高二数学上学期第一次月考试题14
- 格式:doc
- 大小:513.50 KB
- 文档页数:7
重庆市巴蜀中学校2024-2025学年高二上学期第一次月考数学试题一、单选题1.直线:1l y +的倾斜角为( ) A .0︒B .30︒C .45︒D .60︒2.已知直线1:50l x y ++=,2:10l x y ++=,则1l 与2l 的距离为( )A .1B .2C D .3.已知(1,0)A -、(3,6)B ,则以AB 为直径的圆的一般方程为( ) A .222630x y x y +--+= B .222630x y x y +---= C .222630x y x y ++-+=D .222630x y x y ++--=4.已知直线1:10l ax y ++=,2:2(1)30l x a y +--=,若12l l ⊥,则实数a =( )A B C .-1 D .-2 5.已知动点P 在椭圆22:143y x C +=上,(0,1)F -,(3,3)D -,则D |P PF -的最小值为( )A .5BC .2D .16.已知直线1:12l y x =+与椭圆2222:1(0)x y C a b a b+=>>相交于A 、B ,且AB 的中点为11,2M ⎛⎫- ⎪⎝⎭,则椭圆C 的离心率为( )A B C D .127.已知点A 、B 在圆22:16O x y +=上,且AB 的中点M 在圆22:(2)1C x y -+=上,则弦长AB 的最小值为( )A .B .C .D .8.已知椭圆2222:1(0)x y a b a b Γ+=>>的焦距为2c ,若直线()380kx y k c -++=恒与椭圆Γ有两个不同的公共点,则椭圆Γ的离心率范围为( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、多选题9.已知ABC V 的三个顶点(2,1)A -,(2,7)B -,(2,1)C -,则下列描述正确的有( ) A .直线BC 的倾斜角不存在 B .直线AB 的斜率为-2C .边AB 上的高所在直线的方程为240x y -+=D .边AB 上的中线所在直线的方程为30x y -+=10.已知动点P 在直线:60l x y +-=上,动点Q 在圆22:(1)(1)4C x y -+-=上,过点P 作圆C 的两条切线,切点分别为A 、B ,则下列描述正确的有( )A .直线l 与圆C 相交B .PQ 的最小值为2C .四边形PACB 面积的最小值为4D .存在P 点,使得120APB ︒∠=11.已知椭圆222:1(20)4x y C b b+=>>的左、右焦点分别为1F 、2F ,上顶点为B ,动点P 在椭圆C 上,则下列描述正确的有( )A .若12PF F V 的周长为6,则b =B .若当12π3F PF ∠=时,12PF F V b =C .若存在P 点,使得12PF PF ⊥,则b ∈D .若PB 的最大值为2b ,则b ∈三、填空题12.焦点在x 轴的椭圆C ,长轴长为10,离心率为35,则椭圆C 的标准方程为.13.经过点()0,0O 作直线l ,若直线l 与连接()1,1A -,()2,2B 两点的线段总有公共点,则直线l 斜率的取值范围为.14.已知点()0,1A ,()0,1B -,()0,2C -,动点P 满足:||||10+=PA PB ,且||2||PC PA ≥,则点P 的轨迹长度为.四、解答题15.已知点()2,1P -,直线:220l x y ++=. (1)求点P 到直线l 的距离;(2)求点P 关于直线l 的对称点Q 的坐标.16.已知(1,2)A 、(3,6)B ,动点P 满足4PA PB ⋅=-u u u r u u u r,设动点P 的轨迹为曲线C . (1)求曲线C 的标准方程;(2)求过点(1,2)A 且与曲线C 相切的直线的方程. 17.已知直线2y kx =+与椭圆2213x y +=相交于不同的两点,P Q . (1)求实数k 的取值范围;(2)若OP OQ ⊥,其中O 为坐标原点,求实数k 的值.18.已知圆22:4x y Γ+=,点Q 在圆Γ上,过Q 作y 轴的垂线,垂足为Q ',动点P 满足23Q Q Q P ''=u u u u r u u u r ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)斜率存在且不过()0,2B 的直线l 与曲线C 相交于M 、N 两点,BM 与BN 的斜率之积为209. ①证明:直线l 过定点; ②求BMN V 面积的最大值.19.如图1,已知圆心C 在x 轴的圆C 经过点(3,0)D 和(E .过原点且不与x 铀重合的直线l 与圆C 交于A 、B 两点(A 在x 轴上方).(1)求圆C 的标准方程;(2)若ABD △l 的方程;(3)将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AOD )与y 轴负半轴和x轴所确定的半平面(平面BOD)互相垂宜,如图2,求折叠后AB的范围.。
云南省玉溪第一中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.下列说法中,正确的有()A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .直线10x +=的倾斜角为60o C .直线32y x =-在y 轴上的截距为2-D .过点()5,4并且倾斜角为90 的直线方程为40y -=2.平行六面体1111ABCD A B C D -中,1123AC xAB yBC zC C =++,则x y z ++=()A .1B .76C .56D .233.设{},,i j k 是单位正交基底,已知向量p 在基底{},,a b c 下的坐标为()8,6,4,其中a i j =+,b j k =+ ,c k i =+ ,则向量p在基底{},,i j k 下的坐标是()A .()12,14,10B .()10,12,14C .()14,12,10D .()4,3,24.已知()2,1,0a b +=- ,()0,3,2a b -=-,则cos ,a b 的值为()A .13B .3C .3D .35.已知()()()0,0,0,1,1,1,1,2,2A B M -,则M 到直线AB 的距离为()AB C .1D 6.已知圆的方程为2220x y x +-=,(),M x y 为圆上任意一点,则21y x --的取值范围是()A .⎡⎣B .[]1,1-C .(),-∞+∞D .(][),11,-∞-+∞ 7.在空间直角坐标系中,向量()2,1,a m =-,()4,2,4b =- ,下列结论正确的是()A .若//a b r r,则2m =B .若a b ⊥ ,则52m =-C .若,a b 为钝角,则52m <D .若a 在b 上的投影向量为16b,则4m =8.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数M (x ,y )与点N (a ,b )的距离.结合上述观点,可得()f x =的最小值为()A .B .C .4D .89.关于方程22220x y ax ay ++-=表示的圆,下列叙述中正确的是()A .圆心在直线y x =-上B .其圆心在x 轴上C .过原点D二、多选题10.对于直线1:230l ax y a ++=,()2:3130l x a y a +-+-=.以下说法正确的有()A .12//l l 的充要条件是3a =B .12l l ⊥的充要条件是25a =C .直线2l 一定经过点()1,1M -D .点()1,3P 到直线1l 的距离的最大值为511.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D .直线1C P 与平面11AC D 三、填空题12.两平行直线3450x y ++=和6200x my ++=间的距离是.13.点()2,0P 关于直线l :10x y ++=的对称点Q 的坐标为.14.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a ,b垂直的向量;(ii )a ,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯=;②AB AD AD AB ⨯=⨯ ;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是.四、解答题15.已知ABC V 的三个顶点分别为()()()1,0,3,2,0,3A B C -.(1)求AB 边上的高所在直线的方程;(2)求ABC V 的面积.16.如图,在梯形ABCD 中,π,22,,,2AD BC ABC AB BC AD E F G ∠====∥分别为边AB ,,CD BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)证明:BD EG ⊥;(2)求BD 与平面ABF 所成角的正弦值.17.已知圆M 经过原点和点()3,1-,且它的圆心M 在直线250x y +-=上.(1)求圆M 的方程;(2)若点D 为圆M 上的动点,定点()2,0C ,求线段CD 的中点P 的轨迹方程.18.如图在四棱锥A BCDE -中,//CD EB ,1CD =,2EB =,CB BE ⊥,AE AB BC ===,AD =,O 是AE 的中点.(1)试在AB 上确定点F 的位置,使C 、D 、O 、F 四点共面,并证明;(2)求点O 到平面ACD 的距离;(3)在棱BE 上是否存在点M ,使得半平面ADM 与半平面ABC 所成二面角的余弦值为,若存在,求:EM MB ,若不存在,说明理由.19.A 是直线PQ 外一点,点M 在直线PQ 上(点M 与点,P Q 任一点均不重合),我们称如下操作为“由A 点对PQ 施以视角运算”:若点M 在线段PQ 上,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=;若点M 在线段PQ 外,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=-.在ABC V 中,角,,A B C 的对边分别是,,a b c ,点D 在射线BC 上.(1)若AD 是角A 的平分线,且3b c =,由A 点对BC 施以视角运算,求(),;B C D 的值;(2)若60,4,A a AB AD ==⊥ ,由A 点对BC 施以视角运算,(),;2B C D =-ABC V 的周长;(3)若120A =o ,4=AD ,由A 点对BC 施以视角运算,(),;cB C D b=,求4b c +的最小值.。
