城市雨水量计算和雨水收水口设置方法
- 格式:doc
- 大小:112.00 KB
- 文档页数:6
雨水口汇水面积【篇一:城市道路雨水量计算方法与雨水口设置】城市道路雨水量计算方法与雨水口设置一、前言当路面水不能迅速排泄时,路面会形成水膜而影响行车安全,因此须在道路汇水点、人行横道上游、沿街单位出入口上游、靠地面径流的街坊或庭院的出水口等处设置雨水口(道路低洼和易积水地段应根据需要适当增加雨水口),以及时排除路面雨水,确保在设计重现期内排水畅通、不积水;确保在超过设计重现期时,退水快、积水时间短二、迳流理论2.1迳流产生过程[2]一般而言,地面点在受雨过程中,首先被植物截留。
在地面开始受雨时因地面干燥,渗水率较大,而降雨的起始雨率还小于入渗率,这时降雨被地面全部吸收。
随着历时的增长,雨率大于入渗率后地面开始产生余水,当余水量积满洼地后,开始地面迳流,这时部分余水产生积水深度,部分余水产生迳流,在雨率增至最大时相应产生最大余水率,之后雨率逐渐递减,余水率亦渐减小,当雨率降至入渗率时,余水现象停止,但这时有地面积水存在,故仍然产生迳流,入渗率仍按地面入渗能力渗漏,直至地面积水消失,迳流才告终止,而后洼地积水逐渐渗完。
渗完积水后,地面实际渗水率将按雨率渗漏,直至雨终。
见下图一。
对于道路路面而言,无植物截留,且迳流系数较一般地面大得多,因此余水历时、迳流历时、降雨总历时三者的起始点基本相同,累积入渗量极小,其曲线h可看成与x轴平行、接近x轴的一条曲线;再者由于路面相对平坦,死水曲线与累积入渗量曲线h可近似看作重叠。
2.2流域汇流过程图二中各条曲线t1,t2,??,tn为等流时线,每条等流时线上各点的雨水流至集水口a的时间是相等的,集流时间(t)是流域边缘线上的雨水流达a点的时间。
内的降雨量。
三、雨水口泄水能力与布置3.1雨水口泄水能力雨水口的泄水能力与雨水口的型式、箅前水深等因素有关。
由《给水排水标准图集》(合订本)s2(下)(国家建筑标准设计)中的“雨水口(一)铸铁井圈”章节可知,经过1:1的水工模型的水力实验(道路纵坡3?~3.5%,横坡1.5%,箅前水深40mm),各类雨水口的设计泄水能力如下:表一雨水口泄水能力表由于杂物的阻塞作用,雨水口实际泄水能力应乘以0.5~0.7的系数,在后面的算例中,系数选0.7。
海绵城市雨水收集计算案列
雨水收集计算
1. 由于东西塔楼屋面相距很大,雨水出户分别接入市政雨水管网,故D 区双子塔绿评范围可考虑只收集西塔屋面雨水。
2. 调蓄水池设置于D 区西塔室外雨水出户管道附近,距中水机房相对距离不大,可利用中水机房作为绿化灌溉泵房。
一、 年雨水收集量计算:
V1=ψ.H.A.a.β
V-可收集雨水量: m3
ψ-径流系数:取0.9 (设规表4.9.6)
V1=
0.9*0.9845*6700*0.85*0.
90
H-年平均降雨量:m (查贵阳年平均降水量)
V1= 4541.4
A-径流面积:
a-季节折减系数: 取0.85
β-初期雨水弃
流系数:取0.90
径流
面积
西塔屋
面:2500m2
六层大堂屋面:3000m2
六层宴会厅屋面:1200m2 贵阳年平均降雨量 mm
年 月
1
2 3 4 5 6 7 8 9 10 11 12 合计
2005
25.8 13.1 68.8 54 177.7 243.7 184.1 117.9 63.1 54.8
39.7 24.8 1067.
