顿内摩擦定律,该式表明,各层流间的切向应力和速度梯度成正比,比例系数为流体的动力粘度。
红外物理特性及应用实验波长范围在~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。
对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。
对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。
【实验目的】1、 了解红外通信的原理及基本特性。
2、 了解部分材料的红外特性。
3、 了解红外发射管的伏安特性,电光转换特性。
4、 了解红外发射管的角度特性。
5、 了解红外接收管的伏安特性。
【实验原理】 1、红外通信在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。
红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。
红外传输的介质可以是光纤或空间,本实验采用空间传输。
2、红外材料光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比:dI Idx α=- (1)对上式积分,可得:Lo I I e α-= (2)上式中L 为材料的厚度。
材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。
普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。