2024-2025学年第一学期高二年级第一次月考数学试题考试时间:120分钟 试题满分:150分一、单选题(共8小题)1. (5分)已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则实数x 的值是( )A . 3 B . 4 C . 5 D . 62. (5分)已知直线l 的一方向向量为,则直线l 的倾斜角为( )A . 30° B . 60° C . 120° D . 150°3. (5分)如图,若直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A . k 1<k 3<k 2 B . k 3<k 1<k 2C . k 1<k 2<k 3 D . k 3<k 2<k 14. (5分)如图,在三棱锥S -ABC 中,点E ,F 分别是SA ,BC 的中点,点G 满足=,若=a ,=b ,=c ,则=( )A . a +b +cB . a -b +cC . -a -b +cD . a -b +c5. (5分)若直线与平行,则的值为( )A . 0 B . 2 C . 3 D . 2或36. (5分)已知a >0,b >0,直线l 1:(a -1)x +y -1=0,l 2:x +2by +1=0,且l 1⊥l 2,则+的最小值为( )A . 2B . 4C . 8D . 97. (5分)已知点A (2,3),B (-3,-2),若直线l 过点P (1,1),且与线段AB 始终没有交点,则直线l 的斜率k 的取值范围是( )A . B . C . D . {k |k <2}8. (5分)若三条直线l 1:ax +y +1=0,l 2:x +ay +1=0,l 3:x +y +a =0能构成三角形,则实数a 应满足的条件是( )A . a =1或a =-2B . a ≠±1C . a ≠1且a ≠-2D . a ≠±1且a ≠-2二、多选题(共4小题)9. (5分)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3).若 →AP ∥ →BC ,且||=,则点P 的坐标为( )A . (4,-2,2)B . (-2,2,4)C . (-4,2,-2)D . (2,-2,4)10. (5分)已知直线l 1与l 2为两条不重合的直线,则下列命题正确的是( )A . 若l 1∥l 2,则斜率k 1=k 2 B . 若斜率k 1=k 2,则l 1∥l 2C . 若倾斜角α1=α2,则l 1∥l 2D . 若l 1∥l 2,则倾斜角α1=α211. (5分)下列说法正确的是()()1:240l a x ay -++=()2:2340l a x y -++=aA . 直线的倾斜角为B . 直线与两坐标轴围成的三角形的面积是2C . 过点的直线在两坐标轴上的截距之和为,则该直线方程为D . 过两点的直线方程为12. (5分)在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=3,以D 为坐标原点,,,所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则下列说法正确的是( )A .B 1的坐标为(2,2,3) B .=(-2,0,3)C . 平面A 1BC 1的一个法向量为(-3,3,-2)D . 二面角B -A 1C 1 -B 1的余弦值为三、填空题(共4小题)13. (5分)点到直线的距离为______.14. (5分)已知|a |=13,|b |=19,|a +b |=24,则|a -b |=________.15. (5分)已知直线与互相平行,则__________,与之间的距离为__________.16. (5分)已知点A (λ+1,μ-1,3),B (2λ,μ,λ-2μ),C (λ+3,μ-3,9)三点共线,则实数λ=________,μ=________.四、解答题(共6小题)17. (10分)如图,在空间四面体OABC 中,2=,点E 为AD 的中点,设=a ,=b ,=c .(1)试用向量a ,b ,c 表示向量;(2)若OA =OC =3,OB =2,∠AOC =∠BOC =∠AOB =60°,求·的值.18. (12分)已知直线l 经过点(1,6)和点(8,-8).(1)求直线l 的两点式方程,并化为截距式方程;(2)求直线l 与两坐标轴围成的图形面积.19. (12分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方20x y --=π420x y --=()1,4030x y -+=()()001,4,x y 、004141y x y x --=--()1,2P 3460x y +-=1:230l x y ++=2:20l x my m -+=m =1l 2l形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)求DB与平面DEF所成角的正弦值.20.(12分)设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)已知直线l在x轴上的截距为-3,求m的值;(2)已知直线l的斜率为1,求m的值.21.(12分)直线l经过两直线l1:x+y=0和l2:2x+3y-2=0的交点.(1)若直线l与直线3x+y-1=0平行,求直线l的方程;(2)若点A(3,1)到直线l的距离为5,求直线l的方程.22.(12分)已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,△AOB的面积为S(O为坐标原点),求S 的最小值并求此时直线l的方程.数学参考答案1. 【答案】C【解析】因为a =(-3,2,5),b =(1,x ,-1),所以a ·b =-3+2x -5=2,解得x =5.2. 【答案】B【解析】设直线l 的倾斜角为θ,θ∈[0°,180°),则tan θ=,∴θ=60°.故选B .3. 【答案】A【解析】设直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,则由图知0°<α3<α2<90°<α1<180°,所以tan α1<0,tan α2>tan α3>0,即k 1<0,k 2>k 3>0.4. 【答案】B 【解析】=+=+=(-)+(-)=(-)+×=-+=a -b +c .故选B .5. 【答案】B【解析】由题意,所以,解得,或,当时,,,此时,符合题意,当时,,,此时两直线重合,不符合题意,所以.故选:B .6. 【答案】C【解析】因为l 1⊥l 2,所以(a -1)×1+1×2b =0,即a +2b =1,因为a >0,b >0,所以+=(a +2b )=2+2++≥4+2=8,当且仅当=,即a =,b =时等号成立,所以+的最小值为8.故选C .7. 【答案】A 【解析】∵k AP ==2,k BP ==,如图,12//l l ()()3220a a a ---=2a =3a =2a =1:20l y +=2:340l y +=12//l l 3a =1340:l x y ++=2:340l x y ++=2a=∵直线l 与线段AB 始终没有交点,∴斜率k 的取值范围是.8. 【答案】D【解析】为使三条直线能构成三角形,需三条直线两两相交且不共点.①若l 1∥l 2,是由a ×a -1×1=0,得a =±1.②若l 2∥l 3,则由1×1-a ×1=0,得a =1.③若l 1∥l 3,则由a ×1-1×1=0,得a =1.当a =1时,l 1,l 2与l 3三线重合,当a =-1时,l 1,l 2平行.④若三条直线交于一点,由解得将l 2,l 3的交点(-a -1,1)的坐标代入l 1的方程,解得a =1(舍去)或=-2.所以要使三条直线能构成三角形,需a ≠±1且a ≠-2.9. 【答案】AB【解析】设=λ=(3λ,-2λ,-λ).又||=,∴=,解得λ=±1,∴=(3,-2,-1)或=(-3,2,1).设点P 的坐标为(x ,y ,z ),则=(x -1,y ,z -3),∴或解得或故点P 的坐标为(4,-2,2)或(-2,2,4).10. 【答案】BCD【解析】对于A ,若l 1∥l 2,且l 1与l 2的倾斜角均为,则直线l 1与l 2的斜率不存在,故A 错误;对于B ,若斜率k 1=k 2,且直线l 1与l 2为两条不重合的直线,则l 1∥l 2,故B 正确;对于C ,若倾斜角α1=α2,且直线l 1与l 2为两条不重合的直线,由平行线的性质可得l 1∥l 2,故C 正确;对于D ,若l 1∥l 2,由平行线的性质可得倾斜角α1=α2,故D 正确.故选B 、C 、D .11. 【答案】AB【解析】对于A ,直线的斜率为,其倾斜角为,A 正确;对于B ,直线交轴分别于点,该直线与坐标轴围成三角形面积为,B 正确;20x y --=1k =π420x y --=,x y ()()2,0,0,2-12222S =⨯⨯=对于C ,过点与原点的直线在两坐标轴上的截距都为0,符合题意,即过点且在两坐标轴上的截距之和为的直线可以是直线,C 错误;对于D ,当时的直线或当时的直线方程不能用表示出,D 错误.故选:AB .12. 【答案】ABD【解析】因为AB =AD =2,AA 1=3,所以A 1(2,0,3),B (2,2,0),B 1(2,2,3),C 1(0,2,3),所以=(-2,0,3),=(0,2,-3),故A 、B 正确;设平面A 1BC 1的法向量m =(x ,y ,z ),所以{m ∙→A 1B =0,m ∙→BC 1=0,即令x =-3,则y =-3,z =-2,即平面A 1BC 1的一个法向量为(-3,-3,-2),故C 错误;由几何体易得平面A 1B 1C 1的一个法向量为n =(0,0,1),由于cos 〈m ,n 〉===-,结合图形可知二面角B -A 1C 1 -B 1的余弦值为,故D 正确.故选A 、B 、D .13. 【答案】1【解析】点到直线的距离.故答案为:.14. 【答案】22【解析】|a +b |2=a 2+2a ·b +b 2=132+2a ·b +192=242,∴2a ·b =46,|a -b |2=a 2-2a ·b +b 2=530-46=484,故|a -b |=22.15. 【答案】【解析】因为直线与互相平行,所以,解得,则,()1,4()0,04y x =()1,404y x =001,4x y =≠004,1y x =≠004141y x y x --=--()1,2P 3460x y +-=1d 14-1:230l x y ++=2:20l x my m -+=2123m m -=≠4m =-2:220l x y +-=所以与之间的距离.故答案为:;.16. 【答案】0 0【解析】因为 →AB =(λ-1,1,λ-2μ-3), →AC =(2,-2,6),由A ,B ,C 三点共线,得 →AB ∥ →AC ,即λ―12=- 12=λ-2μ-36,解得λ=0,μ=0.17. 【答案】解 (1)∵2=,∴==(-)=(c -b ),故=+=b +(c -b )=b +c ,∵点E 为AD 的中点,故=(+)=a +b +c .(2)由题意得a ·c =,a ·b =3,c ·b =3,=c -a ,故·=(a +b +c )·(c -a )=-a 2+c 2+a ·c +b ·c -b ·a =-×9+×9+×+×3-×3=-.18. 【答案】解 (1)因为直线l 的两点式方程为=,所以=,即=x -1.所以y -6=-2x +2,即2x +y =8.所以+=1.故所求截距式方程为+=1.(2)如图所示,1l 2ld4-直线l 与两坐标轴围成的图形是直角三角形AOB ,且OA ⊥OB ,由 x 4+y8=1可知|OA |=4,|OB |=8,故S △AOB =×|OA |×|OB |=×4×8=16.故直线l 与两坐标轴围成的图形面积为16.19. 【答案】(1)证明 以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图.