江苏省盐城东台市2016-2017学年高一学业质量水平测试(1月)数学 Word版含答案
- 格式:doc
- 大小:701.50 KB
- 文档页数:13
江苏省东台市2016—2017学年高一数学下学期第二次月考(4月)试题(无答案)一、填空题(本大题共14个小题,每小题5分,共70分,将答案填在答题卡上)1.直线y=x﹣3的倾斜角为.2.已知点A(﹣1,2),B(﹣4,6),则|AB|等于.3.圆x2+y2﹣2x+4y=0的面积为.4.点(1,2)关于点(2,3)的对称点的坐标为.5.在△ABC中,a=,b=1,∠A=,则cosB= .6.过点M(3,4)且在坐标轴上截距相等的直线方程为.7.已知正四棱锥的底面边长是3,高为,这个正四棱锥的侧面积是.8.若正六棱柱的底面边长为10,侧面积为180,则这个棱柱的体积为.9.在△ABC中,A=,b2sinC=sinB,则△ABC的面积为.10.已知一个棱长为的正四面体内接于球,则该球的表面积是.11.直线x﹣2y﹣3=0与圆(x﹣2)2+(y+3)2=9交于E、F两点,则弦长EF= .12.两直线l1:ax+2y+b=0;l2:(a﹣1)x+y+b=0.若l1∥l2,且l1与l2的距离为,则a •b= .13.四棱锥P﹣ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,,则三棱锥P﹣ANC与四棱锥P﹣ABCD的体积比为.14.设圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.三角形ABC的三个顶点A(﹣3,0),B(2,1),C(﹣2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程.16.一圆与y轴相切,圆心在直线x﹣3y=0上,且直线y=x截圆所得弦长为,求此圆的方程.17.已知两条直线l1:x+2my+6=0,l2:(m﹣2)x+3my+2m=0问:当m为何值时,l1与l2(1)平行;(2)垂直.18.如图,三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点;(1)求证:CD⊥平面ABE;(2)设AB=3,CD=2,若AE⊥BC,求三棱锥A﹣BCD的体积.19.已知圆,圆,C1,C2分别为两圆的圆心.(Ⅰ)求圆C1和圆C2的公共弦长;(Ⅱ)过点C1的直线l交圆C2与A,B,且,求直线l的方程.20.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E 于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.高一数学试卷答题纸二、填空题(本大题共14个小题,每小题5分,共70分,将答案填在答题卡上) 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.三角形ABC 的三个顶点A (﹣3,0),B (2,1),C (﹣2,3),求: (1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程. 16.一圆与y 轴相切,圆心在直线x ﹣3y=0上,且直线y=x 截圆所得弦长为,求此圆的方程.……………………………………………密……………………………封……………………………17.已知两条直线l1:x+2my+6=0,l2:(m﹣2)x+3my+2m=0问:当m为何值时,l1与l2(1)平行;(2)垂直.18.如图,三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点;(1)求证:CD⊥平面ABE;(2)设AB=3,CD=2,若AE⊥BC,求三棱锥A﹣BCD的体积.19.已知圆,圆,C1,C2分别为两圆的圆心.(Ⅰ)求圆C1和圆C2的公共弦长;(Ⅱ)过点C1的直线l交圆C2与A,B,且,求直线l的方程.20.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E 于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
2016年江苏省盐城市东台市中考数学一模试卷一、选择题:本大题共8小题,每小题3分,共24分1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x43.不等式组的解在数轴上表示为()A.B.C.D.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是155.面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间6.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切7.如图,圆O的半径为6,点A、B、C在圆O上,且∠ACB=45°,则弦AB的长是()A.5 B.6 C.6D.68.一个矩形被一条直线分成面积为x,y的两部分,则y与x之间的函数关系用图象表示只可能是()A.B.C.D.二、填空题:本大题共10小题,每小题3分,共30分9.9的算术平方根是______.10.第六次全国人口普查数据显示,盐城市常住人口约为821万人,用科学记数法表示821万为______.11.已知x﹣y=1,则x2﹣y2﹣2y的值为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=______.13.如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是______.14.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为______cm.15.若反比例函数y=mx|m|﹣2的图象分布于第二、四象限,则m的值为______.16.已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为______.17.在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,则△ABC的面积为______.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2016的坐标是______.三、解答题:本大题共10小题,共96分19.(1)计算: +cos60°﹣(π+2016)0+()﹣2(2)先化简÷(﹣),然后选取一个你喜欢的a值带入求值.20.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次共抽查了______个家长;(2)请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);(3)已知该校共有1200名学生,持“赞成”态度的学生估计约有______人.21.在两只不透明的袋子中分别装有4张和3张除数字外完全相同的卡片,甲袋中的卡片上分别标有1、2、3、4四个数字,乙袋中的卡片上分别标有1、2、3三个数字,现分别从两个袋子中各抽出一张卡片,试解答下列问题:(1)分别用A、B表示从甲、乙两个袋子中抽出的卡片上的数字,请用树状图法或列表法写出(A,B)的所有取值;(2)求在(A,B)中使关于x的一元二次方程x2﹣Ax+2B=0有实数根的概率.22.五一节,某校数学兴趣小组的同学相约去东台西溪“海春轩塔”参观,并测量其高度.如图,塔身BD 与地面垂直,他们先在A处测得塔顶端点D的仰角为45°,再沿着BA的方向后退16cm至C处,测得塔顶端点D的仰角为30°,求“海春轩塔”BD的高度.(≈1.73,结果保留一位小数)23.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.24.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.25.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n和k的值;(2)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标.26.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是60件,而销售单价每涨1元,就会少售出2件玩具.(1)设该种品牌玩具的销售单价为x元(x>40),写出销售玩具获得的利润W(元)与x之间的函数关系式,并计算若该商场获得了800元的销售利润,则该玩具销售单价x应定为多少元?(2)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且该商场要完成不少于48件的销售任务,求该商场销售该品牌玩具获得的最大利润是多少?27.问题背景:(1)如图1,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,作DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,写出MD和ME之间的数量关系是______.数学思考:(2)如图2,在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请写出证明过程.拓展探究:(3)如图3,在任意△ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD和ME,试判断△MED的形状,并说明理由.28.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C,D两点,其中点C在y轴上,点D的横坐标为3,点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.2016年江苏省盐城市东台市中考数学一模试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:2016的相反数是﹣2016,故选:B.2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加;同底数幂的除法底数不变指数相减;积的乘方等于乘方的积;同底数幂的乘法底数不变指数相加;可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.3.不等式组的解在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由3x+2>5,解得x>1,由3﹣x≥1,解得x≤2,不等式组的解集是1<x≤2,故选:C.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15【考点】算术平均数;中位数;众数;极差.【分析】根据平均数,中位数,众数,极差的概念逐项分析.【解答】解:A、80出现的次数最多,所以众数是80,A正确;B、把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;C、平均数是=80,C正确;D、极差是90﹣75=15,D正确.故选:B5.面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间【考点】估算无理数的大小.【分析】易得正方形的边长,看在哪两个正整数之间即可.【解答】解:正方形的边长为,∵<<,∴3<4,∴其边长在3m与4m之间.故选:B.6.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.7.如图,圆O的半径为6,点A、B、C在圆O上,且∠ACB=45°,则弦AB的长是()A.5 B.6 C.6D.6【考点】圆周角定理;等腰直角三角形.【分析】首先连接OA,OB,由∠ACB=45°,可得△AOB是等腰直角三角形,继而求得答案.【解答】解:连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵⊙O的半径为6,∴OA=OB=6,∴AB=OA=6.故选C.8.一个矩形被一条直线分成面积为x,y的两部分,则y与x之间的函数关系用图象表示只可能是()A.B.C.D.【考点】矩形的性质;函数的图象.【分析】因为一个矩形被直线分成面积为x,y的两部分,矩形的面积一定,y随着x的增大而减小,但是x+y=k(矩形的面积是一定值),由此可以判定答案.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y>0,图象位于第一象限,所以只有A符合要求.故选A.二、填空题:本大题共10小题,每小题3分,共30分9.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.10.第六次全国人口普查数据显示,盐城市常住人口约为821万人,用科学记数法表示821万为8.21×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将821万用科学记数法表示为8.21×106.故答案为:8.21×106.11.已知x﹣y=1,则x2﹣y2﹣2y的值为1.【考点】平方差公式.【分析】首先利用平方差公式,求得x2﹣y2﹣2y=(x+y)(x﹣y)﹣2y,继而求得答案.【解答】解:∵x﹣y=1,∴x2﹣y2﹣2y=(x+y)(x﹣y)﹣2y=x+y﹣2y=x﹣y=1.故答案为:1.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=52°.【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),则∠1=90°﹣∠3=52°.故答案为:52°.13.如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是.【考点】概率公式;勾股定理;勾股定理的逆定理.【分析】由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,∴使△ABC为直角三角形的概率是:.故答案为:.14.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为18cm.【考点】相似三角形的应用.【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.【解答】解:∵DE∥BC,∴△AED∽△ABC∴=设屏幕上的小树高是x,则=解得x=18cm.故答案为:18.15.若反比例函数y=mx|m|﹣2的图象分布于第二、四象限,则m的值为﹣1.【考点】反比例函数的性质.【分析】根据反比例函数的图象,可得比例系数小于零且次数是﹣1,可得答案.【解答】解:由反比例函数y=mx|m|﹣2的图象分布于第二、四象限,得|m|﹣2=﹣1且m<0,解得m=﹣1.故答案为:﹣1.16.已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为72°.【考点】圆锥的计算.【分析】首先求得圆锥的底面周长,即扇形的弧长,然后利用弧长公式即可求解.