材料物理性能第十三章---超导材料(1)
- 格式:ppt
- 大小:312.50 KB
- 文档页数:68
超导材料概念超导材料是指在特定条件下,电阻突然降为零的材料。
这种神奇的现象在科学研究和工程应用中具有广泛的应用前景。
超导材料的发现和研究是近代物理学的一个重要成果,也是材料科学和工程学领域的一个热点。
本文将从超导材料的基本概念、发现历程、物理机制、应用前景等方面进行详细介绍和分析。
一、超导材料的基本概念超导材料是指在低温、高压、强磁场等条件下,电阻突然降为零的材料。
这种现象是在1911年由荷兰物理学家海克·卡末林发现的。
他在将汞冷却到近绝对零度时,发现汞的电阻突然降为零。
这种现象被称为超导现象。
在随后的研究中,人们发现不仅是汞,其他金属、合金和化合物也具有超导性。
目前已经发现的超导材料种类很多,包括铜氧化物、铁基超导体、镁二硼等。
超导材料具有独特的物理性质,如零电阻、零磁场、激发态等。
这些性质使得超导材料在电力输送、电子学、磁学、量子计算等领域具有广泛应用前景。
例如,超导电缆可以大大提高电力输送效率,减少能源浪费;超导磁体可以产生极强的磁场,用于医学成像、磁悬浮列车等领域;超导量子比特可以用于量子计算,实现超高速计算等。
二、超导材料的发现历程超导材料的发现历程可以追溯到19世纪末期。
当时,人们已经知道了电阻的存在和电流的磁效应。
在1895年,荷兰物理学家洛伦兹提出了电动力学方程,揭示了电流和磁场之间的关系。
这为超导现象的发现奠定了理论基础。
1908年,英国物理学家奥本海默首次提出了“超导”这个概念,指的是在某些条件下,电阻可能会降为零。
随后,荷兰物理学家卡末林在1911年通过实验证实了这一理论。
他将汞冷却到4.2K 以下,发现汞的电阻突然降为零,而且磁场也会被完全排斥,这就是超导现象。
这个发现引起了广泛的关注和研究。
在随后的几十年里,人们陆续发现了铝、铅、锡等金属和合金也具有超导性。
然而,这些材料只能在极低温度下才能表现出超导性,限制了其实际应用。
直到1986年,美国IBM研究团队发现了第一种高温超导体——氧化铜。
超导材料是什么超导材料是指在低温下具有零电阻和迈斯纳效应的一类特殊材料。
超导材料在电流通过时能够完全消除电阻,使电流能够无损耗地流过,这一特性被称为超导性。
这使超导材料在电力输送、能源存储、磁共振成像等领域具有广泛的应用前景。
超导材料最早于1911年由荷兰物理学家海克·卡末林发现。
基于铅的材料是最早被发现具有超导性的材料。
然而,这类超导材料需要在非常低的温度下(接近绝对零度)才能展现出超导特性,限制了其实际应用的范围。
直到1986年,德国物理学家J·G·鲍尔汤和瑞士物理学家K·A·穆勒在氧化铜材料中发现了高温超导现象,即超导转变温度高于液氮沸点77K,使超导材料的实际应用前景大大扩展。
随后,人们陆续发现了多种高温超导材料,如铜氧化物、铁基超导体等。
超导材料主要具有以下特点:1. 零电阻:在超导状态下,电阻消失,电流可无损耗地通过。
这种特性使超导材料在电能输送领域有巨大应用潜力,能够显著减少能源损耗。
2. 迈斯纳效应:超导体中的电流不仅可以无损耗地流过,还能形成与电流方向垂直的磁场。
这一现象被称为迈斯纳效应,可用于磁体制造、磁共振成像等领域。
3. 超导转变温度:超导材料在一定的温度下会由非超导态转变为超导态。
低温超导体的转变温度通常较低,而高温超导体的转变温度可以接近或超过液氮沸点,更易于实际应用。
4. 磁场限制:在外加磁场作用下,超导材料的超导特性会受到限制。
不同材料对磁场的限制程度不同,这也对其应用领域产生了影响。
超导材料的研究和应用存在一些挑战。