5
1
年
平
均
:
984.5
二、绿化灌溉年用水
量:m3
V2= 38.8m3/d *365
V2= 14162
三、调蓄池容积计算
确定:m3
V3= (年用水量与年雨水量中的最小值)*0.06
V3=
4541.4*0.06 0.06 (调蓄系数)需满足1周使用水量。
271m3
V3= 272.5。
雨水收集计算方法与步骤
在进行雨水收集计算时,需要考虑各种不同因素,以确定最佳的收集方法和容量。
以下是一些常用的雨水收集计算方法和步骤:
1. 确定需求
首先,需要确定你的雨水收集系统的需求。
考虑以下问题:
- 需要收集多少雨水?
- 需要多少容量的储水器?
- 该系统是否用于灌溉、冲洗或饮用水?
- 是否需要备用的水源系统?
2. 收集面积计算
计算你可用于收集雨水的面积,如屋顶、道路或其他空地。
根据需求和可用面积,决定需要多大的雨水收集系统。
3. 雨水流量计算
了解降雨量和平均雨水流量对于正确计算雨水收集量至关重要。
这可以通过检查当地的降雨数据、历史气象记录或气象预报来获得。
4. 系统效率计算
考虑你的雨水收集系统的效率。
这包括收集水的损耗、渗漏或
泄漏的因素。
根据收集面积、平均雨水流量和系统效率来计算每次
降雨可收集到多少雨水。
5. 设备选择
根据计算出的雨水收集量和需求,选择适合的储水器和其他收
集设备。
考虑安装、使用和维护的方便性。
6. 安装和维护
安装和维护雨水收集系统需要确保系统的正常运行和最大化的
收集效率。
定期清洁和检查系统以确保没有堵塞或损坏。
7. 资金和法律考虑
在进行雨水收集项目时,必须考虑到相关的资金和法律问题。
确定项目的预算,并了解当地的法律和规定,以确保你的项目合法合规。
请注意,以上提供的步骤仅为一般参考,并应根据具体情况进行调整和改进。
参考资料:。
城市雨水收集与利用系统的设计城市化进程快速推进,城市人口不断增加,给城市的水资源供应和环境保护带来了巨大挑战。
在城市中,由于大量的硬化地面,雨水往往无法充分渗透,导致城市内部的洪涝灾害和城市周边的水资源浪费。
因此,设计城市雨水收集与利用系统显得尤为重要。
一、雨水收集系统设计1. 确定收集对象和收集范围在设计雨水收集系统之前,首先要明确收集的主要对象,可以是建筑物屋顶、道路、广场、园区等。
同时,也要确定收集的范围,包括城市整体还是分布在特定区域。
2. 考虑降雨量和流量根据城市的降雨量和降雨强度,合理设计雨水收集系统的容量和流量。
可以利用水文学模型进行计算和分析,以确定最佳容量。
3. 设计收集设施和管道系统收集设施包括雨水口、雨水板、沉沙池等,这些设施能够减少污染物进入收集系统。
在设计管道系统时,要考虑管道的材质、直径和坡度,以保证雨水能够顺利流入储存设施。
4. 合理布局储存设施储存设施一般包括雨水桶、地下储罐等,要根据收集对象和范围合理布局,以最大限度地存储雨水并避免水资源的浪费。
二、雨水利用系统设计1. 确定利用方式和需求在设计雨水利用系统之前,要明确利用雨水的方式和需求,如灌溉、景观水体、消防、冲洗等。
不同的利用方式和需求需要不同的系统设计。
2. 考虑净化处理在利用雨水之前,需要进行净化处理,以去除其中的杂质和污染物。
常见的净化方法包括过滤、沉淀和消毒等,可以根据实际情况选择不同的处理方式。
3. 设计供水系统根据利用方式和需求,设计供水系统,包括水泵、管道、喷灌器等。
要考虑供水压力、流量和管道的布局,保证雨水能够按需供给。
4. 定期检测和维护设计雨水利用系统之后,要进行定期检测和维护,以确保系统的正常运行和水质的安全。
可以进行水质监测、设备维护和清洗等工作。