【解答】解:∵圆锥的底面直径为4cm,∴底面周长是4πcm.设侧面展开图的圆心角度数是n°,∵母线长为10cm,∴=4π,解得:n=72,故答案是:72°.17.在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,则△ABC的面积为30.【考点】三角形的重心.【分析】先根据点O是△ABC的重心得出OD=AD,再由△BOD的面积等于5得出△ABD的面积等于15,再由点D时BC的中点可得出S△ABC=2S△ABD,故可得出结论.【解答】解:∵ABC中,中线AD、BE相交于点O,∴点O是△ABC的重心,∴OD=AD.∵S△BOD=5,∴S△ABD=15.∵点D时BC的中点,∴S△ABC=2S△ABD=30.故答案为:30.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2016的坐标是.【考点】一次函数图象上点的坐标特征;等边三角形的性质.【分析】根据题意得出直线BB1的解析式为:y=x,进而得出B,B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(1,0),AO∥A1B1,∠B1OC=30°,∴CB1=OB1cos30°=,∴B1的横坐标为:,则B1的纵坐标为:,∴点B1,B2,B3,…都在直线y=x上,∴B1(,),同理可得出:A的横坐标为:1,∴y=,∴A2(2,),…A n(1+,).∴A2016,故答案为:三、解答题:本大题共10小题,共96分19.(1)计算: +cos60°﹣(π+2016)0+()﹣2(2)先化简÷(﹣),然后选取一个你喜欢的a值带入求值.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)首先进行0次幂和负整数指数次幂以及开方运算,代入特殊角的三角函数值,再进行加减计算即可;(2)首先把分式的分子分母分解因式,化简分式,然后计算括号内的分式,进行分式的除法计算即可.【解答】解:(1)原式=2+﹣1+4=;(2)原式=÷[﹣]=÷(﹣)=•=a,当a=2时,原式=2.20.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次共抽查了100个家长;(2)请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);(3)已知该校共有1200名学生,持“赞成”态度的学生估计约有300人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.【解答】解:(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,故答案为:(1)100;(3)30021.在两只不透明的袋子中分别装有4张和3张除数字外完全相同的卡片,甲袋中的卡片上分别标有1、2、3、4四个数字,乙袋中的卡片上分别标有1、2、3三个数字,现分别从两个袋子中各抽出一张卡片,试解答下列问题:(1)分别用A、B表示从甲、乙两个袋子中抽出的卡片上的数字,请用树状图法或列表法写出(A,B)的所有取值;(2)求在(A,B)中使关于x的一元二次方程x2﹣Ax+2B=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)分2步实验,利用树状图列举出所有情况即可;(2)看使关于x的一元二次方程x2﹣Ax+2B=0有实数根的情况数占总情况数的多少即可.【解答】解:(1)画树状图如下:;(2)∵方程x2﹣Ax+2B=0有实数根,∴△=A2﹣8B≥0,∴使A2﹣8B≥0的(A,B)有(3,1),(4,1),(4,2),∴P(△≥0)==.22.五一节,某校数学兴趣小组的同学相约去东台西溪“海春轩塔”参观,并测量其高度.如图,塔身BD 与地面垂直,他们先在A处测得塔顶端点D的仰角为45°,再沿着BA的方向后退16cm至C处,测得塔顶端点D的仰角为30°,求“海春轩塔”BD的高度.(≈1.73,结果保留一位小数)【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据题意得出∠BAD、∠BCD的度数及AC的长,再在Rt△ABD中可得出AB=BD,利用锐角三角函数的定义可得出BD的长.【解答】解:根据题意可知:∠BAD=45°,∠BCD=30°,AC=12m.在Rt△ABD中,∵∠BAD=∠BDA=45°,∴AB=BD.在Rt△BDC中,∵tan∠BCD=,∴=,则BC=BD,又∵BC﹣AB=AC,∴BD﹣BD=16,解得:BD=8+8.答:古塔BD的高度为(8+8)米.23.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.【考点】分式方程的应用.【分析】以人均捐款数为问题,等量关系为:1班人数×90%=2班人数;以人数为问题,等量关系为:1班人均捐款数+4=2班人均捐款数.【解答】解法一:求两个班人均捐款各多少元?设1班人均捐款x元,则2班人均捐款(x+4)元.根据题意得:×(1﹣10%)=,解得:x=36,经检验x=36是原方程的根.∴x+4=40,答:1班人均捐36元,2班人均捐40元.解法二:求两个班人数各多少人?设1班有x人,则2班为(1﹣10%)x人,则根据题意得: +4=.解得:x=50,经检验x=50是原方程的根,∴90%x=45,答:1班有50人,2班有45人.24.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.【考点】切线的性质;解直角三角形.【分析】(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:由(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.25.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n和k的值;(2)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标.【考点】反比例函数与一次函数的交点问题;菱形的性质.【分析】(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据反比函数的性质即可得到当y≥﹣2时,自变量x的取值范围;(3)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标.【解答】解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12;(2)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0;(3)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB==,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).26.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是60件,而销售单价每涨1元,就会少售出2件玩具.(1)设该种品牌玩具的销售单价为x元(x>40),写出销售玩具获得的利润W(元)与x之间的函数关系式,并计算若该商场获得了800元的销售利润,则该玩具销售单价x应定为多少元?(2)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且该商场要完成不少于48件的销售任务,求该商场销售该品牌玩具获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)利用已知结合销售单价每涨1元,就会少售出2件玩具,表示出涨价后的销量即可,进而得出W与x的函数关系,再利用W=800,得出关于x的等式方程求出即可;(2)利用“玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于48件的销售任务”进而得出不等式组求出x的取值范围,再利用二次函数性质求出最值即可.【解答】解:(1)由题意可得:销量=60﹣2(x﹣40)=140﹣2x,w=(x﹣30)=﹣2x2+200x﹣4200,根据题意得出:﹣2x2+200x﹣4200=800,解得:x1=x2=50.答:玩具销售单价为50元时,可获得800元销售利润.(2)根据题意得:,解得:44≤x≤46,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∵a=﹣2<0,对称轴是直线x=50,∴当44≤x≤46时,W随x增大而增大.=768(元).∴当x=46时,W最大值答:商场销售该品牌玩具获得的最大利润为768元.27.问题背景:(1)如图1,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,作DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,写出MD和ME之间的数量关系是相等.数学思考:(2)如图2,在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请写出证明过程.拓展探究:(3)如图3,在任意△ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD和ME,试判断△MED的形状,并说明理由.【考点】三角形综合题.【分析】(1)根据△ABD是等腰直角三角形,且DF⊥AB,所以得到DF=AB,根据点G为AC的中点,点M为BC的中点,所以MG为△ABC的中位线,所以MG∥AB,且MG=AB,同理FM∥AC,且FM=AC,得到DF=MG,FM=EG,根据MG∥AB,FM∥AC,所以四边形AFMG是平行四边形,所以∠AFM=∠AGM,证明∠DFM=∠MGE,所以△DFN≌△MGE.(2)DM⊥EM,且DM=EM,理由如下:设AB和DM交于点P,连接FM,GM,由(1)得:DF=MG,FM=EG,∠DFM=∠MGE,证明△DFM≌△MGE,得到DM=EM,由△DFM≌△MGE,得到∠FDM=∠EMG,所以∠DPA=∠DFP+∠FDM,根据MG∥AB,得到∠DMG=∠DPA=∠DFP+∠FDM,又由∠DMG=∠DM+∠EMG,得到∠DNE=∠DFP=90°,即可解答.(3)类比(1)(2)可得:△MDE是等腰直角三角形.【解答】解:(1)相等,理由:如图1,取BC的中点M,连接DM,EM,MG,FM,∵△ABD是等腰直角三角形,且DF⊥AB,∴BF=AF,∴DF=AB,∵点G为AC的中点,点M为BC的中点,∴MG为△ABC的中位线,∴MG∥AB,且MG=AB,同理FM∥AC,且FM=AC,∴DF=MG,FM=EG,∵MG∥AB,FM∥AC,∴四边形AFMG是平行四边形,∴∠AFM=∠AGM,∵∠AFM+∠BFM=∠AGM+∠CGM=180°,∴∠BFM=∠CGM,∵DF⊥AB,∴∠DFB=90°,同理∠EGC=90°,∴∠DFB=∠EGC,∴∠DFB+∠BFM=∠EGC+∠CGM,∴∠DFM=∠MGE,在△DFM和△MGE中,,∴△DFM≌△MGE,∴MD=ME.(2)MD=ME,理由:作AB、AC的中点F、G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.∵在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME;(3)作AB、AC的中点F、G,连接DF,MF,EG,MG,DE,线段DE与MG交于H,∵点M、F、G分别是BC、AB、AC的中点,∴MF∥AC,MF=AC,MG∥AB,MG=AB,∴四边形MFAG是平行四边形,∴MG=AF,MF=AG.∠AFM=∠AGM.∵△ADB和△AEC是等腰直角三角形,∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°∴MF=EG,DF=MG,∠AFM﹣∠AFD=∠AGM﹣∠AGE,即∠DFM=∠MGE.∵在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴MD=ME,∠MDF=∠EMG,∵MG∥AB,∴∠MHD=∠BFD=90°,∴∠HMD+∠MDH=90°∴∠HMD+∠EMG=90°,即∠DME=90°,∴△DME为等腰直角三角形.28.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C,D两点,其中点C在y轴上,点D的横坐标为3,点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.【考点】二次函数综合题.【分析】(1)先把点C,D坐标确定,再用待定系数法求出b,c;(2)设出点P的坐标,确定出PF∥CO,由PF=CO,求出m即可;(3)先判断出△PMF∽△CNF,得出PM=CM=2CF,由FP的长从两个角度计算建立方程即可.【解答】解:(1)∵直线y=+2经过点C,D∴C(0,2),D(3,),∵抛物y=﹣x2+bx+c经过点C(0,2),D(3,),∴,∴,∴抛物线的解析式y=﹣x2+x+2,(2)∵点P的横坐标为m,且在抛物线上∴P(m,﹣m2+m+2),F(m,m+2),∵PF∥CO,∴当PF=CO时,以O,C,P,F为顶点的四边形是平行四边形①当0<m<3时,PF=﹣m2+m+2﹣(m+2)=﹣m2+3m,∴m1=1,m2=2,即当m=1或2时,四边形OCPF是平行四边形,②当m≥3时,PF=(m+2)﹣(﹣m2+m+2)=m2﹣3m,∴m1=,m2=(舍去),即当m=时,四边形OCFP是平行四边形,当m=1或2或时,四边形O,C,P,F为顶点的四边形是平行四边形,(3)如图,当点P在CD上方且∠PCF=45°时,作PM⊥CD,CN⊥PF,∴△PMF∽△CNF,∴,∴PM=CM=2CF,∴PF=FM=CF=×CN=CN=m,∵PF=﹣m2+3m,∴﹣m2+3m=m,∴m1=,m2=0(舍去)∴P(,).同理可得:另外一点P(,).2016年9月20日初中数学试卷鼎尚图文**整理制作。