设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E (a ,a2,0),P (0,0,a ),F(a 2,a 2,a2).∵ →EF · →DC = (―a2,0,a2)·(0,a ,0)=0,∴ →EF ⊥ →DC ,∴EF ⊥CD .(2)解 设平面DEF 的法向量为n =(x ,y ,z ),则{n ∙→DF =0,n ∙→DE =0,即 {(x ,y ,z )∙(a2,a2,a2)=0,(x ,y ,z )∙(a ,a 2,0)=0,即{a 2(x +y +z )=0,ax +a2y =0.取x =1,则y =-2,z =1,∴n =(1,-2,1)是平面DEF 的一个法向量,∴cos 〈 →BD ,n 〉=→BD ∙n|→BD |∙|n |=a2a ∙6= 36.设DB 与平面DEF 所成的角为θ,则sin θ=|cos〈→BD,n〉|=3.620.【答案】解 (1)由题意知m2-2m-3≠0,即m≠3且m≠-1,令y=0,则x=,∴=-3,得m=-或m=3(舍去).∴m=-.(2)由题意知,2m2+m-1≠0,即m≠且m≠-1.由直线l化为斜截式方程得y=x+,则=1,得m=-2或m=-1(舍去).∴m=-2.【解析】【知识点】根据直线的一般式方程求斜率、截距、参数值及范围21.【答案】解 (1)直线l1方程与l2方程联立得交点坐标为(-2,2),设直线l的方程为3x+y+m=0,代入交点(-2,2)得m=4,所以l的方程为3x+y+4=0.(2)当直线l的斜率不存在时,得l的方程为x=-2,符合条件;当l斜率存在时,设直线l的方程为y-2=k(x+2),根据d==5,解得k=,所以直线l的方程为12x-5y+34=0.综上所述,l的方程为12x-5y+34=0或x=-2.22.【答案】(1)证明 直线l的方程可化为y-1=k(x+2),由点斜式方程可知,直线l过定点(-2,1).(2)解 由方程知,当k≠0时直线在x轴上的截距为-,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有解得k>0;当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).(3)解 由题意可知k≠0,再由l的方程,得A,B(0,1+2k).依题意得解得k>0.∵S=|OA|·|OB|=·|1+2k|=·=≥×(2×2+4)=4,“=”成立的条件是k>0且4k=,即k=,∴S min=4,此时直线l的方程为x-2y+4=0.。
2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体2. 棱长为的正四面体的表面积为( )1B. C. D. 3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π35. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 11291409112314037. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AA P 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m⊥m αβ= l α∥l m∥10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF 的最小值为11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN 三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15.如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 16.如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.17.我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体【正确答案】B【分析】根据图形和棱锥的定义及结构特征,即可得出结论.【详解】三棱台中,沿平面截去三棱锥,A B C ABC '''-A BC 'A ABC '-剩余的部分是以为顶点,四边形为底面的四棱锥.A 'BCCB ''A BCC B '''-故选:B2. 棱长为的正四面体的表面积为( )1B. C. D. 【正确答案】A【分析】利用三角形的面积公式可得出正四面体的表面积.【详解】棱长为的正四面体的表面积为.1221141sin 604122S =⨯⨯⨯=⨯⨯= 故选:A.3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 【正确答案】C【分析】由正四棱台的结构特征,侧棱的延长线交于同一点,的延长线必过此点,,HE GF 可判断选项中的线线位置关系.【详解】延长,1111,,,AA BB CC DD 由正四棱台的性质可得侧棱的延长线交于同一点,设该交点为.1111,,,AA BB CC DD P分别为棱的中点,,,,E F G H 1111,,,A D B C BC AD 延长,则的延长线必过点,,HE GF ,HE GF P 则直线与直线相交于点;与直线相交于点;与直线相交于点HE GF P 1BB P 1CC P;与直线是异面直线.BF 故选:C.4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π3【正确答案】D【分析】先利用圆锥的侧面积公式求出母线长,进而求出高,再利用圆锥的体积公式求解.【详解】设圆锥的母线长为,高为,半径为, l h r 则且,故2ππS r ==底=π3πS r l ⨯⨯=侧1,3r l ==,h ∴===圆锥的体积为.∴21π13⨯⨯⨯=故选:D .5. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )【正确答案】D【分析】连接,,根据异面直线所成角的定义,转化为求(或其补角),1CD 1D E1D CE ∠然后在中用余弦定理即可解得.1D CE 【详解】连接,,如图:1CD 1D E因为为正方体可得,所以(或其补角)是异面直线1111ABCD A B C D -11//CDBA 1D CE ∠与 所成角,1BA CE 设正方体的棱长为,,a1CD===,1,CE D E ======在中,,1D CE 2221111cos 2CD CE DE D CE CD CE +-∠=⋅⋅==所以异面直线与 .1BA CE故选:D.6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 1129140911231403【正确答案】A【分析】作出截面,过点作,结合等腰梯形的性质得到高,再计算体积即可.1A 1A E AC ⊥【详解】过作出截面如图所示,过点作,垂足为,11,AC A C 1A 1A E AC ⊥E 易知为正四棱台的高,1A E 1111ABCD A B C D - 因为,1124,ABA B ==所以由勾股定理得,11AC A C==又,11CC AA ==则在等腰梯形中,,11ACCA AE =所以,143A E ===所以所求体积为.11111114112((1643339ABCD A B C D V S S A E =⨯++⋅=⨯++⨯=故选.A7. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺【正确答案】C【分析】根据题意知,圆柱的侧面展开图是矩形,且矩形的长为(尺),高为尺,则葛2120藤的最少长度为矩形的对角线长,利用勾股定理可求得结果.【详解】根据题意知,圆柱的侧面展开图是矩形,如下图所示,矩形的高(即圆木长)为尺,矩形的底边长为(尺),207321⨯=(尺).29=故选:C.8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AAP 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ【正确答案】C【分析】取的中点,的中点为,连接,可得四边形11A B H 1B B G 11,,,,GH C H C G EG HF 是平行四边形,可得∥,同理可得∥.可得面面平行,进而得出P 点11EGC D 1C G 1D E 1C H CF 的轨迹.【详解】如图所示,取的中点,的中点为,连接,11A B H 1B B G 11,,,,GH C H C G EG HF则∥,,且∥,,11A B EG 11A B EG =11A B 11C D 1111A B C D =可得∥,且,可知四边形是平行四边形,则∥,EG 11C D 11EG C D =11EGC D 1C G 1D E 且平面,平面,可得∥平面,1C G ⊄1CD EF 1D E ⊄1CD EF 1C G 1CD EF 同理可得:∥平面,1C H 1CD EF 且,平面,可知平面∥平面,111C H C G C = 11,C H C G ⊂1C GH 1C GH 1CD EF 又因为P 点是正方形内的动点,平面,11ABB A 1C P ∥1CD EF 所以点在线段上,M GH由题意可知:,可得,1111,22GH A B EF A B ==GH EF ==所以P 故选:C.二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m ⊥m αβ= l α∥l m∥【正确答案】BC【分析】根据空间中垂直关系的转化可判断ABC 的正误,根据线面平行定义可判断D 的正误.【详解】对于A ,若,,则或,故A 错误;αβ⊥l β⊥l α∥l α⊂对于B ,若,,则,而,故,故B 正确;m β⊥l m ∥l β⊥l α⊂αβ⊥对于C ,若,,则,而,故,故C 正确;αβ∥m α⊥m β⊥l β⊂l m ⊥对于D ,若,,则或异面,故D 错误,m αβ= l α∥l m ∥,l m 故选:BC10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF的最小值为【正确答案】ABD【分析】由棱柱的概述判断A ;由线面平行判定定理判断B ;计算可判断C ;利用基EFGH S 本不等式可判断D.【详解】由棱柱的定义知,选项A 正确;对于选项B ,由于,,所以,且不在水面所在平面11A D BC ∥BC FG ∥11A D FG ∥11A D 内,所以棱与水面所在平面平行,选项B 正确;11A D 对于选项C ,在图(1)中,,在图(2)中,4EFGH S FG EF BC AB =⋅=⋅=,选项C 错误;4EFGH S FG EF AB BC =⋅>⋅=对于选项D ,,所以.12212V BE BF BC =⨯⨯=⋅⋅⋅△4BE BF ⋅=,当且仅当时,等号成立,22228EF BE BF BE BF =+≥⋅=2BE BF ==所以EF 的最小值为,选项D正确.