其中最主要的是超导材料通常需要在极低的温度下才能展现出超导性,这对设备和工艺提出了要求。
此外,高温超导体的机制和性质仍然不完全清楚,对其进行深入研究仍然是一个重要课题。
然而,随着超导材料的不断研究和发展,人们对超导技术的应用前景充满信心。
超导磁体已广泛应用于核磁共振成像、加速器、磁悬浮交通等领域。
超导输电技术也在快速发展,预计超导材料将在未来成为电力输送和能源存储的重要组成部分。
神奇的超导材料超导材料的主要特征是有零电阻性.抗磁性和约瑟夫森效应也是它们的主要优点.就目前情况石,超导产品已经成功应用的是低温超导材料制成的各种仪器,主要包括:(U高能物理强磁场、大孔径的超导磁体、如加速基本粒子磁体,汽泡室磁体,等等.(2)临床医学的超导磁共振成像(磁共振CT).(3)振动样品磁强计(vsM)和其他需要强磁场的科技仪器.(4)超高灵敏的科学仪器,这些仪器以超导量子干涉器件(SQUID)为基础.这些仪器配有超导磁体,如SQUID磁强计.(5)超导电压基准.高温超导材料问世以来,超导转变温度有显著提高,使超导技术有可能不再依赖液氮,从而避免了技术复杂、设备庞大、制冷费用过高等缺点.虽然高温超导材料还正任发展阶段,但是它们的成材工艺,应用技术已经日臻成熟,性能价格比不断提问,说明正处于大规模应用的前仅.可以说高温超导体的出现不仅会扩大已经有的超导应用领域,而且会在能源、交通、采冰、环保等需要大量电能的产业,在无线通讯、生命科学、无损检测等需要超高灵敏度的产业等方面开辟新应用领域.使整个社会生产JJ发生重大的、革命性的变化.超导材料有零电阻性、这意味着超导材料通上电流后是不消耗电能的,是一种彻底的节能材料,在强背景磁场中超导材料具有很高的临界电流密度.这个特性使较少的超导材料就能通过很大的电流.使得强磁场超导磁体体积小,可移动性大,也有利于降低造价和运转成本.超导材料的临界磁场高,这使它们有可能成为强磁场材料.比如说,高温超导体(YBa2Cu3O7)系列材料的上临界磁场在液氦温度下有100T的数量级,用它们做成的超导磁体也可以产生同样强的磁场.总之,超导磁体的优点很多,大体可以分为以下几方面:(U节省能量.理论上超导磁体不消耗电能,所以超导磁体是一种“零功率热机”(只产生磁场,不消耗能量的机械).实际上,一个能产生10T场强,孔径为1厘米数量级小型超导磁体的导线电阻很小,加上引线电阻和接触电阻等各项损耗总共不超过200瓦,而产生同样磁场和有同样孔径的常规磁体能耗至少2000千瓦.即使考虑到维持超导磁体的低温环境所需要的能量,大型超导磁体也是比常规同类磁体节能的.(2)建造成本和运转费用低.对大型磁体来说这些优点特别明显.以一个直径为3.5米、产生磁感强度为2特的磁体为例,超导磁体和常规(铜线绕成)磁体相比,超导的建造和运转总费用是262万美元,常规的是638万美元.(3)体积小、轻便.—个能产生直到20T场强的超导磁体的体积只有几升,重量几干克(参见图1.1).这样的超导磁体加上冷却系统仅仅和人体大小可比拟,非常适合实验室使用.而且磁场质量好,购买价格和运转成本都可以为大多数科研实验室接受,所以已经广泛使用.然而,同样场强的常规磁体重量超过20吨,另需庞大的冷却系统,占据空间大,有些场合无法使用,超导磁体发明以前,能提供2.5T以上磁场的实验室在世界上也算不错了。
材料科学中的超导材料超导材料是指在低温下(通常低于室温)具有完全导电性的材料。
这种现象被称为超导现象。
超导现象一般发生在某些金属、合金、化合物和高温超导体等材料中。
当这些物质在低温下接近绝对零度(-273.15℃)时,它们的电阻率会降为零,电流可以在材料中自由流动而不会损耗能量。