2016-2017学年度5月份月考高二数学(理科)试卷一、填空题:本大题共14小题,每小题5分,共70分 .1. 已知集合{1234}A =,,,,{147}B =,,,则A B = ▲ .2. 已知复数z 满足i i z =(i 为虚数单位),则||z 的值为 ▲ .3. 已知样本数据12,,n x x x 的均值5x =,则样本数据131,x +231,,31n x x ++的均值为 ▲ .4. 执行如图所示的伪代码,则输出的结果为 ▲ .5. 随机从1,2,3,4,5五个数中取两个数,取出的恰好都为偶数的概率为 ▲ . 6. 若函数f (x )=e x•sinx,则f'(0)= . 7.的展开式中常数项为 .(用数字作答)8. =(2x ,1,3),=(1,﹣2y ,9),如果与为共线向量,则x+y= .9. 已知函数f (x )=e 2x+ax ,若当x ∈(0,+∞)时,总有f (x )>1,则实数a 的取值范围为 . 10. 若定义在R 上的函数f (x )满足f (x )+f'(x )<1且f (0)=3,则不等式(其中e 为自然对数的底数)的解集为 11已知双曲线﹣=1(a >0,b >0)的渐近线被圆x 2+y 2﹣6x+5=0截得的弦长为2,则离心率e= .12. 设椭圆C 的两个焦点为F 1、F 2,过点F 1的直线与椭圆C 交于点M ,N ,若|MF 2|=|F 1F 2|,且|MF 1|=2,|NF 1|=1,则椭圆C 的离心率为 .13. 在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围为 . 14. 已知双曲线﹣=1(a >0,b >0),F 1(﹣c ,0)是左焦点,圆x 2+y 2=c 2与双曲线左支的一个交点是P ,若直线PF 1与双曲线右支有交点,则双曲线的离心率的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分) 如图,,A B 两点之间有5条网线并联,它们能通过的信息量分别为2、3、3、4、4.现从中随机任取2条网线.(1)设选取的2条网线由A 到B 通过的信息总量为x ,当6x 时,则保证信息畅通. 求线路信息畅通的概率;(2)求选取的2条网线可通过信息总量的数学期望.16. (本小题满分14分) 已知圆C :x 2+(y ﹣1)2=9内有一点P (,2),过点P 作直线l 交圆C于A 、B 两点.(1)当直线l 经过圆心C 时,求直线l 的方程; (2)当直线l 的倾斜角为时,求弦AB 的长.17. (本小题满分14分) 如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =45°,OA ⊥底面ABCD ,OA =2,M 为OA 的中点. (1)求异面直线AB 与MD 所成角的大小;(2)求平面OAB 与平面OCD 所成锐二面角的余弦值.18 (本小题满分16分) 运动员小王在一个如图所示的半圆形水域(O 为圆心,AB 是半圆的直径)进行体育训练,小王先从点A 出发,沿着线段AP 游泳至半圆上某点P 处,再从点P 沿着弧PB 跑步至点B 处,最后沿着线段BA 骑自行车回到点A 处,本次训练结束.已知OA=1500m ,小王游泳、跑步、骑自行车的平均速度分别为2m/s ,4m/s ,10m/s ,设∠PAO=θrad . (1)若,求弧PB 的长度;(2)试将小王本次训练的时间t 表示为θ的函数t (θ),并写出θ的范围;第15题(理)图BM DOABC(3)请判断小王本次训练时间能否超过40分钟,并说明理由.(参考公式:弧长l=rα,其中r为扇形半径,α为扇形圆心角.)19.已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.设g(x)=lnx+,(1)求a的值;(2)对任意x1>x2>0,<1恒成立,求实数m的取值范围;(3)讨论方程g(x)=f(x)+ln(x+1)在[1,+∞)上根的个数.20.(本小题满分16分)已知椭圆的离心率为,长轴长为,直线l:y=kx+m交椭圆于不同的两点A,B.(Ⅰ)求椭圆的方程;(Ⅱ)若m=1,且,求k的值(O点为坐标原点);(Ⅲ)若坐标原点O到直线l的距离为,求△AOB面积的最大值.2016-2017学年度5月份月考高二数学(理科)附加试卷1.(选修4-2:矩阵与变换)已知矩阵302Aa⎡⎤=⎢⎥⎣⎦,A的逆矩阵1131Ab-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求2A.2.(选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为2cos (0)a a ρθ=≠,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为31(43x t t y t =+⎧⎨=+⎩为参数),若直线l 与圆C 恒有公共点,求实数a 的取值范围.3已知动圆过定点R (0,2),且在x 轴上截得线段MN 的长为4,直线l :y=kx+t (t >0)交y 轴于点Q .(1)求动圆圆心的轨迹E 的方程;(2)直线l 与轨迹E 交于A ,B 两点,分别以A ,B 为切点作轨迹E 的切线交于点P ,若||•||sin∠APB=||•||.试判断实数t 所满足的条件,并说明理由.4. 设a >b >0,n 是正整数,A n =1n +1(a n +a n -1b +a n -2b 2+…+a 2b n -2 +ab n -1+b n) ,B n =(a +b 2)n . (1)证明:A 2>B 2;(2)比较A n 与B n (n ∈N*)的大小,并给出证明.2016-2017学年度5月份月考高二数学(理科)试卷祝各位同学考试顺利!(请将正确的答案写在答题纸上,否则无效。
2016-2017学年度高中学生学业质量水平测试高一语文试卷参考答案1.D.(A项“熨贴”应为“熨帖”、“遣绻”应为“缱绻”;B项应为“震耳欲聋”;C项应为“游弋”的“弋”应读为“yì”)(3分)2.B.(弥望应解释为“满眼”。
)(3分)3.A.(B项,“设身处地”意即设想自己处在别人的那种境地。
指替别人的处境着想;C项,“不绝如缕”比喻细线一样连着,差点儿就要断了,用来形容局势危急或声音细微悠长。
此处应用“不绝于耳”;D项“不以为意”不把它放在心上。
表示对人、对事抱轻视态度。
此处应用“不以为然”) (3分)4.C.(《四世同堂》的体裁是长篇小说。
)(3分)5.D.(理:命数,理数。
)(3分)6.C.(A.连词,表转折,却/连词,表假设,那么B.连词,相当于“而”,表修饰/连词,表因果,因为C.结构助词,主谓之间取消独立性D. 句末语气词,了,啊,呢/作词尾,相当于“然”,译为“……的样子”“……) (3分)7.D.(①⑥为状语后置句,②④为判断句,③⑦为定语后置句,⑤⑧为宾语前置句) (3分)8.B.(“舞龙灯”是过年时的习俗)(3分)9.C.(①为端午节赛龙舟的情景②描写元宵节赏花灯的情景③描写的是中秋赏月的情景④描写的是重阳节的习俗) (3分)10. C.(说法绝对,夸大了没有“身世感”的后果。
)(3分)11.A.(用,因为。
)(3分)12.D.(A连词,表转折/连词,表顺承;B介词,对于/介词,和、跟;C连词,于是/副词,竟然;D所字结构)(3分)13.(1)他登记并抓捕行凶作恶的人,用若不改变就将极其严厉地追究惩治来告诫他们。
但是,完全用仁爱宽容来治理其他事务。
(得分点:“籍”1分;状语后置,1分;“案治”1分;“一”1分)(2)等到被替代离任,州里的百姓关闭城门挽留他,靠近傍晚时,与百姓争抢着才出了城门。
(得分点:“比”1分,“阖”1分,“薄”1分,“乃”1分。
)14.仁厚,不伤及无辜;不畏权贵;善推贤良,拒绝私托;体恤百姓,赈济流民。
姓名_____________ 学号_________ 班级________一、填空题:1.集合{}41,2,3,=A ,{}R x 3,x -1|∈<<=x B ,则=B A ___{1 ,2}_________ .2.与︒2017角终边相同的最小正角为____︒217_______.3.已知扇形的圆心角为2rad,弧长为4cm,则扇形的半径为___2_cm____.4.函数)32tan(5+=x y 的最小正周期为____2π____.5.若幂函数f(x)的图像经过点(2,41),则f(3)=___ 91______. 6.设2log ,2,3.023.02===c b a ,则c b a ,,的大小顺序为 a<b<c_______.(由小到大)7.计算:=++-2lg 225lg ])2[(216 ___9___ .8.已知→a ,→b 满足1=→a , 2=→b , 3=-→→b a ,则→a 与→b 的夹角为_____3π______. 9.设函数x y 1=与)1ln(+=x y 图像的交点坐标为()00,y x ,且N k k k x ∈+∈),1,(0,则_____1___=k .10.将函数f (x )=sinx 图象上每个点的横坐标变为原来的倍(纵坐标不变),再将得到的图象向左平移6π个单位长度,记所得图象的函数解析式为y=g (x ),则g (6π)的值是____23____.11.已知函数⎪⎩⎪⎨⎧<-≥+=.0,,0,)(22x x x x x x x f 若)3()2(f a f >-,则实数a 的取值范围是_a<-1或_a>5_____.12.函数)62sin(3π+=x y []()π,0∈x 的单调递增区间为___⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,,,326,0_____.13.在ABC ∆中,若→→→→==b AC a AB ,,点E D ,满足→→=BD BC 2,→→=EC AE 3,AD 与BE相交于点P ,则用→a ,→b 表示→AP 为__)(73→→→+=b a AP ___.14.定义在[-22ππ,]的函数f(x)满足⎪⎩⎪⎨⎧>+≤=,,21cos ,,sin )(a x x a x x x f 若存在实数b ,使函数g(x)=f(x)-b 有两个零点,则实数a 的取值范围是_⎪⎭⎫⎝⎛⋃⎪⎭⎫⎢⎣⎡2,60,2-πππ,_________.二、解答题15. 已知2-tan =α,求下列各式的值.(1))sin(3)3cos(2)2sin(6)23cos(απαπαπαπ-++++-; (2)αααα22cos 2cos sin sin 1--.解:(1)原式=ααααsin 3cos 2cos 6sin +-+-=ααtan 326tan +-+-=6-2-62+=-1……………………………….7分(2)原式=αααααα2222cos 2cos sin sin cos sin --+=2tan tan 1tan 22--+ααα=2-2414++=45……………………….14分16.已知集合{},0>=x x A {}R x m x x x B ∈>-+=,02,{}R x x a x x C ∈=+++=,01)2(2.(1)求B A ≠⊂,实数m 的取值范围(2)若φ=⋂C A ,求实数a 的取值范围. 解:(1) ,B A ≠⊂∴0>x 时,02>-+m x x 恒成立…………………………………………………………2分 即0>x 时,x x m +<2恒成立,又).0(∞+∈x 时,02>+x x .........4分∴m 0≤………………………………………………………………………………………………………6分 (2) φ=⋂C A ,∴方程01)2(2=+++x a x 无解或解非正︒1 当方程无解时,04,0<<-<∆a ……………………………………………………………………….9分︒2当方程有解且为非正时,设方程两根分别为21,x x ,则0.,0,02121≥≤+≥∆x x x x解得a 0≥综上:实数a 的取值范围是a>-4……………………………………………………………………………..….14分17.在平面直角坐标系中,O 为坐标原点,已知)2,1(=→OA ,)4,4(=→OB (1)若四边形OABC 为平行四边形,求→AC 的坐标;(2)若OAC ∆是以A 为直角顶点的等腰直角三角形,求→OC 的坐标.解:(1) 四边形OABC 为平行四边形 ∴→→=AB OC而)2,3(=-=→→→OA OB AB ………………………………………………...2分 ∴→OC =(3,2) …………………………………………………..……………….…..3分∴→AC =→OC -→OA =(2,0)……………………………………………….………6分 (2)设→OC =(a,b ) OAC ∆是以A 为直角顶点的等腰直角三角形 ∴→→⊥AO AC ,→→=OA OC 2……………………………………………………………..……….9分∴ ⎩⎨⎧=+=+105222b a b a 解得⎩⎨⎧==13b a 或⎩⎨⎧=-=31b a ……………………………………………….…………..13分∴→OC =(3,1)或→OC =(-1,3)………………………………………………14分18.镶嵌在东台海滨整齐划一的风力发电“大风车”吸引着大批游客前来参观度假,下图为一个风力发电风车示意图,风叶OA,OB,OC 夹角两两相等(风叶宽度忽略不计),若0A=OB=OC=40m,中心O 与地面距离OD=80m,假设在某风速恒定不变的情况下,叶片按逆时针方向每分钟转动15圈,如果从风叶OA 与OD 成6π时(如图所示)开始计算时间.(1)将点A 距离地面的高度h(m)表示为时间t(s)的函数:h=Asin(ϕω+t )+b(A>0,ω>0,02-<<ϕπ);(2)在风电叶片转动的一圈内,有多长时间点A 距离地面超过100m?解:(1)由题意得A=40, A+b=120 ∴b=80而叶片逆时针方向每分钟转动15圈∴T=4, 2πω=∴ h=40sin(2πϕ+t )+80………………………..……..6分 又OA 与OD 成︒30时开始计算时间 ∴ ϕ=3π-得 h=40sin(2π3-πt )+80……………………………………….8分 (2)由题意即h=40sin(2π3-πt )+80>100∴ sin(2π3-πt )>21…………………………………..10分ππk 26+ <2π3-πt <ππk 265+k t k 43741+<<+ k N ∈..............14分∴在风电叶片转动的一圈内,有s 34的时间点A 距离地面超过100m (16)分19.已知函数mnf x ++=+33-(x)1x (其中m,n 为常数).(1)如果f(x)是奇函数,求实数m,n 的值; (2)已知m>0,n>0,在(1)的条件下, (1)判断并证明函数f(x)的单调性;(2)若函数98)()()(2++=x af x af x h ,当[]2l o g ,2l o g 33-∈x 时,有1)(≤x h 恒成立,求实数a 的取值范围.解:(1) 设f(x)的定义域为Af(x)是奇函数∴对任意的A x ∈,0)()-(=+x f x f∴m n x+++33-1x +m n +++x -1-x 33-=)31(333)62(9)3(xx x x m m mn mn m n ⋅++-+-+-)(=0……………….3分∴⎩⎨⎧=-=-0303mn m n ∴⎩⎨⎧==31n m 或⎩⎨⎧-=-=31n m ………………………………………………………………6分 (2)由(1)知m=1,n=3即1333-(x)1x ++=+x f ,函数在R 上单调递减……………..8分证明如下:任意2121,,x x R x x <∈且)()(21x f x f -=-+++1333-111x x 1333-221x +++x =)13)(13()33(62112++-x x x x 21x x <∴1233x x >∴0)()(21>-x f x f 即)()(21x f x f >∴函数在R 上单调递减………………………………………………………………………..11分 (3) f(x)是R 上单调递减的奇函数∴当[]2log ,2log 33-∈x ,f(x)[]1,1-∈………………………………………………….12分设f(x)=t,t []1,1-∈98)(2++=at at t ϕ则令, t []1,1-∈,有1)(≤t ϕ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤-≤∴1)21(1)1(1)1(ϕϕϕ …………………………………………………………….14分⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+≤≤≤≤+≤1984-1-1981-19821-a a 即解得18194-≤≤a ∴18194-≤≤a ………………………………………………………………………………………..16分20. 