故选:ABD .11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN【正确答案】BD【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】对于A ,假设A 对,即平面,于是,BF ⊥EAB BF AB ⊥,但六边形为正六边形,,矛盾,90ABF ∠=︒ABFPQH 120ABF ∠=︒所以A 错误;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为,3112028111323-⋅⋅⋅⋅⋅=所以B 对;对于C ,取正方形对角线交点,ACPM O即为该二十四等边体外接球的球心,其半径为,其表面积为,所以C 错误;R =24π8πR =对于D ,因为在平面内射影为,PN EBFN NS 所以与平面所成角即为,PN EBFN PNS ∠其正弦值为,所以D 对.PS PN==故选:BD .三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.【正确答案】2【分析】画出原图形可得答案.【详解】由直观图画出原图,如图,可得是等腰三角形,且,ABC V 2,2BC OA ==所以三角形的面积.ABC 12222S =⨯⨯=故答案为:2.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π【正确答案】29π【分析】先利用侧面积求出圆柱的高,再求出球的半径可得表面积.【详解】设圆柱的高为,其外接球的半径为,h R 由圆柱的底面半径为1,侧面积为,得,解得,10π2π10πh =5h =由圆柱和球的对称性可知,球心位于圆柱上下底面中心连线的中点处,因此.R ==24π29πS R ==故29π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB【正确答案】)61π+【分析】首先求出,再根据扇形面积公式求出圆的半径,过点作交DOC ∠C CE AB ⊥于点,过点作交于点,即可求出,将扇AB E D DF AB ⊥AB F ,,,,,CE OE AE OF BF DF 形绕直线旋转一周形成的几何体为一个半径的球中上下截去两个球缺所剩余部DOC AB R 分再挖去两个圆锥,再根据所给公式分别求出表面积.【详解】因为,所以,设圆的半径为,ππ,63AOC BOD ∠∠==π2DOC ∠=R 又,解得(负值舍去),2COD 1ππ22S R =⨯⨯=扇形2R =过点作交于点,过点作交于点,C CE AB ⊥AB ED DF AB ⊥AB F 则,ππsin1,cos 66CE OC OE OC ====所以,同理可得,2AE R OE =-=-1DF OF ==将扇形绕直线旋转一周形成的几何体为一个半径的球中,上下截去两个球COD AB 2R =缺所剩余部分再挖去两个圆锥,其中上面球缺的高,上面圆锥的底面半径,高为,12h =-11r=1h ='下面球缺的高,下面圆锥的底面半径,21h =2r =21h ='则上面球冠的表面积,(112π2π228πs Rh ==⨯⨯-=-下面球冠的表面积,球的表面积,222π2π214πs Rh ==⨯⨯=24π16πS R ==球上面圆锥的侧面积,下面圆锥的侧面积111ππ122πS rl ==⨯⨯=',222ππ2S r l ==='所以几何体的表面积.())''121116π8π4π2π61πS S S S S S =--++=---++=+球故答案为.)61π+关键点点睛:本题关键是弄清楚经过旋转之后得到的几何体是如何组成,对于表面积要合理转化.四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15. 如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 【正确答案】(1)证明见解析(2)证明见解析【分析】(1)证明出,得到四点共面;//GH BC (2)先得到,,证明出线面平行,面面平行.1//A E BG //GH EF 【小问1详解】∵,分别是,的中点,G H 11A B 11A C ∴是的中位线,∴,GH 111A B C △11//GH B C又在三棱柱中,,∴,111ABC A B C -11//B C BC //GH BC ∴,,,四点共面.B C H G 【小问2详解】∵在三棱柱中,,,111ABC A B C -11//A B AB 11A B AB =∴,,1//A G EB 1111122A G A B AB EB ===∴四边形是平行四边形,∴,1A EBG 1//A E BG ∵平面,平面,∴平面.1A E ⊂1A EF BG ⊂/1A EF //BG 1A EF 又,是,的中点,所以,又.E F AB AC //EF BC //GH BC 所以,//GH EF ∵平面,平面,∴平面.EF ⊂1A EF GH ⊂/1A EF //GH 1A EF 又,平面,BG GH G = ,BG GH ⊂BCHG 所以平面平面.//BCHG 1A EF 16. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.【正确答案】(1)23(2)证明见解析 (3)证明见解析【分析】(1)先得到,根据Q 为PB 的中点,故1433P AMB AMB V S PA -=⋅= ;1223Q ABM P AMB V V --==(2)由线线垂直,得到线面垂直,即BM ⊥平面PAM .,故BM ⊥AN ,又AN ⊥PM ,从而得到线面垂直;(3)由(1)知AN ⊥平面PBM ,故AN ⊥PB ,又AQ ⊥PB ,故PB ⊥平面ANQ ,得到答案.【小问1详解】因为AB 为⊙O 的直径,所以⊥,AM BM 又,故,2AM BM ==122AMB S AM BM =⋅= 又PA 垂直于⊙O 所在的平面,,2PA =故,11422333P AMB AMB V S PA -=⋅=⨯⨯= 因为Q 为PB 的中点,所以.11422233Q ABM P AMB V V --==⨯=【小问2详解】∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,BM 平面ABM ,⊂∴PA ⊥BM .又∵,PA ,AM 平面PAM ,PA AM A = ⊂∴BM ⊥平面PAM .又AN 平面PAM ,∴BM ⊥AN .⊂又AN ⊥PM ,且,BM ,PM 平面PBM ,BM PM M = ⊂∴AN ⊥平面PBM .【小问3详解】由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,AN ,AQ ⊂平面ANQ ,∴PB ⊥平面ANQ .又NQ 平面ANQ ,⊂∴PB ⊥NQ .17. 我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD ⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 【正确答案】(1)证明见解析;(2)①证明见解析;②平行,证明见解析.【分析】(1)利用线面垂直的性质及判定定理即可求解;(2)①利用三角形的中位线定理及线面平行的判定定理即可求解;②利用①的结论及线面平行的性质定理即可求解.【小问1详解】∵,BC CD ⊥∴为直角三角形,BCD △∵平面,且平面,平面,平面,AB ⊥BCD BD ⊂BCD ⊂BC BCD CD ⊂BCD∴,,,AB BC ⊥AB BD ⊥AB CD ⊥∴和为直角三角形,ABC V ABD △∵,平面,平面,BC AB B ⋂=BC ⊂ABC AB ⊂ABC ∴平面,CD ⊥ABC 又∵平面,AC ⊂ABC ∴,CD AD ⊥∴为直角三角形,ACD ∴三棱锥为鳖曘.A BCD -【小问2详解】①连接,∵点分别为的中点,CE ,P Q ,BC BE ∴,//PQ CE 且平面,平面,PQ ⊄ACD CE ⊂ACD 所以直线平面,//PQ ACD ②平行,证明:平面,平面,平面平面=,//PQ ACD PQ ⊂DPQ DPQ ⋂ACD l 所以.//PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.【正确答案】(1)即为要画的线,理由见解析;,ED EB (2(3【分析】(1)要使截面与平行,考虑构造线线平行,取的中点,取的对SA S C E ABCD 称中心,连接,证明即得截面;O OE //SA OE BDE (2)分别计算的三边,再利用三角形面积公式计算即得;BDE (3)利用等体积求出点到平面的距离,再由线面所成角的定义即可求得.C BDE 【小问1详解】如图,取的中点,连接,则即为要画的线.S C E ,,ED EB ,ED EB理由如下:连接与交于点,连接.BD AC O OE 因四边形ABCD 为平行四边形,则点为的中点,故,O AC //SA OE 又因平面,平面,故有平面;SA ⊄BDE OE ⊂BDE SA ∥BDE 【小问2详解】如图中,过点作于点,连接,E EF DC ⊥FBF 因平面,平面,则,SD ⊥ABCD CD ⊂ABCD SD CD ⊥故,平面,,//EF SD ⊥EF ABCD 112EF SD ==12DE SC ===因,则,12,60,22CFDC DCB BC ==∠== 2BF =因平面,则,故,BF ⊂ABCD EF FB ⊥BE ==又由余弦定理,,故得.22224224cos6012BD =+-⨯⨯=BD =又,O 为BD 中点,则,DE DB =OE BD ⊥于是截面的面积为;12BDE S =⨯= 【小问3详解】过点作平面,交平面于点,连接,C CH ⊥BDE BDE H EH则即直线与截面所成的角.CEH ∠S C BDE 由可得,,E BCD C BED V V --=1133BCD BED S EF S CH ⨯=⨯即得:,则BCD BED S EF CH S ⨯===sin CH CEH EC ∠===即直线SC 与平面BDE 思路点睛:本题主要考查运用线面平行的判定方法解决实际问题和线面所成角的求法,属于较难题.解题的思路在于充分利用平行四边形对角线性质、等腰三角形三线合一,三角形中位线性质等方法寻找线线平行;对于线面所成角问题,除了定义法作图求解外,对于不易找到点在平面的射影时,可考虑运用等体积转化求解.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.【正确答案】(1)为等边三角形,理由见解析ABC V (2(3)证明见解析【分析】(1)根据线面垂直的性质可得,,即可根据曲率的定义求解,1AA AC ⊥1AA AB ⊥(2)利用等体积法,结合锥体体积公式即可求解,(3)根据则多面体的棱数,顶点数,以及内角之和,即可根据曲率的定义求解.【小问1详解】因为在直三棱柱中,111ABC A B C -平面,平面,1AA ⊥ABC ,AC AB ⊂ABC 所以,,1AA AC ⊥1AA AB ⊥所以点A 的曲率为,得,π2ππ2232BAC -⨯-∠=π3BAC ∠=因为,所以为等边三角形.AB AC =ABC V【小问2详解】取中点D ,连接、,BC AD AM 因为D 为的中点,所以,BC AD BC ⊥因为平面,平面,所以,1BB ⊥ABC AD ⊂ABC 1BB AD ⊥因为,平面,所以平面;1BB BC B = 1,AA AB ⊂11ABB A AD ⊥11BB C C 所以是三棱锥的高.AD 1A BB M -设点到平面的距离为,则有,即.B 1AB M h 11B AB M A BB M V V --=11AB M BB M S h S AD =⋅在中有,同理计算得,11Rt AA B△1AB ==1AM B M BM ===.AD =所以,,112AB M S =⨯=114242BB M S =⨯⨯=所以.h ==【小问3详解】证明:设多面体有M 个面,给组成多面体的多边形编号,分别为号,1,2,,M ⋅⋅⋅设第号多边形有条边,i ()1i M ≤≤i L 则多面体共有条棱,122ML L L L ++⋅⋅⋅+=由题意,多面体共有个顶点,12222ML L L D M L M ++⋅⋅⋅+=-+=-+号多边形的内角之和为,i π2πi L -所以所有多边形的内角之和为,()12π2πM L L L M ++⋅⋅⋅+-所以多面体的总曲率为()122ππ2πM D L L L M ⎡⎤-++⋅⋅⋅+-⎣⎦.()12122π2π2π4π2M M L L L M L L L M ++⋅⋅⋅+⎛⎫⎡⎤=-+-++⋅⋅⋅+-= ⎪⎣⎦⎝⎭所以简单多面体的总曲率为.4π。