三、优化设计方案1. 考虑生态环境在设计雨水收集与利用系统时,要充分考虑生态环境的保护和恢复。
可以采用生物滞留池、湿地景观等手段,促进雨水的自然净化和生态循环。
城市道路雨水量计算方法与雨水口设置在城市建设和规划中,道路雨水管理是一个重要的方面。
合理计算雨水量以及科学设置雨水口是确保城市道路排水系统正常运行的关键。
本文将介绍城市道路雨水量计算方法和雨水口设置的相关内容。
一、城市道路雨水量计算方法计算城市道路雨水量是为了合理设计城市道路排水系统,防止因雨水积聚引发洪水和道路积水的问题。
常用的城市道路雨水量计算方法有以下几种。
1. 美国合理公式法(Rational Method)美国合理公式法适用于小流域的计算,通过公式Q=CIA计算雨水量。
其中Q为径流流量,C为径流系数,I为降雨强度,A为小流域面积。
该方法计算简单,适用范围广,但不考虑道路汇流、地形和土壤的影响。
2. 美国时序分析法(Sequential Rainfall Analysis Method)美国时序分析法将道路排水系统视为具有一定存储能力的系统,通过分析连续的降雨序列来计算雨水量。
该方法能较好地考虑到道路汇流和排水系统的影响,适用于中等大小城市的道路雨水量计算。
3. 坡面产流法(Runoff Coefficient Method)坡面产流法考虑到降雨在道路上产生的流量和径流总量之间的关系,通过经验系数来计算道路的径流流量。
该方法适用于小面积和单一类型的道路,计算简单但精度较低。
4. 物理模型法(Physical Model Method)物理模型法通过建立道路雨水模型,考虑道路形态、坡度、排水设施等因素来计算雨水量。
该方法精度较高,适用于大型城市和重要道路的雨水计算,但需要较多的细节和数据。
二、雨水口设置雨水口是城市道路排水系统中的重要设施,主要用于收集和排放雨水。
合理设置雨水口可以确保道路畅通和排水效果。
以下是关于雨水口设置的一些建议。
1. 雨水口数量和密度根据城市道路的不同情况和预计的雨水量,确定雨水口的数量和密度。
一般来说,雨水口的数量应根据道路宽度和流量来决定,以确保雨水能够及时排放。
各级城市道路雨水量计算方法与雨水口设置一、前言当路面水不能迅速排泄时,路面会形成水膜而影响行车安全,因此须在道路汇水点、人行横道上游、沿街单位出入口上游、靠地面径流的街坊或庭院的出水口等处设置雨水口(道路低洼和易积水地段应根据需要适当增加雨水口),以及时排除路面雨水,确保在设计重现期内排水畅通、不积水;确保在超过设计重现期时,退水快、积水时间短二、迳流理论2.1迳流产生过程[2]一般而言,地面点在受雨过程中,首先被植物截留。
在地面开始受雨时因地面干燥,渗水率较大,而降雨的起始雨率还小于入渗率,这时降雨被地面全部吸收。
随着历时的增长,雨率大于入渗率后地面开始产生余水,当余水量积满洼地后,开始地面迳流,这时部分余水产生积水深度,部分余水产生迳流,在雨率增至最大时相应产生最大余水率,之后雨率逐渐递减,余水率亦渐减小,当雨率降至入渗率时,余水现象停止,但这时有地面积水存在,故仍然产生迳流,入渗率仍按地面入渗能力渗漏,直至地面积水消失,迳流才告终止,而后洼地积水逐渐渗完。
渗完积水后,地面实际渗水率将按雨率渗漏,直至雨终。
见下图一。
对于道路路面而言,无植物截留,且迳流系数较一般地面大得多,因此余水历时、迳流历时、降雨总历时三者的起始点基本相同,累积入渗量极小,其曲线h可看成与x轴平行、接近x轴的一条曲线;再者由于路面相对平坦,死水曲线与累积入渗量曲线h可近似看作重叠。
2.2流域汇流过程图二中各条曲线t1,t2,……,tn为等流时线,每条等流时线上各点的雨水流至集水口a的时间是相等的,集流时间(t)是流域边缘线上的雨水流达a点的时间。
