离散数学常见题型与解题方法归纳(1)初级版
- 格式:docx
- 大小:36.90 KB
- 文档页数:3
离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。
请写出集合{1, 2, 3}和{2, 3, 4}的交集。
答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。
请判断复合命题“p且q”的真值。
答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。
请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。
答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。
请计算表达式(A∨B)∧(¬A∨¬B)的值。
答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。
答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。
若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。
答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。
8. 正则表达式正则表达式用于描述字符串的模式。
请写出匹配任意长度的数字串的正则表达式。
答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。
请判断命题p∨¬p和命题¬(p∧¬p)是否等价。
答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。
请简述后序遍历的步骤。
答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。
离散数学难题七大题型解题技巧引言离散数学是一门研究离散结构和离散对象的数学学科。
在研究离散数学的过程中,难题是不可避免的。
本文将介绍离散数学中的七大题型,并提供相应的解题技巧,帮助读者更好地应对难题。
一、命题逻辑题命题逻辑题是离散数学中常见的题型,解题时可以采用以下技巧:1. 分析命题的结构:将复杂的命题拆分为简单的子命题,便于理解和处理。
2. 使用真值表:构建命题的真值表,列出所有可能的组合情况,以便确定命题的真假。
3. 应用逻辑运算规则:掌握逻辑运算的基本规则,如非、与、或等,并灵活应用在解题过程中。
二、关系与函数题关系与函数是离散数学中的重要概念,在解题时可以采用以下技巧:1. 确定关系的性质:分析给定关系的性质,如自反性、对称性、传递性等,以便判断关系的特点。
2. 寻找关系图或矩阵:将关系表示为图或矩阵的形式,有助于更直观地理解和分析关系。
3. 理解函数定义和运算规则:掌握函数的定义和运算规则,如复合函数、反函数等,以便在解题中灵活运用。
三、图论题图论是离散数学中的重要分支,解图论题时可以采用以下技巧:1. 确定图的类型:了解给定图的类型,如无向图、有向图、加权图等,以便选择合适的解题方法。
2. 使用图的表示方法:将图表示为邻接表或邻接矩阵的形式,便于分析和计算图的性质。
3. 掌握图的基本性质:了解图的度、连通性、割点、桥等基本概念和性质,以便在解题过程中应用。
四、组合数学题组合数学是离散数学中的重要分支,解组合数学题时可以采用以下技巧:1. 理解组合数学的基本概念:熟悉组合、排列、二项式系数等基本概念,以便在解题过程中正确运用。
2. 掌握组合数学的计算方法:熟悉组合数学的计算方法,如组合公式、排列公式等,以便进行计算和推导。
3. 运用组合数学的原理:灵活运用组合数学的原理,如鸽巢原理、容斥原理等,解决实际问题。
五、数论题数论是离散数学中研究整数的分支,解数论题时可以采用以下技巧:1. 理解数论的基本概念:了解质数、最大公约数、同余等基本概念,以便正确理解和处理题目。
解答离散数学公式的方法解答离散数学公式的方法离散数学是怎么一回事呢?这类的证明题该怎么解答呢?下面就是店铺给大家的离散数学证明题内容,希望大家喜欢。
证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大下界是b,最小上界是a,故链一定是格,下面证明分配律成立即可,对A中任意元素a,b,c分下面两种情况讨论:⑴b≤a或c≤a⑵a≤b且a≤c如果是第⑴种情况,则a∪(b∩c)=a=(a∪b)∩(a∪c)如果是第⑵种情况,则a∪(b∩c)=b∩c=(a∪b)∩(a∪c)无论那种情况分配律均成立,故A是分配格.一.线性插值(一次插值)已知函数f(x)在区间[xk,xk+1]的端点上的函数值yk=f(xk),yk+1=f(xk+1),求一个一次函数y=P1(x)使得yk=f(xk),yk+1=f(xk+1),其几何意义是已知平面上两点(xk,yk),(xk+1,yk+1),求一条直线过该已知两点。