南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题一、单选题(本大题共8小题)1.在空间直角坐标系中,已知点,点则( )Oxyz ()1,3,5P ()1,3,5Q --A .点和点关于轴对称B .点和点关于轴对称P Q x P Q y C .点和点关于轴对称D .点和点关于原点中心对称P Q z P Q 2.向量,若,则( )()()2,1,3,1,2,9a x b y ==- a ∥b A .B .1x y ==11,22x y ==-C .D .13,62x y ==-12,63x y =-=3.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c +-r r ra b c -+r r rC .D .a b c -++ a b c -+- 4.下列可使非零向量构成空间的一组基底的条件是( ),,a b c A .两两垂直B .,,a b c b cλ= C .D .a mb nc =+a b c ++=5.已知,则直线恒过定点( )2b a c =+0ax by c ++=A .B .(1,2)-(1,2)C .D .(1,2)-(1,2)--6.已知:,:,则两圆的位1C 2222416160x y x y +++-=2C 22228840x y x y ++--=置关系为( )A .相切B .外离C .相交D .内含7.已知点为椭圆上任意一点,直线过的圆心且P 22:11612x y C +=l 22:430M x y x +-+= 与交于两点,则的取值范围是( )M ,A B PA PB ⋅A .B .C .D .[]3,35[]2,34[]2,36[]4,368.已知圆和圆交于两点,点在圆221:2470C x y x y +---=222:(3)(1)12C x y +++=P 上运动,点在圆上运动,则下列说法正确的是( )1C Q 2C A .圆和圆关于直线对称1C 2C 8650x y +-=B .圆和圆的公共弦长为1C 2CC .的取值范围为PQ0,5⎡+⎣D .若为直线上的动点,则的最小值为M 80-+=x y PM MQ+-二、多选题(本大题共3小题)9.已知向量,,则下列正确的是( )()1,2,0a =-()2,4,0b =-A .B .//a ba b⊥ C .D .在方向上的投影向量为2b a = a b ()1,2,0-10.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .B .点到直线的距离是122CQ AB AD AA =--+1C CQ C .D .异面直线与所成角的正切值为43CQ = CQ BD 11.已知实数满足方程,则下列说法正确的是( ),x y 22410x y x +-+=A .的最大值为B .的最大值为y x -2-22x y +7+C .的最大值为D .的最小值为y x x y+2三、填空题(本大题共3小题)12.O 为空间任意一点,若,若ABCP 四点共面,则3148OP OA OB tOC=++ t =.13.已知点和点,是动点,且直线与的斜率之积等于,则()2,0A -()2,0B P AP BP 34-动点的轨迹方程为.P 14.已知点为圆上位于第一象限内的点,过点作圆P 221:(5)4C x y -+=P 的两条切线,切点分别为,直线222:2C x y ax +-220(25)a a a +-+=<<,PM PN M N 、分别交轴于两点,则 , .,PM PN x (1,0),(4,0)A B ||||PA PB =||MN =四、解答题(本大题共5小题)15.分别求满足下列各条件的椭圆的标准方程.(1)已知椭圆的离心率为,短轴长为23e =(2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.C 2212x y +=31,2M ⎛⎫⎪⎝⎭C 16.已知圆心为的圆经过点,且圆心在直线上.C ()()1,4,3,6A B C 340x y -=(1)求圆的方程;C (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.l ()1,1l C l 17.如图,四边形与四边形均为等腰梯形,ABCD ADEF,,,,,平面,//BC AD //EF AD 4=AD AB =2BC EF ==AF =FB ⊥ABCD 为上一点,且,连接、、M AD FM AD ⊥BD BE BM(1)证明:平面;⊥BC BFM (2)求平面与平面的夹角的余弦值.ABF DBE18.已知圆与圆内切.()222:0O x y r r +=>22:220E x y x y +--=(1)求的值.r (2)直线与圆交于两点,若,求的值;:1l y kx =+O ,M N 7OM ON ⋅=-k (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若E O AB CD ,求实数的最大值.AB CDλ=λ19.已知两个非零向量,,在空间任取一点,作,,则叫a bO OA a = OB b = AOB ∠做向量,的夹角,记作.定义与的“向量积”为:是一个向量,它与向a b ,a ba b a b ⨯ 量,都垂直,它的模.如图,在四棱锥中,底面a b sin ,a b a b a b ⨯=⋅ P ABCD -为矩形,底面,,为上一点,.ABCD PD ⊥ABCD 4DP DA ==E AD AD BP ⨯=(1)求的长;AB (2)若为的中点,求二面角的余弦值;E AD P EB A --(3)若为上一点,且满足,求.M PB AD BP EM λ⨯=λ答案1.【正确答案】B【详解】由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,P Q 所以点和点关于轴对称,P Q y 故选:B.2.【正确答案】C【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.,x y ,x y 【详解】因为,所以,由题意可得,a b ∥a b λ=()()()2,1,31,2,9,2,9x y y λλλλ=-=-所以则.2,12,39,x y λλλ=⎧⎪=-⎨⎪=⎩131632x y λ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩故选C.【思路导引】根据题目条件列出关于的方程组,解方程组即可得到答案.a∥b ,x y 3.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .4.【正确答案】A【详解】由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.,,a b c对于A ,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一,,a b c ,,a b c 组基底,故A 正确;对于B ,,则共线,由向量特性可知空间中任意两个向量是共面的,所以b c λ=,b c 与共面,故B 错误;a,b c 对于C ,由共面定理可知非零向量共面,故C 错误;,,a b c 对于D ,即,故由共面定理可知非零向量共面,故D 错误.0a b c ++= a b c =--,,a b c 故选:A.5.【正确答案】A【分析】由题意可得,可得定点坐标.(1)(2)0a x b y -++=【详解】因为,所以,2b a c =+2c b a =-由,可得,所以,0ax by c ++=(2)0ax by b a ++-=(1)(2)0a x b y -++=当时,所以对为任意实数均成立,1,2x y ==-(11)(22)0a b -+-+=,a b 故直线过定点.(1,2)-故选A.6.【正确答案】C 【详解】因为可化为22221:22416160,2880C x y x y x y x y +++-=+++-= ,则,半径,()()221425x y +++=()11,4C --15r =因为可化为,22222:228840,4420C x y x y x y x y ++--=++--= ()()222210x y ++-=则,半径()22,2C -2r =则,因为.1C =122155r r r r -=<<+=+故选:C.7.【正确答案】A【详解】,即,22:430M x y x +-+= ()2221x y -+=则圆心,半径为.(2,0)M 1椭圆方程,,22:11612x y C +=2216,12a b ==则,22216124,2c a b c =-=-==则圆心为椭圆的焦点,(2,0)M 由题意的圆的直径,且AB 2AB = 如图,连接,由题意知为中点,则,PM M AB MA MB =-可得()()()()PA PB PM MA PM MB PM MB PM MB ⋅=+⋅+=-+ .2221PM MB PM =-=- 点为椭圆上任意一点,P 22:11612x y C +=则,,min 2PM a c =-= max 6PM a c =+= 由,26PM ≤≤ 得.21PA PB PM ⋅=- []3,35∈故选:A.8.【正确答案】D【详解】对于A ,和圆,221:2470C x y x y +---=222:(3)(1)12C x y +++=圆心和半径分别是,()()12121,2,3,1,C C R R --==则两圆心中点为,11,2⎛⎫- ⎪⎝⎭若圆和圆关于直线对称,则直线是的中垂线,1C 2C 8650x y +-=12C C 但两圆心中点不在直线上,故A 错误;11,2⎛⎫- ⎪⎝⎭8650x y +-=对于B ,到直线的距离,1C 8650x y ++=81255102d ++==故公共弦长为,B错误;=对于C ,圆心距为,当点和重合时,的值最小,5=P QPQ当四点共线时,的值最大为12,,,P Q C CPQ 5+故的取值范围为,C 错误;PQ0,5⎡+⎣对于D ,如图,设关于直线对称点为,1C 80-+=x y (),A m n则解得即关于直线对称点为,21,11280,22n mm n -⎧=-⎪⎪-⎨++⎪-+=⎪⎩6,9,m n =-⎧⎨=⎩1C 80-+=x y ()6,9A -连接交直线于点,此时最小,2AC M PM MQ +122PM MQ MC MC C A +≥+-=-==即的最小值为,D 正确.PM MQ+故选:D.9.【正确答案】ACD【详解】ABC 选项,由题意得,故且,AC 正确,B 错误;2b a= //a b2b a= D 选项,在,Da b ()01,2,=-正确.故选:ACD10.