实验用双缝干涉测光的波长(精)
- 格式:doc
- 大小:76.00 KB
- 文档页数:2
用双缝干涉测光的波长知识元用双缝干涉测光的波长知识讲解一、实验目的观察干涉图样,测定光的波长.二、实验原理双缝干涉中相邻两条明(暗)条纹间的距离△x与波长λ、双缝间距离d及双缝到屏的距离L满足△x=λ.因此,只要测出△x、d和L,即可求出波长λ.三、实验器材双缝干涉仪(包括光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头)、刻度尺.四、实验步骤1.观察双缝干涉图样①将光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏依次安放在光具座上,如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源灯丝发出的光能沿轴线到达光屏.④安装双缝,使双缝与单缝的缝平行,二者间距5~10cm.⑤观察白光的干涉条纹.⑥在单缝和光源间放上滤光片,观察单色光的干涉条纹.2.测定单色光的波长(1)安装测量头,调节至可清晰观察到干涉条纹.(2)使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a1,转动手轮,使分划板中心刻线移动,记下移动的条纹数n和移动后手轮的读数a2,a1与a2之差即n条亮纹的间距.(3)用刻度尺测量双缝到光屏间距离l(d是已知的).(4)重复测量、计算,求出波长的平均值.(5)换用不同滤光片,重复实验测量其他单色光的波长.五、注意事项1.安装器材时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且竖直.2.光源灯丝最好为线状灯丝,并与单缝平行且靠近.3.调节的基本依据是:照在屏上的光很弱,主要原因是灯丝与单缝、双缝、测量头、遮光筒不共轴所致,干涉条纹不清晰的主要原因是单缝与双缝不平行.4.光波波长很短,△x、l的测量对波长λ的影响很大,l用毫米刻度尺测量,△x利用测量头测量.可测多条亮纹间距再求△x,采用多次测量求λ的平均值法,可减小误差.例题精讲用双缝干涉测光的波长例1.在“用双缝干涉测光的波长”实验中,将所用器材按要求安装在如图甲所示的光具座上,然后接通电源使光源正常工作。
实验用双缝干涉测量光的波长(解析版)实验用双缝干涉测量光的波长(解析版)实验背景与目的光是一种电磁波,具有波特性,它的波长是光学特性中的重要参数。
在实验室中,我们可以通过双缝干涉实验来测量光的波长。
本实验的目的是通过实验测量,获得准确的光的波长数值。
实验原理双缝干涉实验基于波的干涉现象。
当光通过具有一定间距的两个细缝时,光波会以相互干涉的方式形成明暗相间的干涉条纹。
其中,两条连续的暗纹之间的距离为等级,可用于计算光的波长。
实验材料与仪器1. 光源:使用单色光源,如利用钠黄光来保证实验的准确性。
2. 双缝装置:包括细缝和支架,确保细缝间距及安装稳定性。
3. 光屏:用于接收干涉条纹的光,并进行观察和测量。
4. 间接测量器具:如毫米尺、卡尺等,用于测量干涉条纹的间距。
实验步骤1. 准备实验装置:将双缝装置放置在光源前方,与光源保持适当距离。
调整双缝装置,使其垂直于光线传播方向。
2. 调整装置:调整双缝之间的间距,以及光源和屏幕的位置,使得在光屏上能够观察到清晰的干涉条纹。
3. 观察干涉条纹:用肉眼观察在光屏上出现的干涉条纹,并调整观察位置,以获得最清晰的条纹图案。
4. 测量干涉条纹间距:使用间接测量工具,如毫米尺或卡尺,测量连续暗纹之间的距离,称为等级。
5. 计算光的波长:根据干涉条纹的等级和双缝之间的间距,使用以下公式计算光的波长:波长 = 等级 ×双缝间距 / 总暗纹数注意事项1. 实验环境应保持较暗,以减少外界光线的干扰。
2. 测量时应尽量减少误差,尽可能精确测量干涉条纹间距。
3. 为了获得更准确的实验结果,建议重复实验多次,取平均值作为最终测量结果。
实验结果与讨论根据实验测量得到的干涉条纹间距和已知的双缝间距,我们可以使用上述公式计算出光的波长。