在地面迳流开始后不久,a点所汇集的流量仅来自靠近a点的小块面积上的雨水,这时较远处的雨水仅流至中途,随着产生迳流和降雨时间的增长,在a 点汇集的流量中的汇流面积不断增加,当流域边缘上的雨水也流达a点时,这时全面积汇流,a点的流量达最大。
因此,相应于流域集流时间的全面积迳流产生最大迳流量,又称极限强度法。
城市道路雨水量计算方法与雨水口设置城市发展过程中,道路建设是一个重要的环节。
而在道路建设中,雨水排水是一项非常重要的任务。
有效的雨水排水系统能够减少城市内涝的发生,确保交通畅通和城市的可持续发展。
因此,城市道路雨水量的准确计算方法及合理的雨水口设置成为研究和规划的重点。
一、城市道路雨水量计算方法为了准确计算城市道路雨水量,我们需要考虑以下几个因素:降雨量、道路面积、透水率、雨水径流等。
1. 降雨量降雨量是计算雨水量的基础,可以通过气象数据或历史降雨数据获取。
一般根据统计学原理,选取适当的设备进行监测,如雨量计或气象站等。
根据统计数据,可以得到不同时间段的降雨量,用于计算雨水量。
2. 道路面积道路面积是计算雨水量的另一个重要因素,需要测量或估算道路的有效面积。
有效面积即雨水能够直接流入下水道的道路区域,一般为道路的横截面积减去路灯、树木等不可透水部分的面积。
3. 透水率透水率指的是道路表面的渗透能力,通常用百分比来表示。
一般情况下,道路表面有着不同的材料和结构,透水率也会有所不同。
透水率越高,雨水流失越快,需要计入总体雨水量的部分就会减少。
4. 雨水径流雨水径流是指雨水从道路表面流入下水道的过程。
根据不同的降雨强度和道路设计,雨水径流会有所不同。
在计算雨水量时,需要根据具体情况来确定雨水径流的比例。
基于以上几个因素,我们可以综合计算城市道路的雨水量。
一般常用的计算方法包括理论计算法和实测计算法。
理论计算法是通过利用数学公式和相关参数来计算雨水量。
根据地理环境、气象条件和道路设计等因素,确定适当的公式和参数,进行计算。
该方法适用性较广,但需要准确的参数和理论基础支持。
实测计算法是通过实地调查和实测数据来计算雨水量。
具体而言,在道路建设完成后,通过设置雨水监测设备,记录降雨量和雨水径流等数据来计算雨水量。
该方法需要长时间的实测和数据统计,准确性较高。
二、雨水口设置雨水口是城市道路雨水排水系统中的关键设施之一,在道路设计中需要合理设置和布置,以确保雨水的畅通排出。
城市道路雨水量计算方法与雨水口设置一、前言当路面水不能迅速排泄时,路面会形成水膜而影响行车安全,因此须在道路汇水点、人行横道上游、沿街单位出入口上游、靠地面径流的街坊或庭院的出水口等处设置雨水口(道路低洼和易积水地段应根据需要适当增加雨水口),以及时排除路面雨水,确保在设计重现期内排水畅通、不积水;确保在超过设计重现期时,退水快、积水时间短二、迳流理论2.1迳流产生过程[2]一般而言,地面点在受雨过程中,首先被植物截留。
在地面开始受雨时因地面干燥,渗水率较大,而降雨的起始雨率还小于入渗率,这时降雨被地面全部吸收。
随着历时的增长,雨率大于入渗率后地面开始产生余水,当余水量积满洼地后,开始地面迳流,这时部分余水产生积水深度,部分余水产生迳流,在雨率增至最大时相应产生最大余水率,之后雨率逐渐递减,余水率亦渐减小,当雨率降至入渗率时,余水现象停止,但这时有地面积水存在,故仍然产生迳流,入渗率仍按地面入渗能力渗漏,直至地面积水消失,迳流才告终止,而后洼地积水逐渐渗完。
渗完积水后,地面实际渗水率将按雨率渗漏,直至雨终。
见下图一。