1.插值函数和插值基函数由直线的点斜式公式可知:把此式按照yk和yk+1写成两项:记并称它们为一次插值基函数。
该基函数的特点如下表:从而P1(x)=yklk(x)+yk+1lk+1(x)此形式称之为拉格朗日型插值多项式。
其中,插值基函数与yk、yk+1无关,而由插值结点xk、xk+1所决定。
一次插值多项式是插值基函数的线性组合,相应的组合系数是该点的函数值yk、yk+1.例1:已知lg10=1,lg20=1.3010,利用插值一次多项式求lg12的近似值。
解:f(x)=lgx,f(10)=1,f(20)=1.3010,设x0=10,x1=20,y0=1,y1=1.3010则插值基函数为:于是,拉格朗日型一次插值多项式为:故:即lg12由lg10和lg20两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792).模型1:元素与集合模型模型2:函数性质模型模型3:分式函数模型模型4:抽象函数模型模型5:函数应用模型模型6:等面积变换模型模型7:等体积变换模型模型8:线面平行转化模型模型9:垂直转化模型模型10:法向量与对称模型模型11:阿圆与米勒问题模型模型12:条件结构模型模型13:循环结构模型模型14:古典概型与几何概型模型15:角模型模型16:三角函数模型模型17:向量模型模型18:边角互化解三角形模型模型19:化归为等差等比数列解决递推数列的问题模型模型20:构造函数模型解决不等式问题模型21:解析几何中的最值模型一、高等数学公式根据考研大纲上的要求,我们要记的公式主要有导数公式,基本积分表,两个重要极限,三角函数公式,高阶导数公式——莱布尼兹(Leibniz)公式和中值定理公式(很重要)等,有些公式确实是很长的,但也是有记忆技巧的。
注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
考研数学离散数学常见题型解题技巧分享离散数学是考研数学中的一个重要知识点,常见的离散数学题型包括集合论、关系和函数、图论等。
解题技巧的掌握对于考生来说至关重要,下面将分享一些常见离散数学题型的解题技巧。
一、集合论题型1. 幂集的计算技巧在计算幂集的过程中,可以利用二进制数的特点,将集合中的元素与二进制数的位置对应起来。
例如一个集合A={a, b, c},则它的幂集的个数为2^n,其中n为集合A的元素个数。
可以将幂集的个数展示为二进制数的个数形式,从而便于计算。
2. 集合间关系的判断在判断两个集合的关系时,可以分别列出这两个集合的元素,然后进行对比。
如果两个集合的所有元素都相同,则它们是相等集;如果一个集合A的元素都是集合B的元素,则A是B的子集;反之,如果B的元素都是A的元素,则B是A的子集。
二、关系和函数题型1. 关系的性质判断在判断一个关系的性质时,可以利用以下几个常见的关系性质:- 自反性:如果对于集合A中的每一个元素a,都满足条件R(a, a),则称关系R是自反的。
- 对称性:如果对于集合A中的任意两个元素a和b,则当满足条件R(a, b)时,R(b, a)也成立,则称关系R是对称的。
- 传递性:如果对于集合A中的任意三个元素a、b和c,并且当满足条件R(a, b)和R(b, c)时,R(a, c)也成立,则称关系R是传递的。
2. 函数的性质判断在判断一个函数的性质时,可以利用以下几个常见的函数性质:- 单射性:如果函数f的每一个元素在定义域中唯一对应一个值,则称函数f是单射的。
- 满射性:如果函数f的值域等于定义域,则称函数f是满射的。
- 双射性:如果函数f既是单射又是满射,即每一个元素在定义域中唯一对应一个值,并且值域等于定义域,则称函数f是双射的。
三、图论题型1. 图的遍历技巧在遍历图的过程中,可以利用深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的算法。
DFS以深度为优先原则进行搜索,而BFS 以广度为优先原则进行搜索。