在本实验中,我们使用钠黄光源进行测量,钠黄光波长已经得到准确的数值,所以可以将实验得到的结果与已知值进行比较,验证实验的准确性。
在实际操作中,我们进行了多组实验,每一组实验都测量了多个干涉条纹间距,以减小测量误差。
实验十四 用双缝干涉实验测光的波长 目标要求 1.掌握由Δx =l dλ测光的波长的原理,并能测单色光波长.2.观察单色光的双缝干涉图样,掌握测量头测量条纹间距的方法.实验技能储备1.实验原理单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)条纹间距Δx 与双缝间距d 、双缝到屏的距离l 、单色光波长λ之间满足λ=d lΔx . 2.实验过程(1)观察双缝干涉图样①将光源、遮光筒、毛玻璃屏依次安放在光具座上,如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源灯丝发出的光能沿遮光筒轴线到达光屏.④安装单缝和双缝,尽量使缝的中点位于遮光筒的轴线上,使单缝与双缝平行,二者间距约为5~10 cm.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹.(2)测定单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中央,记下此时手轮上的读数,将该条纹记为第1条亮条纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中央,记下此时手轮上的读数,将该条纹记为第n 条亮条纹.③用刻度尺测量双缝与光屏间距离l (d 是已知的).④改变双缝间的距离d ,双缝到屏的距离l ,重复测量.3.数据处理(1)条纹间距Δx =a n -a 1n -1.(2)波长λ=d l Δx . (3)计算多组数据,求λ的平均值.4.注意事项(1)安装时,注意使光源、透镜、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且间距适当.(2)光源灯丝最好为线状灯丝,并与单缝平行且靠近.(3)调节的基本依据:照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮光筒不共轴;干涉条纹不清晰,一般原因是单缝与双缝不平行.考点一 教材原型实验例1 (2019·全国卷Ⅱ·34(2))某同学利用图示装置测量某种单色光的波长.实验时,接通电源使光源正常发光;调整光路,使得从目镜中可以观察到干涉条纹.回答下列问题:(1)若想增加从目镜中观察到的条纹个数,该同学可________;A .将单缝向双缝靠近B .将屏向靠近双缝的方向移动C .将屏向远离双缝的方向移动D .使用间距更小的双缝(2)若双缝的间距为d ,屏与双缝间的距离为l ,测得第1条暗条纹到第n 条暗条纹之间的距离为Δx ,则单色光的波长λ=________;(3)某次测量时,选用的双缝的间距为0.300 mm ,测得屏与双缝间的距离为1.20 m ,第1条暗条纹到第4条暗条纹之间的距离为7.56 mm ,则所测单色光的波长为________ nm(结果保留3位有效数字).答案 (1)B (2)d Δx (n -1)l(3)630 解析 (1)若想增加从目镜中观察到的条纹个数,需要减小条纹间距,由公式Δx =l dλ可知,需要减小双缝到屏的距离l 或增大双缝间的距离d ,故B 项正确,A 、C 、D 项错误.(2)由题意可知,Δx n -1=l d λ,可得λ=d Δx (n -1)l. (3)将已知条件代入公式解得λ=630 nm.例2 我们用以下装置来做“用双缝干涉测量光的波长”的实验:(1)在本实验中,需要利用关系式Δx =L dλ来求解某色光的波长,其中L 和d 一般为已知量,所以测量Δx 是本实验的关键,观察下面的图像,你认为在实际操作中Δx 应选下列图中的________图(填写“甲”或“乙”)更为合适?(2)在实际操作中,我们通常会通过测n 条亮纹间的距离取平均值的方法来减小测量误差.已知实验所用的测量头由分划板、滑块、目镜、手轮等构成,使用50分度的游标卡尺.