已知函数,ln )(x x f =)1(log )(+=x x g a ,()1,0≠>a a ,且1)1(=-e g (e 为自然对数的底数) (1)求a 的值;(2)解关于x 的不等式6)()(<+x g x f e ; (3)设)(x ϕ=2)(x f e, 则关于x 的方程)(242)332(22m x m x x m x x -=--+--ϕϕ有且仅有唯一实数解,求实数m 的取值范围.解:(1) 1)1(=-e g∴1log =e a ∴a=e …………………………………………………………………………………….3分(2) )1ln(ln )()(+++=x x x g x f e e∴6)()(<+x g x f e ,等价于⎪⎩⎪⎨⎧>+><+0106)1(x x x x∴不等式的解集为)2,0(…………………………………………………………………………8分 (3) )(x ϕ=2)(x f e=x (x>0)由)(242)332(22m x m x x m x x -=--+--ϕϕ 得:m x m x x m x x -=--+--24233222………………………………….…………..9分 即m x m x m x x m x x -=----+--)(33233222)(∴)332()(33222m x x m x m x m x x ----=---- 而)332)(332()332()(222m x x m x m x x m x m x x m x --+-----=---- ∴=----m x m x x 3322)332)(332(22m x x m x m x x m x --+----- 化简得)(m x m x x ----3322 )3321(2m x x m x --+-+=0 ∴m x m x x -=--3322 函数x y =在()∞+,0单调 ∴m x m x x -=--3322>0即方程m x x =-22在x>m 有且仅有唯一实数解……………………………………………………………………….12分 又x x m 22-= ∴x>x x 22- 解得:0<x<3 等价于方程m x x =-22在0<x<3有且仅有唯一实数解 设x x x 2)(2-=ϕ ,1=对x∴有且仅有唯一实数解时m {})3,0[1-⋃∈…………………………………………………………………………………16分。
2016/2017学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:锥体体积公式:13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上.1.函数()2sin(2)3f x x π=-的最小正周期为 ▲ .2.已知直线l 过定点(1,0),且倾斜角为3π,则直线l 的一般式方程为 ▲ . 3.若2sin()23πα+=,则cos2α= ▲ . 4.在Rt ABC ∆中,2A π=,4AB =,3AC =,则CA CB ⋅= ▲ .5.设等差数列{}n a 的前n 项和为n S ,若首项13a =-,公差2d =,5k S =,则正整数k = ▲ .6.设a 、b 表示两条直线,α、β表示两个平面,则下列命题正确的是 ▲ .(填写所有正确命题的序号)①若a //b ,a //α,则b //α; ②若a //b ,a α⊂,b β⊥,则αβ⊥; ③若α//β,a α⊥,则a β⊥;④若αβ⊥,a b ⊥,a α⊥,则b β⊥. 7.已知正项等比数列{}n a ,且153537225a a a a a a ++=,则35a a += ▲ . 8.若圆锥的侧面展开图是半径为5、圆心角为65π的扇形,则该圆锥的体积为 ▲ . 9.已知向量a 是与向量b =(-3,4)同向的单位向量,则向量a 的坐标是 ▲ . 10.已知函数3cos(2)y x ϕ=+是奇函数,则||ϕ的最小值为 ▲ .11.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线2410mx y m --+=()m R ∈相切的所有圆中,半径最大的圆的标准方程为 ▲ .12.已知数列{}n a 满足1122,211,2n n n a n k a a n k ---=+⎧=⎨+=⎩(*k N ∈),若11a =,则20S = ▲ .13.如图,点P 是正六边形ABCDEF 的边上的一个动点,设AP xAB y AE =+,则x y +的最大值为 ▲ .14.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若22a b bc =+,则ab的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,已知平行四边形ABCD 中,BC =6,正方形ADEF 所在平面与平面ABCD 垂直,G 、H 分别是DF 、BE 的中点.(1)求证:GH ∥平面CDE ;(2)若CD =2,DB =F -ABCD 的体积.16.(本小题满分14分)已知向量2x ka b =+和y a b =-,其中(1,2)a =-,(4,2)b =,k R ∈. (1)当k 为何值时,有x ∥y ;(2)若向量x 与y 的夹角为钝角,求实数k 的取值范围.FABCEDH GABCDE F(第13题图)如图,在平面直角坐标系xOy 中,点P 是圆O :221x y +=与x 轴正半轴的交点,半径OA 在x 轴的上方,现将半径OA 绕原点O 逆时针旋转3π得到半径OB .设POA x ∠=(0x π<<),()()f x OA OB OP =+⋅.(1)若2x π=,求点B 的坐标; (2)求函数()f x 的最小值,并求此时x 的值.18.(本小题满分16分)如图,OA 、OB 是两条公路(近似看成两条直线),3AOB π∠=,在A O B ∠内有一纪念塔P(大小忽略不计),已知P 到直线OA 、OB 的距离分别为PD 、PE ,PD =6千米,PE =12千米.现经过纪念塔P 修建一条直线型小路,与两条公路OA 、OB 分别交于点M 、N . (1)求纪念塔P 到两条公路交点O 处的距离; (2)若纪念塔P 为小路MN 的中点,求小路MN 的长.x设无穷等差数列{}n a 的前n 项和为n S ,已知11a =,312S =. (1)求24a 与7S 的值;(2)已知m 、n 均为正整数,满足m n a S =.试求所有n 的值构成的集合.20.(本小题满分16分)如图,已知动直线l 过点1(0,)2P ,且与圆22:1O x y +=交于A 、B 两点. (1)若直线l,求OAB ∆的面积;(2)若直线l 的斜率为0,点C 是圆O 上任意一点,求22CA CB +的取值范围; (3)是否存在一个定点Q (不同于点P ),对于任意不与y 轴重合的直线l ,都有PQ 平分AQB ∠,若存在,求出定点Q 的坐标;若不存在,请说明理由.2016/2017学年度第二学期高一年级期终考试高一数学参考答案一、填空题:每小题5分,共计70分. 1、π20y -3、19-4、95、56、②③7、58、12π9、34(,)55- 10、2π11、22(1)2x y -+=12、205613、214、二、解答题:本大题共6小题,共计90分.15. 解: (1)证明:连接FC ,∵EF ∥AD ,AD ∥BC ,∴EF ∥BC . 又EF =AD =BC ,∴四边形EFBC 是平行四边形, ……………2分 又H 为BE 的中点 ∴H 为FC 的中点.又∵G 是FD 的中点,∴HG ∥CD . ……………4分 ∵HG ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE . ……………6分(2)∵平面ADEF ⊥平面ABCD ,交线为AD , 且FA ⊥AD ,又FA ⊂平面ADEF∴FA ⊥平面ABCD . ……………8分 ∵AD =BC =6,∴FA =AD =6.又∵CD =2,DB =42,CD 2+DB 2=BC 2,∴BD ⊥CD . ……………10分 ∵SABCD=CD·BD=82,∴V F -ABCD =13SABCD·FA=13×82×6=162. ……………14分16.解:(1)由//x y ,设x t y =,所以2()ka b t a b +=-,即()(2)t k a t b -=+, ……………2分 又(1,2)a =-,(4,2)b =,得a 与b 不共线, ……………4分 所以20t k t -=+=,解得2k =-. .……………6分(2)因向量x 与y 的夹角为钝角,所以(2)()0x y ka b a b ⋅=+⋅-<, ……………8分 又(1,2)a =-,(4,2)b =,得0a b ⋅=, ……………10分所以2225400x y ka b k ⋅=-=-<,即8k <, ……………12分 又向量x 与y 不共线,由(1)知2k ≠-,所以8k <且2k ≠-. ……………14分17.解:(1)因点P 是圆O :221x y +=与x 轴正半轴的交点,又2x π=,且半径OA 绕原点O 逆时针旋转3π得到半径OB , 所以56POB π∠=, ……………3分由三角函数的定义,得5cos16B x π=,5sin 16B y π=,解得B x =,12B y =,所以1()2B . ……………6分(2)依题意,(1,0)OP =,(cos ,sin )OA x x =,(cos(),sin())33OB x x ππ=++, (8)分所以3()cos()cos cos 322f x x x x x π=++=-,所以1()sin ))23f x x x x π-=-, ……… 12分因0x π<<,2333x πππ-<-<,所以当32x ππ-=时,即56x π=,函数()f x 取最小值 (14)分18.解法一:(1)以O 为原点,OA 所在直线为x 轴,建立直角坐标系,则直线OB 的方程为y =, (2)分又P 到直线OA 的距离PD =6千米,设(,6)P t , ……… 4分所以12=,解得t =或-(舍负),所以OP . 7分(2)因P 为小路MN 的中点,点M 在x 轴上,即0M y =,所以12N y =, ……… 9分又点N 在OB 上,所以N N y =,所以N x = ……… 10分由(1)知P ,所以M x =24MN =. ……… 14分答:(1)P 到点O 处的距离为(2)小路MN 的长为24千米. (16)分解法二:(1)设POA α∠=,则3POB πα∠=-, (2)分因P 到直线OA 、OB 的距离分别为PD 、PE ,PD =6千米,PE =12千米, 所以612sin sin()3OP παα==-, ……… 4分所以2sin sin()3παα=-,化简得tan α=又22sin cos 1αα+=,所以sin α,6sin OP α==. ………7分 (2)设PMO θ∠=,则23PMN πθ∠=-, ……… 9分因P 为小路MN 的中点,即PM PN =, 所以6122sin sin()3πθθ=-,即2sin()2sin 3πθθ-=, ……… 12分 解得6πθ=,所以12224sin6MN PM π===. (14)分答:(1)P 到点O处的距离为(2)小路MN 的长为24千米. ……… 16分19. 解:(1)因数列{}n a 是等差数列,所以32312S a ==,所以24a =, ……… 2分又11a =,所以公差3d =,所以13(1)32n a n n =+-=-,213(132)22n n nS n n -=+-=, (4)分所以2470a =,27377702S ⋅-==. (6)分(2)由(1)知32m a m =-,由m n a S =,得23322n nm --=, (8)分所以2223433442(1)6623n n n n n n n m n -++-++===--, (10)分因2(1)n n n n +=+为正偶数,22n n+为正整数, (12)分所以只需2(1)3n -为整数即可,即3整除1n -, ……… 14分所以,所有n 的值构成的集合为{}31,A n n k k N ==+∈. ……… 16分20. 解:(1)因为直线ll 213:+=x y ,则点O 到直线l 的距离412|21|==d ,……… 2分所以弦AB 的长度2154112||2=⎪⎭⎫⎝⎛-=AB ,所以16152154121=⋅⋅=∆OAB S . ………4分(2)因为直线l 的斜率为0,所以可知⎪⎪⎭⎫⎝⎛-21,23A 、⎪⎪⎭⎫ ⎝⎛21,23B , ………6分设点),(y x C ,则122=+y x ,又()222222221122222CA CB x y x y x y y ⎛⎛⎛⎫⎛⎫+=++-+-+-=++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,… 8分 所以2242CA CB y +=-,又[]1,1-∈y , 所以22CA CB +的取值范围是[]2,6.……… 9分(3)法一: 若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q 、又设),(11y x A 、),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y , ……… 10分代入圆O 得043)1(:22=-++kx x k , 所以221221143,1kx x k kx x +-=+-=+(*) ……… 12分若PQ 平分AQB ∠,则根据角平分线的定义,AQ 与BQ 的斜率互为相反数有12120y t y t x x --+=,又1112y kx =+,2212y kx =+, 化简可得))(21(2:2121x x t x kx +-=,……… 14分代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q ……… 16分 解法二若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q 、又设),(11y x A 、),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y , ……… 10分代入圆O 得043)1(:22=-++kx x k , 所以221221143,1kx x k kx x +-=+-=+(*) ……… 12分 若PQ 平分AQB ∠,则根据角平分线的几何意义,点A 到y 轴的距离1d ,点B 到y 轴的距离2d 满足21:d QBd QA =,即||)(||)(2222212121x y t x x y t x -+=-+,化简可得))(21(2:2121x x t x kx +-=,……… 14分代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q ……… 16分。