离散数学常考题型梳理第1章 集合及其运算一、题型分析本章主要介绍集合论的基本概念和结论,集合的运算及其性质,以及利用运算性质进行集合表达式的化简和集合恒等式的证明等内容.经常涉及到的题型有:1-1集合与集合之间的包含、元素与集合之间的属于关系1-2幂集的计算1-3集合之间的运算1-4利用集合运算性质证明集合恒等式因此,在本章学习过程中希望大家要清楚地知道:1.集合与集合之间存在一种包含关系,当两个集合A 和B 存在关系A 包含B ,用A ⊇B 表示,或存在关系B 被A 包含,用B ⊆A 表示,这时称B 为A 的子集.注意空集∅是任意一个集合的子集,集合A 也是自己的子集.当B ⊆A 且B ≠A ,也就是说,只有B ⊂A 或A ⊃B 成立,则称B 为A 的真子集.若B 不是A 的子集,即B ⊆A 不成立时,则称A 不包含B ,记作B ⊆A .然而,元素与集合之间存在一种从属关系,当a 是集合A 中的元素,则称a 属于A ,记作a∈A ;若a 不是集合A 中的元素,则称a 不属于A ,记作a ∉A .因此,这两种关系一定不要混淆.2.由集合A 的所有子集组成的集合,称为A 的幂集,记作P (A )或2A .若集合A 是由n 个元素所组成的集合,则A 的幂集由2n 元素组成.当n =3时,A 的幂集由23=8个元素组成.例如,设集合A = {0, 1, 2 },则A 的全部子集由以下子集组成:0元子集(即空集):∅;1元子集:{0},{1},{2};2元子集:{0, 1},{0, 2},{1, 2};3元子集(即集合A ):{0, 1, 2}.因此,计算集合A 的幂集时,首先要按照上述方法写出集合A 的全部子集,然后检验写出的子集个数是否等于2n 个,其中n 是集合A 的元素个数.3.集合之间的运算有并(⋃)、交(⋂)、差(-)、补(~)和对称差(⊕)等五种运算,在做集合运算的题目时,一定要按照它们的定义进行计算.(1) 集合A 和B 的并集A B x x A ⋃=∈{或 x B ∈} 特点:由集合A 和B 的所有元素组成的集合.见图1 图1 图2(2) 集合A 和B 的交集A B x x A ⋂=∈{ 且 x B ∈}特点:由集合A 和B 的公共元素组成的集合.见图2(3) 集合A 与B 的差集A B -=∈∉{}x x A x B 且 特点:由属于A ,而不属于B 的所有元素组成的集合.见图3(4) 集合A 的补集~A ={}x x E x A ∈∉且特点:由属于全集E 但不属于集合A 的元素组成的集合.见图4补集总相对于一个全集而言,可以看作是全集E 与集合A 的差集.(5) 集合A 与B 的对称差A ⊕B =(A -B )⋃(B -A )或 A ⊕B =(A ⋃B )-(A ⋂B )特点:由分别属于集合A 与B 的元素但不属于它们公共元素组成的集合.见图5(6) 把集合A ,B 合成集合A ×B 叫做笛卡儿积,规定A ×B ={<x , y >∣x ∈A 且y ∈B }注意:由于有序对<x , y >中x ,y 的位置是确定的,因此A ×B 的记法也是确定的,不能写成B ×A..笛卡儿积的运算一般不能交换..虽然,笛卡儿积的内容是第2章2.1.1目的内容,是二元关系的预备知识,但我们认为把它作为集合的一种运算考虑更好些。
离散数学组合求解策略和技巧讲解离散数学是数学的一个重要分支,它研究的是离散的数学结构和离散的数学对象。
其中一个重要的概念是组合,它研究的是离散对象的选择和排列问题。
在实际应用中,组合问题的求解策略和技巧十分关键。
本文将为大家介绍一些常见的离散数学组合求解策略和技巧。
1. 排列问题排列是指从若干个对象中选取若干个进行有序的排列。
在排列问题中,首先需要确定待排列对象的个数和选取的个数。
然后可以采用以下策略和技巧进行求解:(1) 全排列法:将所有可能的情况枚举出来,然后逐个判断是否满足要求。
虽然全排列法可以保证所有可能情况都被考虑到,但对于大规模的排列问题来说,计算量会十分庞大。
(2) 递归法:通过递归思想,将大问题分解为相同类型的小问题,再通过组合起来得到结果。
递归法在排列问题中应用广泛,它能够简化问题的求解过程。
(3) 剪枝法:在全排列的过程中,通过一些条件判断来剪去不满足要求的情况,从而减少计算量。
剪枝法可以大幅提高计算效率,使得求解变得更加高效。
2. 组合问题组合是指从若干个对象中选取若干个进行无序的组合。
与排列问题不同,组合问题中的顺序不重要。
在组合问题中,同样需要确定待组合对象的个数和选取的个数。
以下是一些常用的求解策略和技巧:(1) 递归法:与排列问题类似,通过递归思想将组合问题分解为更小的同类型问题,再逐步组合得到结果。
(2) 利用排列问题求解:通过将组合问题转化为排列问题进行求解。
假设有n个对象要选取m个进行组合,可以先将这m个对象进行全排列,然后去掉重复的排列,最后得到的就是所有可能的组合情况。
(3) 组合数公式:对于一些简单的组合问题,可以直接使用组合数公式求解。
组合数公式为C(n,m) = n!/(m!(n-m)!),其中n为待组合对象的数量,m为选取的数量。
3. 应用场景离散数学中的组合问题在实际中有着广泛的应用。