某同学在成功观察到干涉图像后,开始进行数据记录,具体操作如下:从目镜中观察干涉图像同时调节手轮,测量了第1条亮条纹与第6条亮条纹之间的距离,初末位置游标卡尺的示数如图所示,则相邻两条亮条纹的间距Δx =________ mm.(3)若在实验当中,某同学观察到以下图像,即测量头中的分划板中心刻线与干涉条纹不在同一方向上.若继续移动目镜观察,将会使测量结果出现偏差,所以需要对仪器进行调整,使干涉条纹与分划板中心刻线在同一方向上.下面操作中可行的有________.A .调节拨杆方向B .其他不动,测量头旋转一个较小角度C .其他不动,遮光筒旋转一个较小角度D .将遮光筒与测量头整体旋转一个较小角度(4)在写实验报告时,实验要求学生将目镜中所观察到的现象描绘出来,甲同学和乙同学分别画了移动目镜时所观察到的初末两个视场区,你觉得________的图像存在造假现象.答案 (1)甲 (2)1.62 (3)BC (4)甲同学解析 (1)在实际操作中标度线在明条纹中容易观察,则Δx 应选甲图更为合适;(2)由题图可知,初末位置游标卡尺的示数分别为0.570 cm 和1.380 cm ,则相邻两条亮纹的间距Δx =1.380-0.5705cm =0.162 cm =1.62 mm. (3)首先要明确各器件的作用,拨动拨杆的作用是为了使单缝和双缝平行,获得清晰的干涉图样,因为已有清晰的干涉图样,所以不用调节;题中出现的问题是分划板中心刻度线与干涉条纹不平行,应调节测量头使干涉条纹与分划板中心刻线同一方向上,故应其他不动,测量头旋转一个较小角度;或者其他不动,遮光筒旋转一个较小角度.故选B 、C.(4)实验中移动目镜时,分划板中心刻度线不应该移动,则甲同学的图像存在造假现象.考点二 探索创新实验例3 洛埃德在1834年提出了一种更简单的观察干涉的装置.如图所示,单色光从单缝S 射出,一部分入射到平面镜后反射到屏上,另一部分直接投射到屏上,在屏上两光束交叠区域里将出现干涉条纹.单缝S 通过平面镜成的像是S ′.(1)通过洛埃德镜在屏上可以观察到明暗相间的干涉条纹,这和双缝干涉实验得到的干涉条纹一致.如果S 被视为其中的一个缝,________相当于另一个“缝”;(2)实验中已知单缝S 到平面镜的垂直距离h =0.15 mm ,单缝到光屏的距离D =1.2 m ,观测到第3个亮条纹中心到第12个亮条纹中心的间距为22.78 mm ,则该单色光的波长λ=________ m .(结果保留1位有效数字)(3)以下哪些操作能够增大光屏上相邻两条亮条纹之间的距离________.A .将平面镜稍向上移动一些B .将平面镜稍向右移动一些C .将光屏稍向右移动一些D .将光源由红色光改为绿色光答案 (1) S ′ (2)6×10-7 (3)AC解析 (1)通过洛埃德镜在屏上可以观察到明暗相间的干涉条纹,这和双缝干涉实验得到的干涉条纹一致.如果S 被视为其中的一个缝,S ′相当于另一个“缝”.(2)第3个亮条纹中心到第12个亮条纹中心的间距为22.78 mm ,则相邻亮条纹间距为Δx =22.78×10-312-3m ≈2.53×10-3 m ,等效双缝间的距离为d =2h =0.30 mm =3.0×10-4 m ,根据双缝干涉条纹间距Δx =D d λ,则有λ=d Δx D =3.0×10-4×2.53×10-31.2m ≈6×10-7 m. (3)根据双缝干涉条纹间距Δx =D dλ可知,仅增大D ,仅减小d ,仅增大波长λ,都能够增大光屏上相邻两条亮条纹之间的距离,所以A 、C 正确.课时精练1.在双缝干涉实验中,钠灯发出波长为589 nm 的黄光,在距双缝1 m 的屏上形成干涉条纹.已知双缝间距为1.68×10-4 m ,则相邻两明条纹中心间距为________ m .若改用氦氖激光器作为光源,其发出的红光波长比黄光的________(选填“长”或“短”),其他条件不变,则相邻两明条纹中心间距比黄光的________(选填“大”或“小”).答案 3.51×10-3 长 大2.(2021·浙江6月选考·17(2))如图所示是“用双缝干涉测量光的波长”实验的装置.