江苏省东台市2017-2018学年高一数学上学期期中试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省东台市2017-2018学年高一数学上学期期中试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省东台市2017-2018学年高一数学上学期期中试题的全部内容。
2017—2018学年度第一学期期中考试高一数学试卷一.填空题:(本大题共14小题,每小题5分,共70分)。
1.已知集合{}4,3,2,1=A ,B={}2,3,4,5,则A∩B= ▲ .2.已知{}1A x x =<-,B {}x x m =<,若B 是A 的子集,则m的取值范围为▲ 。
3.函数lg(4)y x =+-的定义域为 ▲ . 4.函数1()3(01)x f x a a a -=+>≠且恒过定点 ▲ . 5.函数()21f x x =+,(1,3]x ∈-的值域为 ▲ .6.已知函数()y f x =在定义域在R 上是单调减函数,且(1)(3)f a f a +<则a 的取值范围为 ▲ .7.已知幂函数的图像过点1(2,)4,则幂函数的解析式()f x = ▲ .8.若函数2()2f x x mx m =-+的一个零点大于1,另一个零点小于1,则实数m 的取值范围为 ▲ 。
9。
已知偶函数2()(2)1f x x m x =++-,(,)x m n ∈,则m n = ▲ .10。
若0.40.4(1,2),0.4,log ,m m a b m c m ∈===,将,,a b c 从小到大排列为 ▲ . 11.直线y=1与曲线y =x2-|x |+a 有四个交点,则a 的取值范围 ▲ . 12.已知函数2()ln(1)f x x x=+-的零点在区间(,1)k k +上,则整数k 的值为 ▲ . 13.已知函数331(1)()2log (1)x x f x a x x -≤⎧=⎨+>⎩是R 上的增函数,则a 的取值范围是 ▲ .14.已知函数2()41f x x x =-+,若()f x 在区间[],31a a +上的最大值为1,则a 的取 值范围为 ▲ .二.解答题(共6题,共90分,解答应写出文字说明,证明过程或演算步骤)。
2016-2017学年度第一学期高一级数学科期末考试试卷本试卷分选择题和非选择题两部分,共8页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上.2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁和平整.第一部分选择题(共 60 分)一、 选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项涂在答题卡相应的位置.) 1.已知集合(){}{}30,ln 1M x Z x x N x x =∈-≤=<,则M N ⋂=( ) A .{1,2}B .{2,3}C .{0,1,2}D .{1,2,3}2.函数xx x f 2ln )(-=的零点所在区间是( ) A .)1,1(eB .)2,1(C . )3,2(D .)3,(e3.若m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A .若m ⊂β,α⊥β,则m ⊥α B .若m ⊥β,m ∥α,则α⊥β C .若α∩γ=m ,β∩γ=n ,m ∥n ,则α∥β D .若α⊥γ,α⊥β,则β⊥γ 4.已知函数()22x xf x e+=,设0.512111lg log 533a b c ⎛⎫=== ⎪⎝⎭,,,则有( ) A .()()()f a f b f c <<B . ()()()f b f a f c <<C .()()()f b f c f a <<D . ()()()f a f c f b <<5.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为()6.一种专门侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB 内存(1MB=210KB ),则开机后经过( )分钟.A. 45B. 44C. 46D.477.若当x R ∈,函数()x f x a =始终满足0()1f x <≤,则函数1()log a f x x=的图象大致为( )A B C D8. 在平面直角坐标系中,下列四个结论:①每一条直线都有点斜式和斜截式方程; ②倾斜角是钝角的直线,斜率为负数;③方程12y k x +=-与方程()12y k x +=-可表示同一直线; ④直线l 过点()00,P x y ,倾斜角为90,则其方程为x x =;其中正确的个数为:A.1B.2C.3D.49.如右上图所示,圆柱形容器的底面直径等于球的直径2R ,把球放在在圆柱里,注入水,使水面与球正好相切,然后将球取出,此时容器中水的深度是( ) A 2R . B.43R C . 23R D. 3R10.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A.4+B. 4+C. 4+D. 4+11.如图,正方体AC1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为H ,则以下命题中,错误的是( )A.点H 是△A 1BD 的垂心B.AH 垂直于平面CB 1D 1C.AH 的延长线经过点C 1D.直线AH 和BB 1所成角为45°12.已知函数()y f x =是定义域为R 的偶函数.当0x ≥时,25(02)16()11(2)2xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程[]2()()0,,f x af x b a b R ++=∈有且仅有6个不同实数根,则实数a 的取值范围是( ) A .59,24⎛⎫-- ⎪⎝⎭ B. 9,14⎛⎫-- ⎪⎝⎭ C. 59,24⎛⎫--⋃ ⎪⎝⎭9,14⎛⎫-- ⎪⎝⎭ D. 5,12⎛⎫-- ⎪⎝⎭第二部分非选择题(共90分)二、填空题:(本大题共4小题,每小题5分,共20分.答案填在答卷上.)13.计算302log 5213lg2lg 55⎛⎫-+- ⎪⎝⎭的结果是 * .14. 已知42,lg a x a ==,则x = * .15.过点(1,2)且在两坐标轴上的截距相等的直线的方程是 * .16.已知:在三棱锥P ABQ 中,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH ,则多面体BCHF ADGE -的体积与三棱锥P ABQ 体积之比是 * .三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤,并写在答题卷相应位置.) 17. (本小题满分10分)如图,在平行四边形OABC 中,O 为坐标原点, 点C (1,3(1)求OC 所在直线的斜率;(2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程. 18.(本小题满分12分) 如图,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且AE=1,AB=2. (1)求证:AB ⊥平面ADE ; (2)求凸多面体ABCDE 的体积.19.(本小题满分12分) 已知函数2()()31x f x a a R =+∈+为奇函数, (1)求a 的值;(2)当01x ≤≤时,关于x 的方程()1f x t +=有解,求实数t 的取值范围; (3)解关于x 的不等式)22()(2m x f mx x f -≥-20. (本小题满分12分)某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A 的收益)(x f 与投资金额x 的关系是x k x f 1)(=,()(x f 的部分图像如图1);投资股票等风险型产品B 的收益)(x g 与投资金额x 的关系是x k x g 2)(=,()(x g 的部分图像如图2);(收益与投资金额单位:万元). (1)根据图1、图2分别求出)(x f 、)(x g 的解析式;(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A 及股票等风险型产品B 两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?21. (本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,AC ⊥BC , AC =BC =CC 1=2,M ,N 分别为AC ,B 1C 1的中点. (1)求线段MN 的长; (2)求证:MN ∥平面ABB 1A 1;(3)线段CC 1上是否存在点Q ,使A 1B ⊥平面MNQ ?说明理由.22.(本小题满分12分)已知函数2()(,,)f x ax bx c a b c R =++∈.(1)若0,0,0a b c <>=,且()f x 在[0,2]上的最大值为98,最小值为2-, 试求,a b 的值; (2)若1c =,01a <<,且()||2f x x≤对任意[1,2]x ∈恒成立, 求b 的取值范围(用a 来表示).2016-2017学年度第一学期图2图11.8 0 y 0.45图1。
2016年江苏省盐城市东台市中考数学一模试卷一、选择题:本大题共8小题,每小题3分,共24分1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x43.不等式组的解在数轴上表示为()A.B.C.D.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是155.面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间6.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切7.如图,圆O的半径为6,点A、B、C在圆O上,且∠ACB=45°,则弦AB的长是()A.5 B.6 C.6D.68.一个矩形被一条直线分成面积为x,y的两部分,则y与x之间的函数关系用图象表示只可能是()A.B.C.D.二、填空题:本大题共10小题,每小题3分,共30分9.9的算术平方根是______.10.第六次全国人口普查数据显示,盐城市常住人口约为821万人,用科学记数法表示821万为______.11.已知x﹣y=1,则x2﹣y2﹣2y的值为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=______.13.如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是______.14.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为______cm.15.若反比例函数y=mx|m|﹣2的图象分布于第二、四象限,则m的值为______.16.已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为______.17.在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,则△ABC的面积为______.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x 轴上,点O,B1,B2,B3,…都在直线l上,则点A2016的坐标是______.三、解答题:本大题共10小题,共96分19.(1)计算: +cos60°﹣(π+2016)0+()﹣2(2)先化简÷(﹣),然后选取一个你喜欢的a值带入求值.20.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次共抽查了______个家长;(2)请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);(3)已知该校共有1200名学生,持“赞成”态度的学生估计约有______人.21.在两只不透明的袋子中分别装有4张和3张除数字外完全相同的卡片,甲袋中的卡片上分别标有1、2、3、4四个数字,乙袋中的卡片上分别标有1、2、3三个数字,现分别从两个袋子中各抽出一张卡片,试解答下列问题:(1)分别用A、B表示从甲、乙两个袋子中抽出的卡片上的数字,请用树状图法或列表法写出(A,B)的所有取值;(2)求在(A,B)中使关于x的一元二次方程x2﹣Ax+2B=0有实数根的概率.22.五一节,某校数学兴趣小组的同学相约去东台西溪“海春轩塔”参观,并测量其高度.如图,塔身BD与地面垂直,他们先在A处测得塔顶端点D的仰角为45°,再沿着BA的方向后退16cm至C处,测得塔顶端点D的仰角为30°,求“海春轩塔”BD的高度.(≈1.73,结果保留一位小数)23.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.24.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.25.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n和k的值;(2)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标.26.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是60件,而销售单价每涨1元,就会少售出2件玩具.(1)设该种品牌玩具的销售单价为x元(x>40),写出销售玩具获得的利润W(元)与x 之间的函数关系式,并计算若该商场获得了800元的销售利润,则该玩具销售单价x应定为多少元?(2)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且该商场要完成不少于48件的销售任务,求该商场销售该品牌玩具获得的最大利润是多少?27.问题背景:(1)如图1,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,作DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,写出MD和ME之间的数量关系是______.数学思考:(2)如图2,在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请写出证明过程.拓展探究:(3)如图3,在任意△ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD和ME,试判断△MED的形状,并说明理由.28.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C,D两点,其中点C在y轴上,点D的横坐标为3,点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.2016年江苏省盐城市东台市中考数学一模试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:2016的相反数是﹣2016,故选:B.2.