以下是一些常见的应用场景:(1) 选课问题:在学生选课时,需要根据实际情况选择不同的课程进行学习。
离散数学初步例题和知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、密码学等领域都有着广泛的应用。
下面我们通过一些例题来讲解离散数学中的部分重要知识点。
一、集合论集合是离散数学中的基本概念之一。
例 1:设集合 A ={1, 2, 3, 4},B ={3, 4, 5, 6},求 A ∪ B 和 A∩ B。
解:A ∪ B ={1, 2, 3, 4, 5, 6},A ∩ B ={3, 4}集合的运算包括并集、交集、差集等。
并集是将两个集合中的所有元素合并在一起,去掉重复的元素;交集是两个集合中共同拥有的元素组成的集合。
知识点:集合的基本运算规则1、交换律:A ∪ B = B ∪ A,A ∩ B =B ∩ A2、结合律:(A ∪ B) ∪ C = A ∪(B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)3、分配律:A ∩ (B ∪ C) =(A ∩ B) ∪(A ∩ C),A ∪(B ∩C) =(A ∪ B) ∩ (A ∪ C)二、关系关系是集合元素之间的某种联系。
例 2:设集合 A ={1, 2, 3},R 是 A 上的关系,R ={(1, 1),(1, 2),(2, 2),(2, 3),(3, 3)},判断 R 是否具有自反性、对称性和传递性。
解:R 具有自反性,因为对于 A 中的每个元素 a,都有(a, a) ∈ R;R 不具有对称性,因为(1, 2) ∈ R 但(2, 1) ∉ R;R 具有传递性,因为(1, 2) ∈ R 且(2, 3) ∈ R ,同时(1, 3) ∈ R 。
知识点:1、自反关系:对于集合中的每个元素 a,都有(a, a) ∈ R 。
2、对称关系:若(a, b) ∈ R ,则(b, a) ∈ R 。
3、传递关系:若(a, b) ∈ R 且(b, c) ∈ R ,则(a, c) ∈ R 。
三、函数函数是一种特殊的关系。
例 3:设函数f: R → R ,f(x) = x^2 ,求 f(-2),f(0),f(3)。
总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函数;1.若|X|=m,|Y|=n,则从X到Y有mn2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=>av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.39.树:具有n个顶点n-1条边的无回路连通无向图;40.节点的层数:从树根到该节点经过的边的条数;41.42.树高:层数最大的顶点的层数;43.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。
离散数学常见题型与解题方法归纳(1)初
级版
离散数学是计算机科学和其他领域中的重要学科之一。
掌握离
散数学的常见题型和解题方法对于提高问题解决能力和算法设计能
力非常有帮助。
本文将介绍一些离散数学常见题型和简单的解题方法。
一、集合与集合运算
1. 集合的定义: 集合是由一组无序且唯一元素组成的。
常见的
表示方法有列举法、描述法和集合运算符号。
2. 集合的运算: 集合的常见运算有并集、交集、差集等。
并集
表示两个集合中所有元素的组合,交集表示两个集合中共有的元素,差集表示从一个集合中减去另一个集合中的元素。
二、逻辑与命题
1. 命题: 命题是陈述性句子,可以判断真假。
常见的命题有简单命题和复合命题。
2. 逻辑运算: 常见的逻辑运算有与、或、非等。
与运算表示两个命题都为真时结果为真,或运算表示至少一个命题为真时结果为真,非运算表示对命题的否定。
三、证明方法
1. 直接证明: 直接证明是通过逻辑推理和命题的定义直接证明某个命题的真实性。
步骤包括假设、推理和结论。
2. 归纳证明: 归纳证明常用于证明对于所有自然数n成立的命题。
步骤包括证明基本情况和归纳假设。
3. 反证法: 反证法用于证明某个命题的否定。
假设命题为假,通过逻辑推理得出矛盾,从而证明命题为真。
四、图论基础
1. 图的定义: 图由一组节点和连接节点的边组成。
常见的图有有向图和无向图。
2. 图的表示方法: 图可以用邻接矩阵或邻接表来表示。
3. 图的遍历算法: 常见的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
以上是初级版的离散数学常见题型与解题方法的归纳。
离散数学还有更多深入的内容和更高级的题型,可以进一步学习和探索。