实验中:(1)观察到较模糊的干涉条纹,要使条纹变得清晰,值得尝试的是________.(单选)A .旋转测量头B .增大单缝与双缝间的距离C .调节拨杆使单缝与双缝平行(2)要增大观察到的条纹间距,正确的做法是________.(单选)A .减小单缝与光源间的距离B .减小单缝与双缝间的距离C .增大透镜与单缝间的距离D .增大双缝与测量头间的距离答案 (1)C (2)D解析(1)若粗调后看到的是模糊不清的条纹,则最可能的原因是单缝与双缝不平行;要使条纹变得清晰,值得尝试的是调节拨杆使单缝与双缝平行,故选C.(2)根据Δx=ldλ,可知要增大条纹间距,可以增大双缝到光屏的距离l或减小双缝的间距d,故选D.3.在“用双缝干涉测量光的波长”的实验中,实验装置如图甲所示.(1)某同学以线状白炽灯为光源,对实验装置进行调节并观察了实验现象后,总结出以下几点:A.单缝和双缝必须平行放置B.干涉条纹与双缝垂直C.干涉条纹的疏密程度与单缝宽度有关D.干涉条纹的间距与光的波长有关以上几点中,正确的是________.(2)当测量头中的分划板中心刻线对齐某条纹的中心时,手轮上的示数如图乙所示,该读数为________ mm.(3)如果测量头中的分划板中心刻线与干涉条纹不在同一方向上,如图丙所示.则在这种情况下来测量干涉条纹的间距Δx时,测量值________(选填“大于”“小于”或“等于”)实际值.答案(1)AD(2)0.700(3)大于解析(1)为了获得清晰的干涉条纹,A正确;由干涉现象可知干涉条纹与双缝平行,B错误;干涉条纹的疏密程度与单缝宽度无关,干涉条纹的间距与光的波长有关,C错误,D正确.(2)手轮的读数为0.5 mm+20.0×0.01 mm=0.700 mm.(3)条纹与分划板中心刻线不平行时,实际值Δx实=Δx cos θ,θ为条纹与分划板中心刻线间的夹角,故Δx实<Δx.4.某同学在用双缝干涉测量光的波长的实验中,已知两缝间的间距为0.4 mm ,以某种单色光照射双缝时,在离双缝0.5 m 远的屏上,用测量头测量条纹间的宽度:先将测量头的分划板中心刻线与某亮纹中心对齐,将该亮纹定为第0条亮纹,此时分划板上的游标卡尺读数如图a 所示;然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,此时分划板上的游标卡尺读数如图b 所示.根据以上实验测得(1)分划板在图中a 、b 位置时游标卡尺读数分别为x a =________ mm ,x b =________ mm ;(2)该单色光的波长λ=________ m(结果保留2位有效数字);(3)若增大双缝的间距,其他条件保持不变,则得到的干涉条纹间距将________(填“变大”“不变”或“变小”);(4)若改用频率较高的单色光照射,其他条件保持不变,则得到的干涉条纹间距将________(填“变大”“不变”或“变小”).答案 (1) 11.1 15.6 (2) 6.0×10-7 (3)变小 (4)变小解析 (1)分划板在题图中a 、b 位置时游标卡尺读数分别为x a =11 mm +0.1 mm ×1=11.1 mmx b =15 mm +0.1 mm ×6=15.6 mm(2)条纹间距Δx =x b -x a 6=15.6-11.16mm =0.75 mm根据Δx =l dλ, 解得λ=Δx ·d l =0.75×10-3×0.4×10-30.5 m =6.0×10-7 m (3)根据Δx =l dλ,若增大双缝的间距d ,其他条件保持不变,则得到的干涉条纹间距将变小; (4)根据Δx =l dλ,若改用频率较高的单色光照射,则波长变小,其他条件保持不变,则得到的干涉条纹间距将变小.。
