数理统计在化学中的应用
单因子方差分析的统计模型
在例中我们只考察了一个因子,称其为单因子 试验。
通常,在单因子试验中,记因子为 A, 设其有r 个水平,记为A1, A2,…, Ar。
在每一水平下考察的指标可以看成一个总体 ,因为现共有 r 个水平,故有 r 个总体, 假定:
数理统计在化学中的应用
各总体的方差相同:
nm
SSe
(Xij Xi)2
i1 j1
mn
mn
SST
(Xij X)2
[(Xij Xi)(Xi X)]2
i1 i1
i1 j1
mn
mn
mn
(Xij Xi)2
(Xi X)]2 2
(Xij Xi)(Xi X)
i1 j1
i1 j1
i1 j1
mn
mn
m
n
(Xij Xi)2
(Xi X)2 2 (Xi X) (Xij Xi)
1
2=
22=…=
2 r
=
2
;(即
,具有方差齐次性)
从每一总体中抽取的样本是相互独立的, 即 所有的试验结果 yij 都相互独立。
每一总体均为正态总体,记为 N(i , i 2), i =1, 2,…, r ;
数理统计在化学中的应用
我们要比较各水平下的均值是否相同, 即要对如下的一个假设进行检验:
1、从总变差中区分出试验变差和条件变差,也就是将 不同因素的影响给区分开来。
2、利用F检验比较这两个变差的大小,确定出主要变 差。
3、根据主要的变差,去选择较好的分析条件,或确定 进一步试验的方向。
数理统计在化学中的应用
方差分析的基本思想
方差分析的依据是建立在变差平方和具有加和性的基础 上的。因此,如果用变差平方和来表征测定结果的总变 差,那么总变差的平方和就等于各变异因素形成的变差 平方和的总和。