对于道路路面而言,无植物截留,且迳流系数较一般地面大得多,因此余水历时、迳流历时、降雨总历时三者的起始点基本相同,累积入渗量极小,其曲线h可看成与x轴平行、接近x轴的一条曲线;再者由于路面相对平坦,死水曲线与累积入渗量曲线h可近似看作重叠。
2.2流域汇流过程图二中各条曲线t1,t2,……,tn为等流时线,每条等流时线上各点的雨水流至集水口a的时间是相等的,集流时间(t)是流域边缘线上的雨水流达a点的时间。
在地面迳流开始后不久,a点所汇集的流量仅来自靠近a点的小块面积上的雨水,这时较远处的雨水仅流至中途,随着产生迳流和降雨时间的增长,在a 点汇集的流量中的汇流面积不断增加,当流域边缘上的雨水也流达a点时,这时全面积汇流,a点的流量达最大。
雨水量计算说明书一、雨水量的计算1.1 根据该城镇的暴雨强度公式为:497.0)724.3()y lg 625.01(078.992++=t T q 式中 q ——设计暴雨强度公式(ha s L ∙/)y T ——设计重现期(a)t ——设计降雨历时(min )重现期:y T =1年,降雨历时:t=t 1+mt 2。
式中 t 1——地面集水时间(min ), 取5~15min ;t 2 —— 管渠内雨水流行时间(min );m —— 折减系数,暗管取2,明渠取1.2。
在该城镇中采用暗管排水,取m=2, t 1=10min 。
1.2 径流系数计算根据规划的地区类别,采用区域综合径流系数。
城市市区区域综合径流系数值0.5—0.8,在此城镇计算中C1-10取0.6,C11取0.4。
单位面积径流量:497.020)724.3210(078.992++⨯=t C q W =497.02)724.3210(078.9926.0++⨯t 497.021)724.3210(078.992++⨯=t C q W =497.02)724.3210(078.9924.0++⨯t设计流量Q 为:0q A Q ⨯=灌渠内雨水流行时间为:t 2=L/v式中 L ——管长(m )V ——雨水在管内的流速(m/s )坡降:L S h ⨯=设计管内底标高的最小值为地面标高减去管道的最小覆土厚度加上管径,埋深为设计地面标高减去设计管底标高。
管径、流速、流量等的确定采用满流水力计算表。
二、雨水管网定线2.1排水体制的选择规划区排水设施不完善,无完整排水系统,雨污合流排放,未经处理就近排入水体。
规划区防洪标准为20年一遇,片区内规划用地竖向高程均在20年一遇的洪水位线之上。
暴雨强度公式根据附录:福建各地暴雨强度公式选用。
管材采用钢筋混凝土管。
2.2管线定线原则:充分利用地形,就近排入水体。
雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。
道路雨水计算【篇一:路面排水计算】第三章排水设计3.1 气候与地质条件介绍本路段连州至怀集k34+400~k35+800段,路区属中纬度亚热带季风性湿润气候;夏季盛行东南风,冬季盛行西北风;全年日照时间长,雨水充沛,有“三月低温阴雨、六月江河暴满、十月寒风”的气候特征。
多年平均气温19.4℃,最高气温39.8℃;每年雨季集中在3~9月,占全年降雨量的85%左右,多年平均降雨量1628.5~1785.4mm,年蒸量1419mm;风向具明显的季节变化,风速平均1.2~2m/s,较大风力相当于7级风力。
位于海拔高程228.2~1002米之间的路线段在冬季不同程度存在冰、雪、雾等影响行车安全的不良气象因素。
山区,特别是高寒山区,霜期长,冰冻及降雪现象年年都有,初霜期在十一月中旬,终霜期在次年二月中旬,霜期一般三个月左右,平原区霜期较短。