实验十六用双缝干涉测量光的波长(同时练习使用测量头)1.实验原理如图1所示,光源发出的光,经过滤光片后变成单色光,再经过单缝S时发生衍射,这时单缝S相当于一个单色光源,衍射光波同时到达双缝S1和S2之后,S1、S2双缝相当于两个步调完全一致的单色相干光源,相邻两条亮(暗)条纹间的距离Δx与入射光波长λ,双缝S1、S2间距离d及双缝与屏的距离l有关,其关系式为:Δx=ldλ,因此,只要测出Δx、d、l即可测出波长λ.图1两条相邻亮(暗)条纹间的距离Δx用测量头测出.测量头由分划板、目镜、手轮等构成,如图2所示.图22.实验器材双缝干涉仪,即:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺.3.实验步骤(1)观察双缝干涉图样①将光源、遮光筒、毛玻璃屏依次安放在光具座上,如图3所示.图3②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源灯丝发出的光能沿遮光筒轴线到达光屏.④安装单缝和双缝,尽量使缝的中点位于遮光筒的轴线上,使单缝与双缝平行,二者间距约为5~10 cm.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹.(2)测定单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中央,如图4所示,记下手轮上的读数,将该条纹记为第1条亮条纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中央,记下此时手轮上的读数,将该条纹记为第n 条亮条纹,测出n 条亮条纹间的距离a ,则相邻两亮条纹间距Δx =a n -1.图4 ③用刻度尺测量双缝到光屏间距离l (d 是已知的).④重复测量、计算,求出波长的平均值.1.数据处理(1)条纹间距的计算:移动测量头的手轮,分划板中央刻线在第1条亮条纹中央时读数为a 1,在第n 条亮条纹中央时读数为a n ,则Δx =a n -a 1n -1. (2)根据条纹间距与波长的关系Δx =l d λ得λ=d lΔx ,其中d 为双缝间距,l 为双缝到光屏的距离. (3)测量时需测量多组数据,求λ的平均值.2.注意事项(1)调节双缝干涉仪时,要注意调整光源的高度,使它发出的光束能够沿着遮光筒的轴线把屏照亮.(2)放置单缝和双缝时,缝要相互平行,中心大致位于遮光筒的轴线上.(3)调节测量头时,应使分划板中心刻线和亮条纹的中心对齐,记清此时手轮上的读数,转动手轮,使分划板中心刻线和另一亮条纹的中心对齐,记下此时手轮上的读数,两次读数之差就表示这两条亮条纹间的距离.(4)不要直接测Δx ,要测多条亮条纹的间距再计算得到Δx ,这样可以减小误差.(5)白光的干涉观察到的是彩色条纹,其中白色在中央,红色在最外层.3.误差分析(1)双缝到光屏的距离l的测量存在误差.(2)测条纹间距Δx带来的误差:①干涉条纹没有调整到最清晰的程度.②误认为Δx为亮条纹的宽度.③分划板刻线与干涉条纹不平行,中心刻线没有恰好位于亮条纹中心.④测量多条亮条纹间的距离时读数不准确,此间距中的条纹数未数清.命题点一教材原型实验例1现有毛玻璃屏A、双缝B、白光光源C、单缝D和透红光的滤光片E等光学元件,要把它们放在如图5甲所示的光具座上组装成双缝干涉装置,用以测量红光的波长.甲图5(1)将白光光源C放在光具座最左端,依次放置其他光学元件,由左至右,表示各光学元件的字母排列最佳顺序应为C、________、A.(2)本实验的步骤有:①取下遮光筒左侧的元件,调节光源高度,使光束能直接沿遮光筒轴线把屏照亮;②按合理顺序在光具座上放置各光学元件,并使各元件的中心位于遮光筒的轴线上;③用米尺测量双缝到屏的距离;④用测量头(其读数方法同螺旋测微器)测量数条亮条纹间的距离.在操作步骤②时还应注意________和________.(3)将测量头的分划板中心刻线与某条亮条纹中心对齐,将该亮条纹定为第1条亮条纹,此时手轮上的示数如图乙所示.然后同方向转动测量头,使分划板中心刻线与第6条亮条纹中心对齐,记下此时图丙中手轮上的示数为______ mm,求得相邻亮条纹的间距Δx为______ mm.(4)已知双缝间距d 为2.0×10-4 m ,测得双缝到屏的距离l 为0.700 m ,由计算式λ=________,求得所测红光波长为________ nm.答案 (1)E 、D 、B (2)见解析 (3)13.870 2.310 (4)d l Δx 6.6×102 解析 (1)通过滤光片获得单色光,通过单缝获得线光源,通过双缝获得相干光,故最佳顺序为E 、D 、B .