【正确答案】ABC 【详解】依题意得,12CQ CB BQ AD BA =+=-+()11222AD AA AB AB AD AA =-+-=--+ 故A 正确;如图,以为坐标原点,建立空间直角坐标系,1A 111(0,1,0),(1,1,0),(1,0,0),(0,1,1),(1,1,1),(1,1,1),B C D Q C E -------,(1,1,1),(0,1,1),(1,0,1)G B D -----对于BC ,,1(1,2,1),(1,2,2)QC CQ =--=-所以,设,3CQ==173QC CQ m CQ ⋅==- 则点到直线的距离BC 正确;1C CQd ==对于D ,因为,(1,2,2),(1,1,0)CQ BD ---==所以cos ,CQ BD 〈〉==tan ,CQ BD 〈〉= 所以异面直线与所成角的正切值为D 错误.CQ BD 故选:ABC .11.【正确答案】ABD【详解】根据题意,方程,即,22410x y x +-+=22(2)3x y -+=表示圆心为,半径为(2,0)对于A ,设,即,y x z -=0x y z -+=直线与圆有公共点,0x y z -+=22(2)3x y -+=所以≤22z ≤≤则的最大值为,故A 正确;z y x =-2-对于B ,设,其几何意义为圆上的点到原点的距离,t =22(2)3x y -+=所以的最大值为,t 2故的最大值为B 正确;22x y +22(27t ==+对于C ,设,则,直线与圆有公共点,yk x =0kx y -=0kx y -=22(2)3x y -+=则,解得的最大值为C 错误;≤k ≤≤yx 对于D ,设,作出图象为正方形,作出圆,如图,m x y=+22(2)3x y -+=由图象可知,正方形与圆有公共点A 时,有最小值m 2即的最小值为,故D 正确;x y+2故选:ABD12.【正确答案】/0.12518【详解】空间向量共面的基本定理的推论:,且、、不共OP xOA yOB zOC =++ A B C 线,若、、、四点共面,则,A B C P 1x y z ++=因为为空间任意一点,若,且、、、四点共面,O 3148OP OA OB tOC=++ A B C P所以,,解得.31148t ++=18t =故答案为.1813.【正确答案】221(2)43x y x +=≠±【详解】设动点的坐标为,又,,P (,)x y ()2,0A -()2,0B 所以的斜率,的斜率,AP (2)2AP y k x x =≠-+BP (2)2BP yk x x =≠-由题意可得,3(2)224y y x x x ⨯=-≠±+-化简,得点的轨迹方程为.P 221(2)43x y x +=≠±故221(2)43x y x +=≠±14.【正确答案】 2,【详解】圆的标准方程为,圆心,2C 22()2(2)x a y a a -+=->()2,0C a 则为的角平分线,所以.2PC APB ∠22AC PA BC PB=设,则,()00,P x y ()22054x y -+=所以,则,2PAPB===222AC BC =即,解得,则,()124a a -=-3a =222:(3)1C x y -+=所以点与重合,N ()4,0B 此时,可得,221,30C M MAC =∠=52M ⎛ ⎝.故;215.【正确答案】(1)或;22114480x y +=22114480y x +=(2).22143x y +=【详解】(1)由题得,222212328c a a b b a b c c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=+=⎩⎪⎪⎩所以椭圆的标准方程为或.22114480x y +=22114480y x +=(2)椭圆满足,故该椭圆焦点坐标为,2212x y +=1c ==()1,0±因为椭圆与有相同的焦点,且经过点,C 2212x y +=31,2M ⎛⎫ ⎪⎝⎭所以可设椭圆方程为,且,解得,C 22221x y a b +=22222231211ab a b ⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪=+⎩4241740a a -+=故,解得(舍去)或,故.()()224140aa --=214a =24a =2213b a =-=所以椭圆的标准方程为.C 22143x y +=16.【正确答案】(1)()()224310x y -+-=(2)或10x -=512170x y +-=【详解】(1)由题意,则的中点为,且,()()1,4,3,6A B AB (2,5)64131AB k -==-故线段中垂线的斜率为,AB 1-则中垂线的方程为,即,5(2)y x -=--70x y +-=联立,解得,即圆心,34070x y x y -=⎧⎨+-=⎩43x y =⎧⎨=⎩()4,3C 则半径r CA ===故圆的方程为.C ()()224310x y -+-=(2)当直线斜率不存在时,直线的方程为,l 1x =圆心到直线的距离为,由半径,(4,3)C 3r =则直线截圆所得的弦长,满足题意;l C 2=当直线斜率存在时,设直线方程为,l l 1(x 1)y k -=-化为一般式得,10kx y k -+-=由直线截圆所得的弦长,半径.l C 2r =1则圆心到直线的距离,又圆心,3d ==(4,3)由点到直线的距离公式得,3d 解得,故直线方程为,512k =-l 51(1)12y x -=--化为一般式方程为.512170x y +-=综上所述,直线的方程为或.l 10x -=512170x y +-=17.【正确答案】(1)证明见详解;【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;(2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,EN AD ⊥N 利用勾股定理,因此可以以,,所在的直线分别为轴、轴、轴建立空BM BC BF x y z 间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)因为平面,又平面,FB ⊥ABCD AD ⊂ABCD 所以.又,且,FB AD ⊥FM AD ⊥FB FM F ⋂=所以平面.因为,所以平面.AD ⊥BFM //BC AD ⊥BC BFM (2)作,垂足为.则.又,EN AD ⊥N //FM EN //EF AD 所以四边形是平行四边形,又,FMNE EN AD ⊥所以四边形是矩形,又四边形为等腰梯形,且,,FMNE ADEF 4=AD 2EF =所以.1AM =由(1)知平面,所以.又,AD ⊥BFM BM AD⊥AB =所以.在中,1BM =Rt AFMFM ==在中,.Rt FMB 3FB ==所以由上可知,能以,,所在的直线分别为轴、轴、轴建立如图所示空间BM BC BF x y z 直角坐标系.则,,,,,所以,,(1,1,0)A --(0,0,0)B (0,0,3)F (1,3,0)D -(0,2,3)E (1,1,0)AB =,,,设平面的法向量为,(0,0,3)BF = (1,3,0)BD =- (0,2,3)BE =ABF ()111,,m x y z = 由,得可取.00m AB m BF ⎧⋅=⎪⎨⋅=⎪⎩ 1110,0,x y z +=⎧⎨=⎩(1,1,0)m =- 设平面的法向量为,BDE ()222,,n x y z =由,得,可取.00n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 222230,230,x y y z -+=⎧⎨-+=⎩(9,3,2)n = 因此,.cos ,m n m n m n ⋅===依题意可知,平面与平面的夹角的余弦值为ABFDBE 18.【正确答案】(1)r =(2);1k =±(3)max λ=【详解】(1)由题意得,,O (0,0)()()2222220112x y x y x y +--=⇒-+-=故圆心,圆E 的半径为()1,1E 因为,故在圆E 上,()()2201012-+-=O (0,0)所以圆O 的半径,且r >OE r ==r =(2)由(1)知,联立,22:8O x y +=()2222812701x y k x kx y kx ⎧+=⇒++-=⎨=+⎩设,则恒成立,()()1122,,,M x y N x y ()22Δ42810k k =++>且,12122227,11k x x x x k k +=-=-++所以,()2222121212222721811111k k k y y k x x k x x k k k -=+++=--+=+++所以,解得.221212222718681711O k k x x y O y k k k M N ⋅=---+=-+==+++-1k =±(3)如图,因为直线和直线倾斜角互补,AB CD所以当直线斜率不存在时,此时直线的斜率也不存在,AB CD 此时,,AB CD=1AB CDλ==当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,AB CD 当直线斜率存在且不为0时,设直线 即,AB ():11AB y k x -=-10kx y k --+=圆心O 到直线的距离为AB d故AB ===由直线方程得直线的方程为即,AB CD ()11y k x -=--10kx y k +--=同理得CD =则,AB CD λ====当,,0k>AB CDλ====因为对勾函数在上单调递减,在上单调递增,()1f x x x =+(0,1)(1,+∞)所以时,,0x >()())[)1,2,f x f ∞∞⎡∈+=+⎣所以时,故,0k >[)17212,k k ∞⎛⎫+-∈+ ⎪⎝⎭4411,1372k k ⎛⎤+∈ ⎥⎛⎫⎝⎦+- ⎪⎝⎭所以,λ⎛= ⎝当,0k <AB CDλ====由上知时,故,0k <()[)17216,k k ∞⎡⎤⎛⎫-+-+∈+ ⎪⎢⎥⎝⎭⎣⎦()431,14172k k ⎡⎫-∈⎪⎢⎡⎤⎛⎫⎣⎭-+-+ ⎪⎢⎥⎝⎭⎣⎦所以.λ⎫=⎪⎪⎭综上,max λ=19.【正确答案】(1)2(2)13-(3)10【分析】(1)首先说明为直线与所成的角,即,设PBC ∠AD PB ,AD BP PBC=∠,根据所给定义得到方程,解得即可;()0AB x x =>(2)在平面内过点作交的延长线于点,连接,为二ABCD D DF BE ⊥BE F PF PFD ∠面角的平面角,由锐角三角函数求出,设二面角的平面P EB D --cos PFD ∠P EB A --角为,则,利用诱导公式计算可得;θπPFD θ=-∠(3)依题意可得平面,在平面内过点作,垂足为,即EM ⊥PBC PDC D DN PC ⊥N 可证明平面,在平面内过点作交于点,在上取点DN ⊥PBC PBC N //MN BC PB M DA,使得,连接,即可得到四边形为平行四边形,求出,即E DE MN =EM DEMN DN可得解.【详解】(1)因为底面为矩形,底面,ABCD PD ⊥ABCD 所以,,又底面,所以,//AD BC BC DC ⊥BC ⊂ABCD PD BC ⊥又,平面,所以平面,PD DC D = ,PD DC ⊂PDC BC ⊥PDC 又平面,所以,PC ⊂PDC BC PC ⊥所以为直线与所成的角,即,PBC ∠AD PB ,AD BP PBC=∠设,则,()0AB x x =>PC ==PB ==在中Rt PBC s n i PCPBC PB ∠==又,解得(负值已舍去),AD BP ⨯==2x =所以;2AB =(2)在平面内过点作交的延长线于点,连接,ABCD D DF BE ⊥BE F PF 因为底面,底面,所以,又,PD ⊥ABCD BF ⊂ABCD PD BF ⊥DF PD D = 平面,所以平面,又平面,所以,,DF PD ⊂PDF BF ⊥PDF PF ⊂PDF BF PF ⊥所以为二面角的平面角,PFD ∠P EB D --因为为的中点,E AD所以π2sin4DF ==PF ==所以,1cos 3DF PFD PF ∠===设二面角的平面角为,则,P EB A --θπPFD θ=-∠所以,()1cos cos πcos 3PFD PFD θ=-∠=-∠=-即二面角的余弦值为;P EB A --13-(3)依题意,,又,()AD BP AD⨯⊥ ()AD BP BP⨯⊥ AD BP EM λ⨯= 所以,,又,所以,EM AD ⊥EM BP ⊥//AD BC EM BC ⊥又,平面,所以平面,PB BC B = ,PB BC ⊂PBC EM ⊥PBC 在平面内过点作,垂足为,PDC D DN PC ⊥N 由平面,平面,所以,BC ⊥PDC DN ⊂PDC BC DN ⊥又,平面,所以平面,PC BC C = ,PC BC ⊂PBC DN ⊥PBC 在平面内过点作交于点,在上取点,使得,连接PBC N //MN BC PB M DA E DE MN =,EM 所以且,所以四边形为平行四边形,//DE MN DE MN =DEMN 所以,又,即EM DN =DN ==EM=所以.10AD BP EMλ⨯===【关键点拨】本题关键是理解并应用所给定义,第三问关键是转化为求.DN。