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加;同底数幂的除法底数不变指数相减;积的乘方等于乘方的积;同底数幂的乘法底数不变指数相加;可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.3.不等式组的解在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由3x+2>5,解得x>1,由3﹣x≥1,解得x≤2,不等式组的解集是1<x≤2,故选:C.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15【考点】算术平均数;中位数;众数;极差.【分析】根据平均数,中位数,众数,极差的概念逐项分析.【解答】解:A、80出现的次数最多,所以众数是80,A正确;B、把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;C、平均数是=80,C正确;D、极差是90﹣75=15,D正确.故选:B5.面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间【考点】估算无理数的大小.【分析】易得正方形的边长,看在哪两个正整数之间即可.【解答】解:正方形的边长为,∵<<,∴3<4,∴其边长在3m与4m之间.故选:B.6.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.7.如图,圆O的半径为6,点A、B、C在圆O上,且∠ACB=45°,则弦AB的长是()A.5 B.6 C.6D.6【考点】圆周角定理;等腰直角三角形.【分析】首先连接OA,OB,由∠ACB=45°,可得△AOB是等腰直角三角形,继而求得答案.【解答】解:连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵⊙O的半径为6,∴OA=OB=6,∴AB=OA=6.故选C.8.一个矩形被一条直线分成面积为x,y的两部分,则y与x之间的函数关系用图象表示只可能是()A.B.C.D.【考点】矩形的性质;函数的图象.【分析】因为一个矩形被直线分成面积为x,y的两部分,矩形的面积一定,y随着x的增大而减小,但是x+y=k(矩形的面积是一定值),由此可以判定答案.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y>0,图象位于第一象限,所以只有A符合要求.故选A.二、填空题:本大题共10小题,每小题3分,共30分9.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.10.第六次全国人口普查数据显示,盐城市常住人口约为821万人,用科学记数法表示821万为8.21×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将821万用科学记数法表示为8.21×106.故答案为:8.21×106.11.已知x﹣y=1,则x2﹣y2﹣2y的值为1.【考点】平方差公式.【分析】首先利用平方差公式,求得x2﹣y2﹣2y=(x+y)(x﹣y)﹣2y,继而求得答案.【解答】解:∵x﹣y=1,∴x2﹣y2﹣2y=(x+y)(x﹣y)﹣2y=x+y﹣2y=x﹣y=1.故答案为:1.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=52°.【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),则∠1=90°﹣∠3=52°.故答案为:52°.13.如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是.【考点】概率公式;勾股定理;勾股定理的逆定理.【分析】由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,∴使△ABC为直角三角形的概率是:.故答案为:.14.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为18cm.【考点】相似三角形的应用.【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.【解答】解:∵DE∥BC,∴△AED∽△ABC∴=设屏幕上的小树高是x,则=解得x=18cm.故答案为:18.15.若反比例函数y=mx|m|﹣2的图象分布于第二、四象限,则m的值为﹣1.【考点】反比例函数的性质.【分析】根据反比例函数的图象,可得比例系数小于零且次数是﹣1,可得答案.【解答】解:由反比例函数y=mx|m|﹣2的图象分布于第二、四象限,得|m|﹣2=﹣1且m<0,解得m=﹣1.故答案为:﹣1.16.已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为72°.【考点】圆锥的计算.【分析】首先求得圆锥的底面周长,即扇形的弧长,然后利用弧长公式即可求解.【解答】解:∵圆锥的底面直径为4cm,∴底面周长是4πcm.设侧面展开图的圆心角度数是n°,∵母线长为10cm,∴=4π,解得:n=72,故答案是:72°.17.在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,则△ABC的面积为30.【考点】三角形的重心.【分析】先根据点O是△ABC的重心得出OD=AD,再由△BOD的面积等于5得出△ABD的面积等于15,再由点D时BC的中点可得出S△ABC=2S△ABD,故可得出结论.【解答】解:∵ABC中,中线AD、BE相交于点O,∴点O是△ABC的重心,∴OD=AD.∵S△BOD=5,∴S△ABD=15.∵点D时BC的中点,∴S△ABC=2S△ABD=30.故答案为:30.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x 轴上,点O,B1,B2,B3,…都在直线l上,则点A2016的坐标是.【考点】一次函数图象上点的坐标特征;等边三角形的性质.【分析】根据题意得出直线BB1的解析式为:y=x,进而得出B,B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(1,0),AO∥A1B1,∠B1OC=30°,∴CB1=OB1cos30°=,∴B1的横坐标为:,则B1的纵坐标为:,∴点B1,B2,B3,…都在直线y=x上,∴B1(,),同理可得出:A的横坐标为:1,∴y=,∴A2(2,),…A n(1+,).∴A2016,故答案为:三、解答题:本大题共10小题,共96分19.(1)计算: +cos60°﹣(π+2016)0+()﹣2(2)先化简÷(﹣),然后选取一个你喜欢的a值带入求值.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)首先进行0次幂和负整数指数次幂以及开方运算,代入特殊角的三角函数值,再进行加减计算即可;(2)首先把分式的分子分母分解因式,化简分式,然后计算括号内的分式,进行分式的除法计算即可.【解答】解:(1)原式=2+﹣1+4=;(2)原式=÷[﹣]=÷(﹣)=•当a=2时,原式=2.20.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次共抽查了100个家长;(2)请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);(3)已知该校共有1200名学生,持“赞成”态度的学生估计约有300人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.【解答】解:(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,故答案为:(1)100;(3)30021.在两只不透明的袋子中分别装有4张和3张除数字外完全相同的卡片,甲袋中的卡片上分别标有1、2、3、4四个数字,乙袋中的卡片上分别标有1、2、3三个数字,现分别从两个袋子中各抽出一张卡片,试解答下列问题:(1)分别用A、B表示从甲、乙两个袋子中抽出的卡片上的数字,请用树状图法或列表法写出(A,B)的所有取值;(2)求在(A,B)中使关于x的一元二次方程x2﹣Ax+2B=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)分2步实验,利用树状图列举出所有情况即可;(2)看使关于x的一元二次方程x2﹣Ax+2B=0有实数根的情况数占总情况数的多少即可.【解答】解:(1)画树状图如下:;(2)∵方程x2﹣Ax+2B=0有实数根,∴△=A2﹣8B≥0,∴使A2﹣8B≥0的(A,B)有(3,1),(4,1),(4,2),∴P(△≥0)==.22.五一节,某校数学兴趣小组的同学相约去东台西溪“海春轩塔”参观,并测量其高度.如图,塔身BD与地面垂直,他们先在A处测得塔顶端点D的仰角为45°,再沿着BA的方向后退16cm至C处,测得塔顶端点D的仰角为30°,求“海春轩塔”BD的高度.(≈1.73,结果保留一位小数)【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据题意得出∠BAD、∠BCD的度数及AC的长,再在Rt△ABD中可得出AB=BD,利用锐角三角函数的定义可得出BD的长.【解答】解:根据题意可知:∠BAD=45°,∠BCD=30°,AC=12m.在Rt△ABD中,∵∠BAD=∠BDA=45°,∴AB=BD.在Rt△BDC中,∵tan∠BCD=,∴=,则BC=BD,又∵BC﹣AB=AC,∴BD﹣BD=16,解得:BD=8+8.答:古塔BD的高度为(8+8)米.23.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.【考点】分式方程的应用.【分析】以人均捐款数为问题,等量关系为:1班人数×90%=2班人数;以人数为问题,等量关系为:1班人均捐款数+4=2班人均捐款数.【解答】解法一:求两个班人均捐款各多少元?设1班人均捐款x元,则2班人均捐款(x+4)元.根据题意得:×(1﹣10%)=,解得:x=36,经检验x=36是原方程的根.∴x+4=40,答:1班人均捐36元,2班人均捐40元.解法二:求两个班人数各多少人?设1班有x人,则2班为(1﹣10%)x人,则根据题意得: +4=.解得:x=50,经检验x=50是原方程的根,∴90%x=45,答:1班有50人,2班有45人.24.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.【考点】切线的性质;解直角三角形.【分析】(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:由(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.25.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n和k的值;(2)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标.【考点】反比例函数与一次函数的交点问题;菱形的性质.【分析】(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据反比函数的性质即可得到当y≥﹣2时,自变量x的取值范围;(3)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标.【解答】解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12;(2)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0;(3)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB==,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).26.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是60件,而销售单价每涨1元,就会少售出2件玩具.(1)设该种品牌玩具的销售单价为x元(x>40),写出销售玩具获得的利润W(元)与x 之间的函数关系式,并计算若该商场获得了800元的销售利润,则该玩具销售单价x应定为多少元?(2)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且该商场要完成不少于48件的销售任务,求该商场销售该品牌玩具获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)利用已知结合销售单价每涨1元,就会少售出2件玩具,表示出涨价后的销量即可,进而得出W与x的函数关系,再利用W=800,得出关于x的等式方程求出即可;(2)利用“玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于48件的销售任务”进而得出不等式组求出x的取值范围,再利用二次函数性质求出最值即可.【解答】解:(1)由题意可得:销量=60﹣2(x﹣40)=140﹣2x,w=(x﹣30)=﹣2x2+200x﹣4200,根据题意得出:﹣2x2+200x﹣4200=800,解得:x1=x2=50.答:玩具销售单价为50元时,可获得800元销售利润.(2)根据题意得:,解得:44≤x≤46,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∵a=﹣2<0,对称轴是直线x=50,∴当44≤x≤46时,W随x增大而增大.=768(元).∴当x=46时,W最大值答:商场销售该品牌玩具获得的最大利润为768元.27.问题背景:(1)如图1,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,作DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,写出MD和ME之间的数量关系是相等.数学思考:(2)如图2,在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请写出证明过程.拓展探究:(3)如图3,在任意△ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD和ME,试判断△MED的形状,并说明理由.【考点】三角形综合题.【分析】(1)根据△ABD是等腰直角三角形,且DF⊥AB,所以得到DF=AB,根据点G 为AC的中点,点M为BC的中点,所以MG为△ABC的中位线,所以MG∥AB,且MG=AB,同理FM∥AC,且FM=AC,得到DF=MG,FM=EG,根据MG∥AB,FM∥AC,所以四边形AFMG是平行四边形,所以∠AFM=∠AGM,证明∠DFM=∠MGE,所以△DFN≌△MGE.