(2)单缝和双缝间距为5~10 cm ,使单缝与双缝相互平行.(3)题图丙中固定刻度读数为13.5 mm ,可动刻度读数为37.0×0.01 mm.二者相加为13.870 mm ,图乙中的读数为2.320 mm ,所以Δx =13.870-2.3206-1mm =2.310 mm. (4)根据Δx =l d λ,得λ=d lΔx ,代入数据得λ=6.6×102 nm. 变式1 (多选)(2017·全国卷Ⅱ·34(1))在双缝干涉实验中,用绿色激光照射在双缝上,在缝后的屏幕上显示出干涉图样.若要增大干涉图样中两相邻亮条纹的间距,可选用的方法是( )A.改用红色激光B.改用蓝色激光C.减小双缝间距D.将屏幕向远离双缝的位置移动E.将光源向远离双缝的位置移动答案 ACD解析 根据干涉图样中两相邻亮条纹的间距Δx =l dλ 可知,要使Δx 增大,可以增大波长或增大双缝到屏的距离或缩小双缝间的距离,所以选项A 、C 、D 正确,B 、E 错误.变式2 用某种单色光做双缝干涉实验时,已知双缝间的距离d 的大小恰好是图中游标卡尺的读数,如图6丁所示;双缝到毛玻璃屏间的距离的大小由图中的毫米刻度尺读出,如图丙所示;实验时先移动测量头(如图甲所示)上的手轮,把分划线对准靠近最左边的一条亮条纹(如图乙所示),并记下螺旋测微器的读数x 1(如图戊所示),然后转动手轮,把分划线向右移动,直到对准第7条亮条纹并记下螺旋测微器的读数x 2(如图己所示),由以上测量数据求该单色光的波长.(结果保留两位有效数字)图6答案 8.0×10-7 m解析 根据条纹间距公式Δx =l d λ可知,波长λ=d l Δx ,代入题目提供的数据就可求解,由题图丁可直接读出d =0.25 mm =0.000 25 m ,双缝到屏的距离由题图丙读出l =74.90 cm =0.749 0 m.由题图乙、戊、己可知,两条相邻亮条纹间的距离Δx =14.700-0.3006mm =2.400 mm =0.002 400 m. 将以上数据代入得λ=d Δx l =0.000 25×0.002 4000.749 0m ≈8.0×10-7 m. 命题点二 实验拓展与创新例2 (2015·全国卷Ⅰ·34(1))在双缝干涉实验中,分别用红色和绿色的激光照射同一双缝,在双缝后的屏幕上,红光的干涉条纹间距Δx 1与绿光的干涉条纹间距Δx 2相比,Δx 1____Δx 2(填“>”“=”或“<”).若实验中红光的波长为630 nm ,双缝与屏幕的距离为1.00 m ,测得第1条到第6条亮条纹中心间的距离为10.5 mm ,则双缝之间的距离为________ mm. 答案 > 0.3解析 双缝干涉条纹间距Δx =l dλ,红光波长较长,所以红光的双缝干涉条纹间距较大,即Δx 1>Δx 2.相邻条纹间距Δx =10.5 mm 5=2.1 mm =2.1×10-3 m ,根据Δx =l d λ可得d =lλΔx=0.3 mm. 变式3 1801年,托马斯·杨用双缝干涉实验研究了光波的性质,1834年,洛埃利用平面镜同样得到了杨氏干涉的结果(称洛埃镜实验).图7(1)洛埃镜实验的基本装置如图7所示,S 为单色光源,M 为平面镜,试用平面镜成像作图法画出S 经平面镜反射后的光与直线发出的光在光屏上相交的区域.(2)设光源S 到平面镜的垂直距离和到光屏的垂直距离分别为a 和L ,光的波长为λ,在光屏上形成干涉条纹,写出相邻两条亮条纹(或暗条纹)间距离Δx 的表达式.答案 见解析解析 (1)如图所示(2)Δx =L d λ,因为d =2a ,故Δx =L 2a λ.。
实验用双缝干涉测光的波长
●教学目标
一、知识目标
1.复习巩固双缝干涉实验原理.
2.观察双缝干涉图样,掌握实验方法.
3.测定单色光的波长.
二、能力目标
培养学生的动手能力和分析处理“故障”的能力.
三、德育目标
1.培养工作中的合作精神.
2.耐心细致的实验态度.
●教学重点
L 、d 、λ的准确测量.
●教学难点
“故障”分析及排除.
●教学方法
1.通过复习弄清测量原理.
2.学生动手实验,观察图样测定波长.