这种现象被广泛应用于电力输送、磁共振成像、超导磁体制备等领域。
超导现象的发现可以追溯到1911年,当时荷兰物理学家海克·卡末林(H. K. Onnes)首次发现了液氦下汞的超导现象。
然而,最初发现的超导材料是纯的元素材料,如铅、汞、锡等低温超导体。
这些材料的低温限制了它们的应用范围。
直到20世纪80年代后期,高温超导体的发现才引起了全世界的注意和热情。
高温超导体可以在液氮(77K)以下的温度下实现超导现象,相对于低温超导体而言,它们具有更广泛的应用前景。
在材料科学中,多种材料都有可能成为超导材料,有金属、氧化物、氟化物、硫化物等。
其中,高温超导材料是最具有潜力的超导材料,并且受到了广泛的研究。
高温超导材料常常由氧化物构成,例如铜氧化物和铁氧化物。
其中,铜氧化物(La-Ba-Cu-O,LBCO和YBCO等)是最典型的高温超导体。
这些铜氧化物的高温超导温度(超导状转变转变温度)可高达-135℃以下。
高温超导材料的应用前景主要体现在多领域,其中电力输送是最突出的领域。
电力输送的效率和可靠性直接影响着社会和经济的发展。
在输电过程中,电能的损耗一般是通过电线的电阻而衍生的。
蒸汽发电厂发电时,电能的损失甚至高达30%;在电力输送时,损耗情况也因传输距离、工作负载等不同而有所不同。
使用超导材料的输电方式可以大大减少电能的损耗,提高电力输送的效率和可靠性。
在超导磁体方面,超导材料的应用几乎占据了全部市场。
超导磁体可以产生极强的磁场,例如用于核磁共振成像的磁体。
由于超导材料可以实现零电阻、高电流密度和高磁场密度,因此超导磁体具有比传统磁体更高的自身强度、操作稳定性更好等特点。
超导材料的特性与性能分析引言超导材料是一类具有特殊电子性质的材料,它们能够在低温下表现出零电阻和完全抗磁性的特性。
自从超导现象被发现以来,人们对于超导材料的研究一直在不断深入。
本文将对超导材料的特性和性能进行分析,探讨其在科学和工程领域中的应用前景。
超导材料的基本特性超导材料的最显著特性是在临界温度以下表现出零电阻和完全抗磁性。
这意味着电流可以在超导体内无阻力地流动,而磁场则会被超导体完全排斥。
这种零电阻特性使得超导材料在电力输送和能源存储方面具有巨大的潜力。
超导材料的临界温度是其超导性质的关键参数。
传统的超导材料需要在极低的温度下才能实现超导状态,如液氮温度(77K)以下。
然而,随着对超导材料的不断研究,人们已经成功合成出了一些高温超导材料,其临界温度可以达到室温以下。
这种高温超导材料的发现极大地促进了超导技术的应用。
超导材料的性能分析除了零电阻和完全抗磁性外,超导材料还具有其他一些重要的性能。
以下是对超导材料性能的分析:1. 临界电流密度(Jc):临界电流密度是超导材料能够承受的最大电流密度。
它是评估超导材料应用性能的重要参数。
高临界电流密度意味着超导材料可以在更高的电流下保持超导状态,从而提高其在电力输送和电磁设备中的应用效率。
2. 超导材料的稳定性:超导材料在外部磁场和电流的作用下可能会失去超导性。
因此,超导材料的稳定性是评估其应用性能的关键指标。
研究人员通过改进超导材料的结构和化学成分,以提高其稳定性。
3. 磁场响应:超导材料在外部磁场下的行为是研究的重点之一。
研究人员发现,超导材料对磁场的响应可以分为两种模式:Meissner效应和Bean模型。
Meissner效应是指超导材料在外部磁场下完全排斥磁通量,而Bean模型则是指超导材料在高磁场下会形成磁通束缚区域。
对于不同的应用需求,选择合适的超导材料对磁场的响应模式至关重要。
4. 超导材料的制备和加工:超导材料的制备和加工技术对于其性能的提高至关重要。