青岛二中2024-2025学年第一学期10月份阶段练习一高二数学试题时间:90分钟 满分:120分一、选择题:本题共8小题;每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量,,且,则()A.-16B.16C.4D.-42.已知点,,若过点的直线与线段相交,则该直线斜率的取值范围是()A. B.C. D.3.已知空间向量,,若与垂直,则等于()4.设,为两个随机事件,以下命题正确的为( )A.若,是对立事件,则B.若,是互斥事件,,,则C.若,,且,则,是独立事件D.若,是独立事件,,,则5.已知点关于直线-对称的点在圆上,则()A.4B.5C.-4D.-56.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.CD.7.边长为1的正方形沿对角线折叠,使,则三棱锥的体积为()()1,3,5a =-()2,,b x y = a b ∥x y -=()2,3A -()3,2B --()1,1P -AB 32,,43⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭34,23⎡⎤-⎢⎥⎣⎦43,32⎡⎤-⎢⎥⎣⎦()1,,2a n = ()2,1,2b =- 3a b - b aA B A B ()1P AB =A B ()13P A =()12P B =()16P A B +=()13P A =()12P B ≡()13P AB =A B A B ()13P A =()23P B =()19P A B ⋂=()0,1P -10x y -+=Q 22:50C x y mx +++=m =m n (),a m n =()1,1b =- θ0,2πθ⎛⎤∈ ⎥⎝⎦5121271256ABCD AC 14AD BC ⋅= D ABC -8.已知空间向量,,两两的夹角均为,且,.若向量,满足,,则的最大值是()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.下列说法正确的是()A.8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是B.若样本数据,,,的平均数为2,则数据,,,的平均数为3C 一组数据,,,,,的分位数为6D.某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知,若过定点的动直线和过定点的动直线:交于点(与,不重合),则以下说法正确的是()A.B 点的坐标为B.为定值C.最大值为D.的最大值为11.在棱长为1的正方体中,,,,,,若直线与的夹角为,则下列说法正确的是()A.线段的最小值为1C.对任意点,总存在点,使得D.存在点,使得直线与平面所成的角为三、填空题:本题共4个小题,每小题5分,共20分.12.已知,,,若不能构成空间的一个基底,则_________.13.已知半径为1的圆经过点,则其圆心到直线距离的最大值为_______.a b c 602a b == 4c = x y ()x x a x b ⋅+=⋅ ()y y a y c ⋅+=⋅ x y -1+1+261111x 2x ⋯10x 121x -221x -⋯1021x -43265860%m ∈R A 1:20l x my m -+-=B 2l 240mx y m ++-=P P A B ()2,4-22PA PB +PAB S △2522PA PB +1111ABCD A B C D -1BP xBB yBC =+ x ()0,1y ∈11A Q z A C = []0,1z ∈1A P 11A B 45 1A P 1A Q PQ +P Q 1D Q CP⊥P 1A P 11ADD A 60()11,0,1n =- ()2,3,2n m =- ()30,1,1n =- {}123,,n n nm =()3,43430x y --=14.在长方体中,已知异面直线与,与所成角的大小分别为和,为中点,则点到平面的距离为_______.15.平面直角坐标系中,矩形的四个顶点为,,,,,光线从边上一点沿与轴正方向成角的方向发射到边上的点,被反射到上的点,再被反射到上的点,最后被反射到轴上的点,若,则的取值范围是_______.四、解答题:本题共3小题,共42分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分10分)已知直线,,且满足,垂足为.(I )求的值及点的坐标.(II )设直线与轴交于点,直线与轴交于点,求的外接圆方程.17.(本题满分15分)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送时,收到0的概率为,收到1的概率为.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到,,,则译码为1,若依次收到,,,则译码为1).(I )已知,,(1)若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率;(2)若采用单次传输方案,依次发送,,,判断事件“第三次收到的信号为”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(II )若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求的取值范围.18.(本题满分17分)1111ABCD A B C D -1AC 11B C 1AC 11C D 6045 E 1CC E 1A BC ()0,0O ()8,0A ()8,6B ()0,6C OA ()04,0P x θAB 1P AB BC 2P BC OC 3P OC x ()4,0P t ()4,6t ∈tan θ()1:220l x m y +-=2:220l mx y +-=12l l ⊥C m C 1l x A 2l x B ABC △()1101p p <<11p -1()2201p p <<21p -101111134p =223p =00112p如图,四面体中,为等边三角形,且,为等腰直角三角形,且.第(I )问图(I )当时,(1)求二面角的正弦值;第(II )问图(2)当为线段中点时,求直线与平面所成角正弦值;(II )当时,若,且平面,为垂足,中点为,中点为;直线与平面的交点为,当三棱锥体积最大时,求的值.ABCD ABC △2AB =ADC △90ADC ∠= BD =D AC B --P BD AD APC 2BD =()01DP DB λλ=<<PH ⊥ABC H CD M AB N MN APC G P ACH -MGGN。
河北省石家庄二十七中2023-2024学年高二上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.23B.22A .53B .8.棱长为1的正方体ABCD 运动,满足1B Q ⊥平面1AD A .63B .1二、多选题9.下列利用方向向量、法向量判断线A .两条不重合直线12,l l 的方向向量分别是B .直线l 的方向向量a = C .两个不同的平面,αβ的法向量分别是D .直线l 的方向向量a = 10.已知向量(1,1,0)a =- ,A .向量a ,b 的夹角为C .(5)a b c+⊥11.如图,在边长为2的正方形的交点为G ,将△AED ,△BEFA.PD⊥EFB.三棱锥P−DEF的体积为1 3C.PG与DF所成角的余弦值为1010D.三棱锥P−DEF的外接球的表面积为24π12.如图,在四棱锥S ABCD-中,底面ABCD是正方形,,O P分别是,AC SC的中点,M是棱SD上的动点,则下列说法中正确的是(A.OM AP⊥B.存在点M,使//OM平面SBCC.存在点M,使直线OM与AB所成的角为D.点M到平面ABCD与平面SAB的距离和为定值三、填空题13.已知平面α的一个法向量(,0,2)B m m-在平面α内,则14.已知直线l的一个方向向量为()4,1,2A-为直线l上一点,则点15.如图,在棱长为2的正方体点,点E在BD上,点F在个结论:①当点E 是BD 中点时,直线②直线11B D 到平面CMN 的距离是③存在点P ,使得1190B PD ∠=④1PDD 面积的最小值是5其中所有正确结论的序号是16.如图,在四棱锥P ABCD -112PA AB BC AD ====,已知的夹角为4π,则ADQ △的面积的取值范围是四、解答题17.已知空间三点()2,0,2A -,(1,1,B -(1)求a ,b夹角的余弦值;(2)若ka b + 与2ka b -的夹角是钝角,求18.如图,在四棱锥P ABCD -中,底面且AP 与AB 、AD 的夹角都等于60︒,M AP c = .(1)试用a ,b ,c表示出向量(2)求BM 与AP所成的角的余弦值.19.四棱锥P ABCD -的底面是边长为于点O ,PO ⊥底面ABCD (1)求异面直线DE 与PA 所成角的余弦值;(2)证明://OE 平面PAD ,并求点20.在四棱锥P ABCD -中,底面三角形,PA PD =,AB PB =(1)求证:PE ⊥平面ABCD (2)求直线AB 与平面PBC 21.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑面ABCD ,且PD CD =,过棱,,,DE DF BD BE .(1)证明:PB⊥平面DEF(2)若2=,求平面BC DC22.图①是直角梯形ABCD并且60∠= ,以BEBCEBC E⊥平面ABED;(1)求证:平面1DC上是否存在点P,使得点P到平面ABC (2)在棱1ABC所成角的正弦值;若不存在,请说明理由EP与平面1。