●教学用具
双缝干涉仪、光具座、光源、学生电源、导线、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头、刻度尺.
●课时安排
1课时
●教学过程
一、复习基础知识
如图20—29所示,灯丝发出的光,经过滤片后变成单色光,再经过单缝S 时发生衍射,这时单缝S 相当于一单色光源,衍射光波同时达到双缝S 1和S 2之后,再次发生衍射,S 1、S 2双缝相当于两个步调完全一致的单色相干光源,通过S 1、S 2后的单色光在屏上相遇并叠加,当路程差P 1S 2-P 1S 1=k λ(k =0、1、2…)时,在P 1点叠加时得到明条纹,当路程差P 2S 2-P 2S 1=
(2k +1)·2 (k =0、1、2…)时,在P 2点叠加时得到暗条纹.相邻两条明条纹间距Δx ,与入射光波长λ,双缝S 1、S 2间距d 及双缝与屏的距离L 有关,其关系式为:Δx =d L λ,只要测出L ,d ,Δx ,根据这一关系就可求出光波波长λ.
图20—29
若不加滤光片,通过双缝的光源将是白光,因干涉条纹间距(条纹宽度)与波长成正比,因此在亮纹处,各种颜色的光宽度不同,叠加时不能完全重合,从而呈现彩色条纹.
二、测量方法
两条相邻明(暗)条纹间的距离Δx 1用测量头测出.测量头由分划板、目镜、手轮等构成,(课本图实—3),转动手轮,分划板会左、右移动.测量时,应使分划板中心刻线对齐条纹的中心(课本图实—4),记下此时手轮上的读数a 1,转动手轮,使分划板向一侧移动,当分划板中心刻线对齐另一条相邻的明条纹中心时,记下手轮上的刻度数a 2,两次读数之差就是相邻两条明条纹间的距离,即Δx =|a 1-a 2|.
Δx 很小,直接测量时相对误差较大,通常测出n 条明条纹间距离a ,再推算相邻两条明(暗)条纹间的距离,即条纹宽度Δx =1
n a . 三、学生活动
1.观察双缝干涉图样
(教师指导学生按步骤进行测量,也可引导学生先设计好步骤,分析研究后再进行,教师可将实验步骤投影)
步骤:(1)按课本图实—2,将光源、单缝、遮光管、毛玻璃屏依次安放在光具座上.
(2)接好光源,打开开关,使灯丝正常发光.
(3)调节各器件的高度,使光源灯丝发出的光能沿轴线到达光屏.
(4)安装双缝,使双缝与单缝的缝平行,二者间距约5~10 cm.
(5)放上单缝,观察白光的干涉条纹.
(6)在单缝和光源间放上滤光片,观察单色光的干涉条纹.
2.测定单色光的波长
(1)安装测量头,调节至可清晰观察到干涉条纹.
(2)使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,转动手轮,使分划板中心刻线移动;记下移动的条纹数n 和移动后手轮的读数a 2,a 1与a 2之差即为n 条亮纹的间距.
(3)用刻度尺测量双缝到光屏间距离L .
(4)用游标卡尺测量双缝间距d (这一步也可省去,d 在双缝玻璃上已标出)
(5)重复测量、计算,求出波长的平均值.
(6)换用不同滤光片,重复实验.
四、实验过程中教师指导
(1)双缝干涉仪是比较精密的实验仪器,实验前教师要指导学生轻拿轻放,不要随便拆分遮光筒,测量头等元件,学生若有探索的兴趣应在教师指导下进行.
(2)滤光片、单缝、双缝、目镜等会粘附灰尘,要指导学生用擦镜纸轻轻擦拭,不用其他物品擦拭或口吹气除尘.
(3)指导安装时,要求学生注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且竖直,引导学生分析理由.
(4)光源使用线状长丝灯泡,调节时使之与单缝平行且靠近.
(5)实验中会出现像屏上的光很弱的情况.主要是灯丝、单缝、双缝、测量头与遮光筒不共轴线所致;干涉条纹的清晰与否与单缝和双缝是否平行很有关系.因此(3)(4)两步要求应在学生实验中引导他们分析,培养分析问题的能力.
(6)实验过程中学生还会遇到各种类似“故障”,教师要鼓励他们分析查找原因.。