(2)DM⊥EM,且DM=EM,理由如下:设AB和DM交于点P,连接FM,GM,由(1)得:DF=MG,FM=EG,∠DFM=∠MGE,证明△DFM≌△MGE,得到DM=EM,由△DFM ≌△MGE,得到∠FDM=∠EMG,所以∠DPA=∠DFP+∠FDM,根据MG∥AB,得到∠DMG=∠DPA=∠DFP+∠FDM,又由∠DMG=∠DM+∠EMG,得到∠DNE=∠DFP=90°,即可解答.(3)类比(1)(2)可得:△MDE是等腰直角三角形.【解答】解:(1)相等,理由:如图1,取BC的中点M,连接DM,EM,MG,FM,∵△ABD是等腰直角三角形,且DF⊥AB,∴BF=AF,∴DF=AB,∵点G为AC的中点,点M为BC的中点,∴MG为△ABC的中位线,∴MG∥AB,且MG=AB,同理FM∥AC,且FM=AC,∴DF=MG,FM=EG,∵MG∥AB,FM∥AC,∴四边形AFMG是平行四边形,∴∠AFM=∠AGM,∵∠AFM+∠BFM=∠AGM+∠CGM=180°,∴∠BFM=∠CGM,∵DF⊥AB,∴∠DFB=90°,同理∠EGC=90°,∴∠DFB=∠EGC,∴∠DFB+∠BFM=∠EGC+∠CGM,∴∠DFM=∠MGE,在△DFM和△MGE中,,∴△DFM≌△MGE,∴MD=ME.(2)MD=ME,理由:作AB、AC的中点F、G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.∵在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME;(3)作AB、AC的中点F、G,连接DF,MF,EG,MG,DE,线段DE与MG交于H,∵点M、F、G分别是BC、AB、AC的中点,∴MF∥AC,MF=AC,MG∥AB,MG=AB,∴四边形MFAG是平行四边形,∴MG=AF,MF=AG.∠AFM=∠AGM.∵△ADB和△AEC是等腰直角三角形,∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°∴MF=EG,DF=MG,∠AFM﹣∠AFD=∠AGM﹣∠AGE,即∠DFM=∠MGE.∵在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴MD=ME,∠MDF=∠EMG,∵MG∥AB,∴∠MHD=∠BFD=90°,∴∠HMD+∠MDH=90°∴∠HMD+∠EMG=90°,即∠DME=90°,∴△DME为等腰直角三角形.28.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C,D两点,其中点C在y轴上,点D的横坐标为3,点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.【考点】二次函数综合题.【分析】(1)先把点C,D坐标确定,再用待定系数法求出b,c;(2)设出点P的坐标,确定出PF∥CO,由PF=CO,求出m即可;(3)先判断出△PMF∽△CNF,得出PM=CM=2CF,由FP的长从两个角度计算建立方程即可.【解答】解:(1)∵直线y=+2经过点C,D∴C(0,2),D(3,),∵抛物y=﹣x2+bx+c经过点C(0,2),D(3,),∴,∴,∴抛物线的解析式y=﹣x2+x+2,(2)∵点P的横坐标为m,且在抛物线上∴P(m,﹣m2+m+2),F(m,m+2),∵PF∥CO,∴当PF=CO时,以O,C,P,F为顶点的四边形是平行四边形①当0<m<3时,PF=﹣m2+m+2﹣(m+2)=﹣m2+3m,∴m1=1,m2=2,即当m=1或2时,四边形OCPF是平行四边形,②当m≥3时,PF=(m+2)﹣(﹣m2+m+2)=m2﹣3m,∴m1=,m2=(舍去),即当m=时,四边形OCFP是平行四边形,当m=1或2或时,四边形O,C,P,F为顶点的四边形是平行四边形,(3)如图,当点P在CD上方且∠PCF=45°时,作PM⊥CD,CN⊥PF,∴△PMF∽△CNF,∴,∴PM=CM=2CF,∴PF=FM=CF=×CN=CN=m,∵PF=﹣m2+3m,∴﹣m2+3m=m,∴m1=,m2=0(舍去)∴P(,).同理可得:另外一点P(,).2016年9月20日初中数学试卷灿若寒星制作。
2016-2017学年江苏省盐城市高一(下)期末数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)函数的最小正周期为.2.(5分)已知直线l过定点(1,0),且倾斜角为,则直线l的一般式方程为.3.(5分)若,则cos2α=.4.(5分)在Rt△ABC中,,AB=4,AC=3,则=.5.(5分)设等差数列{a n}的前n项和为S n,若首项a1=﹣3,公差d=2,S k=5,则正整数k=.6.(5分)设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是.(填写所有正确命题的序号)①若a∥b,a∥α,则b∥α;②若a∥b,a⊂α,b⊥β,则α⊥β;③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.7.(5分)已知正项等比数列{a n},且a1a5+2a3a5+a3a7=25,则a3+a5=.8.(5分)若圆锥的侧面展开图是半径为5、圆心角为的扇形,则该圆锥的体积为.9.(5分)已知向量是与向量=(﹣3,4)同向的单位向量,则向量的坐标是.10.(5分)函数y=3cos(2x+φ)是奇函数,则|φ|的最小值是.11.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线2mx﹣y﹣4m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.12.(5分)已知数列{a n}满足(k∈N*),若a1=1,则S20=.13.(5分)如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设=x+y,则x+y的最大值为.14.(5分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若a2=b2+bc,则的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD 垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=4,求四棱锥F﹣ABCD的体积.16.(14分)已知向量和,其中,,k∈R.(1)当k为何值时,有∥;(2)若向量与的夹角为钝角,求实数k的取值范围.17.(14分)如图,在平面直角坐标系xOy中,点P是圆O:x2+y2=1与x轴正半轴的交点,半径OA在x轴的上方,现将半径OA绕原点O逆时针旋转得到半径OB.设∠POA =x(0<x<π),.(1)若,求点B的坐标;(2)求函数f(x)的最小值,并求此时x的值.18.(16分)如图,OA、OB是两条公路(近似看成两条直线),,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.(1)求纪念塔P到两条公路交点O处的距离;(2)若纪念塔P为小路MN的中点,求小路MN的长.19.(16分)设无穷等差数列{a n}的前n项和为S n,已知a1=1,S3=12.(1)求a24与S7的值;(2)已知m、n均为正整数,满足a m=S n.试求所有n的值构成的集合.20.(16分)如图,已知动直线l过点,且与圆O:x2+y2=1交于A、B两点.(1)若直线l的斜率为,求△OAB的面积;(2)若直线l的斜率为0,点C是圆O上任意一点,求CA2+CB2的取值范围;(3)是否存在一个定点Q(不同于点P),对于任意不与y轴重合的直线l,都有PQ平分∠AQB,若存在,求出定点Q的坐标;若不存在,请说明理由.2016-2017学年江苏省盐城市高一(下)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)函数的最小正周期为π.【考点】H1:三角函数的周期性.【解答】解:函数的最小正周期为=π,故答案为:π.2.(5分)已知直线l过定点(1,0),且倾斜角为,则直线l的一般式方程为x﹣y ﹣=0.【考点】IG:直线的一般式方程与直线的性质.【解答】解:∵直线l的倾斜角为,∴斜率k=tan=,又直线l过点(1,0),∴直线l的方程为y=(x﹣1),即x﹣y﹣=0故答案为:x﹣y﹣=03.(5分)若,则cos2α=.【考点】GF:三角函数的恒等变换及化简求值.【解答】解:由,得cosα=.∴cos2α=2cos2α﹣1=2×.故答案为:.4.(5分)在Rt△ABC中,,AB=4,AC=3,则=9.【考点】9O:平面向量数量积的性质及其运算.【解答】解:如图,∵,AB=4,AC=3,∴.故答案为:9.5.(5分)设等差数列{a n}的前n项和为S n,若首项a1=﹣3,公差d=2,S k=5,则正整数k=5.【考点】85:等差数列的前n项和.【解答】解:由a1=﹣3,公差d=2,S k=5,∴﹣3k+=5,化为:k2﹣4k﹣5=0,解得正整数k=5.故答案为:5.6.(5分)设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是②③.(填写所有正确命题的序号)①若a∥b,a∥α,则b∥α;②若a∥b,a⊂α,b⊥β,则α⊥β;③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.【考点】LP:空间中直线与平面之间的位置关系.【解答】解:对于①,若b⊂α,则结论不成立,故①错误;对于②,∵a∥b,b⊥β,∴a⊥β,又a⊂α,∴α⊥β.故②正确;对于③,设m,n为α内的两条相交直线,m′,n′为m,n在β内的射影,则m∥m′,n∥n′,∵a⊥α,∴a⊥m,a⊥n,∴a⊥m′,a⊥n′,∴a⊥β,故③正确;对于④,以正三棱柱ABC﹣A1B1C1为例说明,设侧面ABB1A1为α,底面ABC为β,侧棱CC1为直线a,底面ABC内任意一条直线为b,显然b与平面β的关系不确定,故④错误;故答案为:②③.7.(5分)已知正项等比数列{a n},且a1a5+2a3a5+a3a7=25,则a3+a5=5.【考点】88:等比数列的通项公式.【解答】解:在正项等比数列{a n} 中,a1a5+2a3a5+a3a7=25,即a32+2a3a5+a52=25,∴(a3+a5)2=25,故a3+a5 =5,故答案为:58.(5分)若圆锥的侧面展开图是半径为5、圆心角为的扇形,则该圆锥的体积为12π.【考点】L5:旋转体(圆柱、圆锥、圆台).【解答】解:设圆锥的底面半径为r,则=,∴r=3,∴圆锥的高h==4,∴圆锥的体积V===12π.故答案为:12π.9.(5分)已知向量是与向量=(﹣3,4)同向的单位向量,则向量的坐标是.【考点】91:向量的概念与向量的模.【解答】解:==.故答案为:.10.(5分)函数y=3cos(2x+φ)是奇函数,则|φ|的最小值是.【考点】HB:余弦函数的对称性.【解答】解:∵y=3cos(2x+φ)是奇函数,∴φ=+kπ,k∈Z,当k=0,∴当k=0时,|φ|的最小值是.故答案为:11.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线2mx﹣y﹣4m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.【考点】J9:直线与圆的位置关系.【解答】解:直线2mx﹣y﹣4m+1=0化为2m(x﹣2)+1﹣y=0,可得其过定点(2,1),圆心(1,0)到直线mx﹣y﹣2m﹣1=0的距离d的最大值为,∴圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.12.(5分)已知数列{a n}满足(k∈N*),若a1=1,则S20=2056.【考点】8E:数列的求和.【解答】解:数列{a n}满足(k∈N*),a1=1,可得a2=a1+1=2,a3=2a2﹣2=2,a4=a3+1=3,a5=2a4﹣2=4,…,可得数列{a n}的奇数项成首项为1,公比为2的等比数列,其偶数项比其前一项多1,则S20=(1+2+…+29)+(2+3+…+29+1)=+10+=211+8=2056.故答案为:2056.13.(5分)如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设=x+y,则x+y的最大值为2.【考点】9H:平面向量的基本定理.【解答】解:六边形边长为1,把向量和向量,沿着AD方向和垂直于AD两个方向分解.设AD方向为x轴,垂直于AD方向为y轴如图:那么==(﹣,),=(﹣﹣1,﹣)=(﹣,﹣),=(﹣x﹣y,x﹣y),所以,当的横坐标最小的时候,x+y最大.那么,当P与D重合时,满足这一条件.此时AP=2,x+y=2;最大值为2;故答案为:2.14.(5分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若a2=b2+bc,则的取值范围是(,).【考点】HR:余弦定理.【解答】解:∵△ABC中,a2=b2+bc,又∵由余弦定理可得:a2=b2+c2﹣2bc cos A,∴b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),①∴a2=b2+b2(1+2cos A)=b2(2+2cos A),∴=>0,∴由①利用正弦定理可得:sin C=sin B+2sin B cos A=sin A cos B=sin B cos A,可得:sin(A﹣B)=sin B,∴可得:A﹣B=B,或A﹣B+B=π(舍去),∴A=2B,又∵A+B+C=π,A,B,C均为锐角,由于:3B+C=π,0<2B<,0<B<,0<3B <,∴可得:<C<,可得:<A<,∵在锐角△ABC中,A∈(,),cos A∈(0,),可得:2+2cos A∈(2,3),∴=∈(,).故答案为:(,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD 垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=4,求四棱锥F﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行.【解答】(1)证明:∵EF∥AD,AD∥BC,∴EF∥BC且EF=AD=BC∴四边形EFBC是平行四边形,∴H为FC的中点﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)又∵G是FD的中点∴HG∥CD﹣﹣﹣(4分)∵HG⊄平面CDE,CD⊂平面CDE∴GH∥平面CDE﹣﹣﹣﹣﹣(7分)(2)解:∵平面ADEF⊥平面ABCD,交线为AD且F A⊥AD,∴F A⊥平面ABCD.﹣﹣﹣﹣﹣﹣(9分)∵BC=6,∴F A=6又∵CD=2,DB=4,CD2+DB2=BC2∴BD⊥CD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)∴S ABCD=CD×BD=8∴V F﹣ABCD=×S ABCD×F A=××6=16﹣﹣﹣﹣﹣﹣﹣﹣(14分)16.(14分)已知向量和,其中,,k∈R.(1)当k为何值时,有∥;(2)若向量与的夹角为钝角,求实数k的取值范围.【考点】9O:平面向量数量积的性质及其运算.