连州市河流属北江支流之连江水系,市内主要河流有星子河、东陂河、三江河、九陂河,四条河汇合市内称连江,河流的共同特点是:流程短,水流湍急,坡降较大,水位涨落迅速,四季水位流量变化显著。
水量受大气降雨影响较大,一般春夏季节降雨较多,河流水量充沛,遇暴雨常满溢两岸;秋冬旱季降雨量较少,河流水量锐减,河床多暴露。
3.2 边沟设计验算在k34+460至k34+640之间的挖方段为挖方最大汇水面积段,本次设计以沥青混凝土路面为例。
路堑坡度为1:0.5,坡面流长度为14m,路基宽度26m,取单侧路面和路肩横向排水宽度为13m,路拱横坡为2%在纵断面方面,在纵断面方面,此处纵坡i=-2.03%,边坡坡脚和路肩边缘间设置矩形边沟。
计算简图如图3-1。
3.2.1 计算汇水面积和径流系数:图3-1 边沟计算示意图3.2.2 计算汇流历时:由克毕公式t1?1.445*(其中:ls为坡面流长度;is为坡面流坡度;m1地表粗糙系数;由表查得草皮防护路堑边坡的粗度系数m1=0.4,且路堑坡度为1:0.5,得路?堑坡面汇流历时t1=1.445??????0.467m1lsis)0.467计算坡面汇流历时, ?2.116min。
各级城市道路雨水量计算方法与雨水口设置
一、前言
当路面水不能迅速排泄时,路面会形成水膜而影响行车安全,因此须在道路汇水点、人行横道上游、沿街单位出入口上游、靠地面径流的街坊或庭院的出水口等处设置雨水口(道路低洼和易积水地段应根据需要适当增加雨水口),以及时排除路面雨水,确保在设计重现期内排水畅通、不积水;确保在超过设计重现
期时,退水快、积水时间短
二、迳流理论
2.1迳流产生过程[2]
一般而言,地面点在受雨过程中,首先被植物截留。
在地面开始受雨时因地面干燥,渗水率较大,而降雨的起始雨率还小于入渗率,这时降雨被地面全部吸收。
随着历时的增长,雨率大于入渗率后地面开始产生余水,当余水量积满洼地后,开始地面迳流,这时部分余水产生积水深度,部分余水产生迳流,在雨率增至最大时相应产生最大余水率,之后雨率逐渐递减,余水率亦渐减小,当雨率降至入渗率时,余水现象停止,但这时有地面积水存在,故仍然产生迳流,入渗率仍按地面入渗能力渗漏,直至地面积水消失,迳流才告终止,而后洼地积水逐渐渗完。
渗完积水后,地面实际渗水率将按雨率渗漏,直至
雨终。
见下图一。
对于道路路面而言,无植物截留,且迳流系数较一般地面大得多,因此余水历时、迳流历时、降雨总历时三者的起始点基本相同,累积入渗量极小,其曲线h可看成与x轴平行、接近x轴的一条曲线;再者由于路面相对平坦,死水曲线与累积
入渗量曲线h可近似看作重叠。
2.2流域汇流过程
图二中各条曲线t1,t2,……,tn为等流时线,每条等流时线上各点的雨水流至集水口a的时间是相等的,集流时间(t)是流域边缘线上的雨水流达a
点的时间。
在地面迳流开始后不久,a点所汇集的流量仅来自靠近a点的小块面积上的雨水,这时较远处的雨水仅流至中途,随着产生迳流和降雨时间的增长,在a 点汇集的流量中的汇流面积不断增加,当流域边缘上的雨水也流达a点时,这时全面积汇流,a点的流量达最大。
因此,相应于流域集流时间的全面积迳流产生最大迳流量,又称极限强度法。
全流域迳流在集流口出现的流量来自t时段
内的降雨量。
三、雨水口泄水能力与布置
3.1雨水口泄水能力
雨水口的泄水能力与雨水口的型式、箅前水深等因素有关。
由《给水排水标准图集》(合订本)S2(下)(国家建筑标准设计)中的“雨水口(一)铸铁井圈”章节可知,经过1:1的水工模型的水力实验(道路纵坡3‰~3.5%,横坡1.5%,箅前水深40mm),各类雨水口的设计泄水能力如下:
表一雨水口泄水能力表
雨水口型式雨水口泄水能力(升/秒)
平箅式单箅雨水口20