【解答】解:(1)由,设,所以,即,又,,得与不共线,所以t﹣k=2+t=0,解得k=﹣2,(2)因向量与的夹角为钝角,所以,又,,得,所以,即k<8,又向量与不共线,由(1)知k≠﹣2,所以k<8且k≠﹣2.17.(14分)如图,在平面直角坐标系xOy中,点P是圆O:x2+y2=1与x轴正半轴的交点,半径OA在x轴的上方,现将半径OA绕原点O逆时针旋转得到半径OB.设∠POA =x(0<x<π),.(1)若,求点B的坐标;(2)求函数f(x)的最小值,并求此时x的值.【考点】GL:三角函数中的恒等变换应用.【解答】解:(1)由题意,因点P是圆O:x2+y2=1与x轴正半轴的交点,又,且半径OA绕原点O逆时针旋转得到半径OB,∴.由三角函数的定义,得,,解得,.∴.(2)依题意,,,,由,∴,∴,∵0<x<π,则,∴当时,即,函数f(x)取最小值为.18.(16分)如图,OA、OB是两条公路(近似看成两条直线),,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.(1)求纪念塔P到两条公路交点O处的距离;(2)若纪念塔P为小路MN的中点,求小路MN的长.【考点】HU:解三角形.【解答】解:(1)设∠POA=α,则,∵PD=6,PE=12,∴,∴,化简得,又sin2α+cos2α=1,∴,∴.∴纪念塔P到两条公路交点O处的距离为4千米.(2)设∠PMO=θ,则∠PNO=﹣θ,∵P为MN的中点,即PM=PN,∴,即,解得,∴.∴小路MN的长为24千米.19.(16分)设无穷等差数列{a n}的前n项和为S n,已知a1=1,S3=12.(1)求a24与S7的值;(2)已知m、n均为正整数,满足a m=S n.试求所有n的值构成的集合.【考点】85:等差数列的前n项和.【解答】解:(1)因数列{a n}是等差数列,所以S3=3a2=12,所以a2=4,…(2分)又a1=1,所以公差d=3,所以a n=1+3(n﹣1)=3n﹣2,,…(4分)所以a24=70,.…(6分)(2)由(1)知a m=3m﹣2,由a m=S n,得,…(8分)所以,…(10分)因n2+n=n(n+1)为正偶数,为正整数,…(12分)所以只需为整数即可,即3整除n﹣1,…(14分)所以A={n|n=3k+1,k∈N}.…(16分)20.(16分)如图,已知动直线l过点,且与圆O:x2+y2=1交于A、B两点.(1)若直线l的斜率为,求△OAB的面积;(2)若直线l的斜率为0,点C是圆O上任意一点,求CA2+CB2的取值范围;(3)是否存在一个定点Q(不同于点P),对于任意不与y轴重合的直线l,都有PQ平分∠AQB,若存在,求出定点Q的坐标;若不存在,请说明理由.【考点】J9:直线与圆的位置关系.【解答】解:(1)因为直线l的斜率为,所以直线l,则点O到直线l的距离,…(2分)所以弦AB的长度,所以.…(4分)(2)因为直线l的斜率为0,所以可知、,…(6分)设点C(x,y),则x2+y2=1,又,…(8分)所以CA2+CB2=4﹣2y,又y∈[﹣1,1],所以CA2+CB2的取值范围是[2,6].…(9分)(3)法一:若存在,则根据对称性可知,定点Q在y轴上,设Q(0,t)、又设A(x1,y1)、B(x2,y2),因直线l不与y轴重合,设直线l,…(10分)代入圆O得,所以(*)…(12分)若PQ平分∠AQB,则根据角平分线的定义,AQ与BQ的斜率互为相反数有,又,,化简可得,…(14分)代入(*)式得,因为直线l任意,故,即t=2,即Q(0,2)…(16分)解法二:若存在,则根据对称性可知,定点Q在y轴上,设Q(0,t)、又设A(x1,y1)、B (x2,y2),因直线l不与y轴重合,设直线l,…(10分)代入圆O得,所以(*)…(12分)若PQ平分∠AQB,则根据角平分线的几何意义,点A到y轴的距离d1,点B到y轴的距离d2满足,即,化简可得,…(14分)代入(*)式得,因为直线l任意,故,即t=2,即Q(0,2)…(16分)。
姓名_____________ 学号_________ 班级________一、填空题:1.集合{}41,2,3,=A ,{}R x 3,x -1|∈<<=x B ,则=B A ___{1 ,2}_________ .2.与︒2017角终边相同的最小正角为____︒217_______.3.已知扇形的圆心角为2rad,弧长为4cm,则扇形的半径为___2_cm____.4.函数)32tan(5+=x y 的最小正周期为____2π____.5.若幂函数f(x)的图像经过点(2,41),则f(3)=___ 91______. 6.设2log ,2,3.023.02===c b a ,则c b a ,,的大小顺序为 a<b<c_______.(由小到大)7.计算:=++-2lg 225lg ])2[(216 ___9___ .8.已知→a ,→b 满足1=→a , 2=→b , 3=-→→b a ,则→a 与→b 的夹角为_____3π______. 9.设函数x y 1=与)1ln(+=x y 图像的交点坐标为()00,y x ,且N k k k x ∈+∈),1,(0,则_____1___=k .10.将函数f (x )=sinx 图象上每个点的横坐标变为原来的倍(纵坐标不变),再将得到的图象向左平移6π个单位长度,记所得图象的函数解析式为y=g (x ),则g (6π)的值是____23____.11.已知函数⎪⎩⎪⎨⎧<-≥+=.0,,0,)(22x x x x x x x f 若)3()2(f a f >-,则实数a 的取值范围是_a<-1或_a>5_____.12.函数)62sin(3π+=x y []()π,0∈x 的单调递增区间为___⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,,,326,0_____.13.在ABC ∆中,若→→→→==b AC a AB ,,点E D ,满足→→=BD BC 2,→→=EC AE 3,AD 与BE相交于点P ,则用→a ,→b 表示→AP 为__)(73→→→+=b a AP ___.14.定义在[-22ππ,]的函数f(x)满足⎪⎩⎪⎨⎧>+≤=,,21cos ,,sin )(a x x a x x x f 若存在实数b ,使函数g(x)=f(x)-b 有两个零点,则实数a 的取值范围是_⎪⎭⎫⎝⎛⋃⎪⎭⎫⎢⎣⎡2,60,2-πππ,_________.二、解答题15. 已知2-tan =α,求下列各式的值.(1))sin(3)3cos(2)2sin(6)23cos(απαπαπαπ-++++-; (2)αααα22cos 2cos sin sin 1--.解:(1)原式=ααααsin 3cos 2cos 6sin +-+-=ααtan 326tan +-+-=6-2-62+=-1……………………………….7分(2)原式=αααααα2222cos 2cos sin sin cos sin --+=2tan tan 1tan 22--+ααα=2-2414++=45……………………….14分16.已知集合{},0>=x x A {}R x m x x x B ∈>-+=,02,{}R x x a x x C ∈=+++=,01)2(2.(1)求B A ≠⊂,实数m 的取值范围(2)若φ=⋂C A ,求实数a 的取值范围. 解:(1) ,B A ≠⊂∴0>x 时,02>-+m x x 恒成立…………………………………………………………2分 即0>x 时,x x m +<2恒成立,又).0(∞+∈x 时,02>+x x .........4分∴m 0≤………………………………………………………………………………………………………6分 (2) φ=⋂C A ,∴方程01)2(2=+++x a x 无解或解非正︒1 当方程无解时,04,0<<-<∆a ……………………………………………………………………….9分︒2当方程有解且为非正时,设方程两根分别为21,x x ,则0.,0,02121≥≤+≥∆x x x x解得a 0≥综上:实数a 的取值范围是a>-4……………………………………………………………………………..….14分17.在平面直角坐标系中,O 为坐标原点,已知)2,1(=→OA ,)4,4(=→OB (1)若四边形OABC 为平行四边形,求→AC 的坐标;(2)若OAC ∆是以A 为直角顶点的等腰直角三角形,求→OC 的坐标.解:(1) 四边形OABC 为平行四边形 ∴→→=AB OC而)2,3(=-=→→→OA OB AB ………………………………………………...2分 ∴→OC =(3,2) …………………………………………………..……………….…..3分∴→AC =→OC -→OA =(2,0)……………………………………………….………6分 (2)设→OC =(a,b ) OAC ∆是以A 为直角顶点的等腰直角三角形 ∴→→⊥AO AC ,→→=OA OC 2……………………………………………………………..……….9分∴ ⎩⎨⎧=+=+105222b a b a 解得⎩⎨⎧==13b a 或⎩⎨⎧=-=31b a ……………………………………………….…………..13分∴→OC =(3,1)或→OC =(-1,3)………………………………………………14分18.镶嵌在东台海滨整齐划一的风力发电“大风车”吸引着大批游客前来参观度假,下图为一个风力发电风车示意图,风叶OA,OB,OC 夹角两两相等(风叶宽度忽略不计),若0A=OB=OC=40m,中心O 与地面距离OD=80m,假设在某风速恒定不变的情况下,叶片按逆时针方向每分钟转动15圈,如果从风叶OA 与OD 成6π时(如图所示)开始计算时间.(1)将点A 距离地面的高度h(m)表示为时间t(s)的函数:h=Asin(ϕω+t )+b(A>0,ω>0,02-<<ϕπ);(2)在风电叶片转动的一圈内,有多长时间点A 距离地面超过100m?解:(1)由题意得A=40, A+b=120 ∴b=80而叶片逆时针方向每分钟转动15圈∴T=4, 2πω=∴ h=40sin(2πϕ+t )+80………………………..……..6分 又OA 与OD 成︒30时开始计算时间 ∴ ϕ=3π-得 h=40sin(2π3-πt )+80……………………………………….8分 (2)由题意即h=40sin(2π3-πt )+80>100∴ sin(2π3-πt )>21…………………………………..10分ππk 26+ <2π3-πt <ππk 265+k t k 43741+<<+ k N ∈..............14分∴在风电叶片转动的一圈内,有s 34的时间点A 距离地面超过100m (16)分19.已知函数mnf x ++=+33-(x)1x (其中m,n 为常数).(1)如果f(x)是奇函数,求实数m,n 的值; (2)已知m>0,n>0,在(1)的条件下, (1)判断并证明函数f(x)的单调性;(2)若函数98)()()(2++=x af x af x h ,当[]2l o g ,2l o g 33-∈x 时,有1)(≤x h 恒成立,求实数a 的取值范围.解:(1) 设f(x)的定义域为Af(x)是奇函数∴对任意的A x ∈,0)()-(=+x f x f∴m n x+++33-1x +m n +++x -1-x 33-=)31(333)62(9)3(xx x x m m mn mn m n ⋅++-+-+-)(=0……………….3分∴⎩⎨⎧=-=-0303mn m n ∴⎩⎨⎧==31n m 或⎩⎨⎧-=-=31n m ………………………………………………………………6分 (2)由(1)知m=1,n=3即1333-(x)1x ++=+x f ,函数在R 上单调递减……………..8分证明如下:任意2121,,x x R x x <∈且)()(21x f x f -=-+++1333-111x x 1333-221x +++x =)13)(13()33(62112++-x x x x 21x x <∴1233x x >∴0)()(21>-x f x f 即)()(21x f x f >∴函数在R 上单调递减………………………………………………………………………..11分 (3) f(x)是R 上单调递减的奇函数∴当[]2log ,2log 33-∈x ,f(x)[]1,1-∈………………………………………………….12分设f(x)=t,t []1,1-∈98)(2++=at at t ϕ则令, t []1,1-∈,有1)(≤t ϕ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤-≤∴1)21(1)1(1)1(ϕϕϕ …………………………………………………………….14分⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+≤≤≤≤+≤1984-1-1981-19821-a a 即解得18194-≤≤a ∴18194-≤≤a ………………………………………………………………………………………..16分20. 已知函数,ln )(x x f =)1(log )(+=x x g a ,()1,0≠>a a ,且1)1(=-e g (e 为自然对数的底数) (1)求a 的值;(2)解关于x 的不等式6)()(<+x g x f e ; (3)设)(x ϕ=2)(x f e, 则关于x 的方程)(242)332(22m x m x x m x x -=--+--ϕϕ有且仅有唯一实数解,求实数m 的取值范围.解:(1) 1)1(=-e g∴1log =e a ∴a=e …………………………………………………………………………………….3分(2) )1ln(ln )()(+++=x x x g x f e e∴6)()(<+x g x f e ,等价于⎪⎩⎪⎨⎧>+><+0106)1(x x x x∴不等式的解集为)2,0(…………………………………………………………………………8分 (3) )(x ϕ=2)(x f e=x (x>0)由)(242)332(22m x m x x m x x -=--+--ϕϕ 得:m x m x x m x x -=--+--24233222………………………………….…………..9分 即m x m x m x x m x x -=----+--)(33233222)(∴)332()(33222m x x m x m x m x x ----=---- 而)332)(332()332()(222m x x m x m x x m x m x x m x --+-----=---- ∴=----m x m x x 3322)332)(332(22m x x m x m x x m x --+----- 化简得)(m x m x x ----3322 )3321(2m x x m x --+-+=0 ∴m x m x x -=--3322 函数x y =在()∞+,0单调 ∴m x m x x -=--3322>0即方程m x x =-22在x>m 有且仅有唯一实数解……………………………………………………………………….12分 又x x m 22-= ∴x>x x 22- 解得:0<x<3 等价于方程m x x =-22在0<x<3有且仅有唯一实数解 设x x x 2)(2-=ϕ ,1=对x∴有且仅有唯一实数解时m {})3,0[1-⋃∈…………………………………………………………………………………16分。