平箅式双箅雨水口35
由于杂物的阻塞作用,雨水口实际泄水能力应乘以0.5~0.7的系数,在后面的
算例中,系数选0.7。
3.2雨水口布置
根据《室外排水设计规范》[4](GBJ 14-87)第3.7.1至3.7.3条规定:“雨水口的型式、数量和布置,应按汇水面积所产生的流量、雨水口的泄水能力及道路型式确定。
”“雨水口的间距宜为25~50米。
注:低洼和易积水地段,应根据需要适当增加雨水口。
”“当道路纵坡大于0.02时,雨水口间距可大于50m,其型式、数量和布置应根据具体情况和计算确定。
坡段较短时可在最低点处集中收水,其雨水口的数量或面积应适当增加。
”
根据雨水迳流理论,当道路坡度大时,水流速度变快,汇流时间t1变短,坡上的雨水口对雨水截留作用减小,雨水流往下游,同一坡度的道路越长,下游汇流的水量越多。
但是,从暴雨强度公式还可以看出,道路越长,则径流时间越长,暴雨强度越小,对下游雨水口的影响程度不易确定。
因此,设在道路低洼处
的雨水口数量与类型须计算确定。
四、雨水量计算方法
4.1路面迳流系数
迳流系数的大小与覆盖面类型有关,根据《公路排水设计规范》[5](1997)规定,混凝土或沥青路面的迳流系数ψ见表二。
表二路面迳流系数
4.2 重现期
根据《城市道路设计规范》[6](CJJ 37-90)第12.1.2条规定:“城区道路排水设计重现期见表三,重现期高于地区排水标准时,应增设必要的排水设施。
” “当郊区道路所在地区有城市排水管网设施或排水规划时,应按表三规定选用适当的重现期。
”
城市道路路面雨水设计重现期与道路类别、城市级别有关。
道路类别越高,城市级别越高,其重现期越大。
表三城市道路排水设计重现期
期(a)210.5
4.3雨水量计算
1)路面集水时间
路面集水时间tl应在综合考虑地面集水距离、汇水面积、地面覆盖、地面坡度和降雨强度等因素的基础上确定。
根据规范规定,当地面集水距离大于50m时,t1=5+1.25(L一50)/V平均×60)(min),其中L为地面集水距离(m),V平均为累计平均流速(m/s),当地面集水距离不足50m时,t1取为5~l0min[7]。
雨水口间的集水距离一般不超过50米,因此,路面集水时间t1可以直接取5~10min。
慎重起见,t宜取小值5min。
2)设计雨水量
Q=166.7×F×φ×i(L/s) (4)
与雨水管渠的设计相类似,路面雨水量Q计算公式如下
其中:F=雨水汇流面积(m2);
φ=径流系数,见表二;
i=暴雨强度;
P=重现期,见表三;
t1=路面集流时间,5min。
五、实例
由于道路型式复杂,下面仅就其中一种最常见的情况进行分析。
例如:上海市某城市道路,级别为次干道,重现期取1.0年;为沥青路面,粗糙度系数取0.013;综合迳流系数取0.90;道路纵坡平均0.003;道路横坡0.015;道路红线宽度30米,其中人行机动车首道宽24米。
截取120米计算。
如图四所示。
其中三角形为挑水点。
按规范,雨水口间距设为30米,以一个雨水口为计算单元。
方法一:
汇水面积F=450m2
坡面流长度L=12米
路面集流时间t1=5min
比流量i=2.09mm/min
路面雨水设计流量Q=14.1L/s
考虑杂物阻塞,最终设计流量为14.1/0.7=20.2L/s。
由表一可知,平箅式单箅雨水口或偏沟式单箅雨水口的泄水能力为20L/s, 本例中每隔30m于道路两侧各设一平箅式单箅雨水口或偏沟式单箅雨水口即可满足要求。
六、总结
总之,雨水口布置的原则是既要满足道路路面积水排放的要求,退水快,不积水;又要不造成浪费,因此须采用一定的计算方法,根据计算合理确定雨水口间距和型式。