山东省临沂市兰临沂第四中学2024-2025学年高二上学期10月月考数学试题(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线,若,则( )A.-1或2B.1C.1或-2D.-22.过点的直线与线段MN 相交,,则的斜率的取值范围为( )A.B.C.或D.或3.在三棱柱中,记,点满足,则( )A. B. C. D.4.已知点关于直线对称,则对称点的坐标为( )A. B. C. D.5.已知向量,若共面,则( )A.4B.2C.3D.16.点到直线的距离最大时,其最大值以及此时的直线方程分别为( )7.下列命题中正确的是( )A.点关于平面对称的点的坐标是B.若直线的方向向量为,平面的法向量为,则C.若直线的方向向量与平面的法向量的夹角为,则直线与平面所成的角为12:20,:2(1)20l ax y l x a y +-=+++=12//l l a =(3,3)P l (2,3),(3,2)M N ---l k 1665k ≤≤566k ≤≤65k ≤6k ≥16k ≤65k ≥111ABC A B C -1,,AA a AB b AC c === P 12BP PC =AP = 121333a b c -+ 212333a b c ++212333a b c +-121333a b c ++(2,1)P -10x y -+=(0,1)-(0,2)-(1,1)-(2,1)-(2,1,3),(1,4,2),(1,3,)a b c λ=-=--=,,a b c λ=(2,1)P --:(13)(1)240(R)l x y λλλλ+++--=∈310x y -+=40x y +-=250x y +-=310x y -+=(3,2,1)M yOz (3,2,1)--l (1,1,2)e =- α(6,4,1)m =-l α⊥l α120︒l α30︒D.已知为空间任意一点,四点共面,且任意三点不共线,若,则8.在空间直角坐标系中,,点在平面ABC 内,则当|OH |取最小时,点的坐标是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量,则( )A.若,则B.若,则C.若,则D.若,则向量在向量上的投影向量10.下列说法正确的是( )A.直线的倾斜角的取值范围是B.“”是“直线与直线互相垂直”的充要条件C.过点且在轴,轴截距相等的直线方程为D.经过平面内任意相异两点的直线都可以用方程.11.已知正方体的棱长为1,E 为线段的中点,点和点分别满足,其中,则下列说法正确的是( )A.平面AECB.AP 与平面所成角的取值范围为C.D.点到直线的距离的最小值为三、填空题:本题共3小题,每小题5分,共15分.O ,,,A B C P 12OP mOA OB OC =-+12m =-O xyz -(1,0,0),(0,2,0),(0,0,2)A B C H H 211,,333⎛⎫ ⎪⎝⎭(2,1,1)(2,1,1),(1,,2)a x b y ==-1,24x y ==-ab ‖1,1x y ==a b⊥1,12x y ==cos ,a b <>= 1,12x y ==ab 112,,333c ⎛⎫=- ⎪⎝⎭sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭1a =-210a x y -+=20x ay --=(1,2)P x y 30x y +-=()()1122,,,x y x y ()()()()211211x x y y y y x x --=--表示1111ABCD A B C D -1B C F P 11111,D F D C D P D B λμ==,[0,1]λμ∈BP ⊥11BDD B 45,60︒︒⎡⎤⎣⎦PE PF +P 1B C PE =12.在直线上求一点,使它到直线的距离等于原点到的距离,则此点的坐标为________________.13.已知空间向量两两夹角为,且,则__________________.14.如图,两条异面直线a,b 所成的角为,在直线a,b 上分别取点,和点A,F,使,且.已知,则线段的长为_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,三棱柱中,底面边长和侧棱长都等于1,.(1)设,用向量表示,(2)并求出的长度;(3)求异面直线与所成角的余弦值.16.(15分)已知点,_________________,从条件①、条件②、条件③中选择一个作为已知条件补充在横线处,并作答(1)求直线的方程;(2)求直线关于直线的对称直线的方程条件①:点关于直线的对称点的坐标为;条件②:点的坐标为,直线过点且与直线PM 平行;210x y -+=:320l x y +-=l ,,a b c 60︒||||||1a b c === |2|a b c -+= θA 'E AA a '⊥AA b '⊥,,A Em AF n EF l '===AA '111ABC A B C -1160BAA CAA ︒∠=∠=1,,AA a AB b AC c === ,,a b c1BC 1BC 1AB 1BC (1,3)P 1l 2:250l x y +-=1l P 1l 1P (1,1)-M (6,2)-1l (2,4)-条件③:点N 的坐标为,直线过点且与直线PN 垂直.注:如果选择多个条件分别解答,按第一个解答计分.17.(15分)已知直线.(1)若坐标原点到直线,求的值;(2)当时,直线过与的交点,且它在两坐标轴上的截距相反,求直线的方程.18.(17分)如图,在四棱锥中,底面ABCD ,底面ABCD 为直角梯形,,分别为线段AD,DC,PB 的中点.(1)证明:平面PEF//平面GAC ;(2)求直线GC 与平面PCD 所成角的正弦值.19.(17分)如图1所示中,分别为PA,PB 中点.将沿DC 向平面ABCD上方翻折至图2所示的位置,使得。
德阳高2023级2024年秋季第一学月考试数学试题(答案在最后)考试范围:必修二第十章、选修第一册第一章;考试时间:120分钟;命题人:高二数学组注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题1.已知集合{}2,0,1,3A =-,{}0,2,3B =,则A B = ()A.{}2,1- B.{}2,1,2- C.{}0,3 D.{}2,0,1,2,3-【答案】C 【解析】【分析】运用交集性质即可得.【详解】由{}2,0,1,3A =-,{}0,2,3B =,则{}0,3A B ⋂=.故选:C.2.2(2i)4z =+-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】将复数化为标准形式再根据复数的几何意义即可确定.【详解】2(2i)414i z =+-=-+,则z 在复平面内对应的点位于第二象限,故选:B.3.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为()A.5、10、15B.3、9、18C.3、10、17D.5、9、16【答案】B 【解析】【分析】利用分层抽样的定义求出对应人数,得到答案.【详解】抽取的高级职称人数为15303150⨯=,中级职称人数为45309150⨯=,一般职员的人数为903018150⨯=,故抽取的高级职称、中级职称、一般职员的人数分别为3、9、18.故选:B4.已知一组数据:4,6,7,9,11,13,则这组数据的第50百分位数为()A .6B.7C.8D.9【答案】C 【解析】【分析】借助百分位数定义计算即可得.【详解】由60.53⨯=,故这组数据的中位数为7982+=.故选:C.5.从1,2,3,4,5中任取2个不同的数,取到的2个数之和为偶数的概率为()A.13B.23C.12D.25【答案】D 【解析】【分析】应用列举法求古典概型的概率即可.【详解】任取2个不同数可能有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),共10种情况,其中和为偶数的情况有(1,3)、(1,5)、(2,4)、(3,5),共4种情况,所以取到的2个数之和为偶数的概率为42105=.故选:D6.已知空间中非零向量a ,b ,且1a = ,2b = , 60a b =,,则2a b - 的值为()A.1B.C.2D.4【答案】C 【解析】【分析】根据向量的模长公式即可求解.【详解】因为2222222(2)4444cos a b a b a a b b a a b a b b -=-=-⋅+=- ,14412442=-⨯⨯⨯+=,所以22a b -= .故选:C7.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫ ⎪⎝⎭B.13,1,22⎛⎫--- ⎪⎝⎭C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫⎪⎝⎭【答案】A 【解析】【分析】由空间向量共线的坐标表示与数量积的坐标表示求解即可.【详解】∵()1,2,3m = ,且空间向量n满足//m n u r r ,∴可设(),2,3n m λλλλ==,又7⋅= m n ,∴1233147λλλλ⨯+⨯+⨯==,得12λ=.∴113,1,222n m ⎛⎫== ⎪⎝⎭,故A 正确.故选:A.8.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,侧棱与底面垂直,若点C 到平面AB 1D 1的距离为5,则直线1B D 与平面11AB D 所成角的余弦值为()A.B.3710C.1010D.10【答案】A 【解析】【分析】先由等面积法求得1AA 的长,再以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -,运用线面角的向量求解方法可得答案.【详解】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D,则5CH =,设1AA a =,则AO CO AC ===,则根据三角形面积得1122AOC S AO CH AC ∆=⨯⨯=⨯,代入解得a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则1111(2,0,0),(0,2,0),(0,2,2(2,0,A B D D AD AB =-=-,1(B D =- ,设平面11AB D 的法向量为(n x =,y ,)z ,则1100n AD n AB ⎧⋅=⎨⋅=⎩,即2020y x ⎧-=⎪⎨-=⎪⎩,令x =,得n =.11110cos ,10||||B D n B D n B D n ⋅〈〉==,所以直线1B D 与平面1111D C B A故选:A.二、多选题9.设,A B 是两个概率大于0的随机事件,则下列结论正确的是()A.若A 和B 互斥,则A 和B 一定相互独立B.若事件A B ⊆,则()()P A P B ≤C.若A 和B 相互独立,则A 和B 一定不互斥D.()()()P A B P A P B <+ 不一定成立【答案】BC 【解析】【分析】对于AC :根据互斥事件和独立事件分析判断即可;对于B :根据事件间关系分析判断即可;对于D :举反例说明即可.【详解】由题意可知:()()0,0P A P B >>,对于选项A :若A 和B 互斥,则()0P AB =,显然()()()P AB P A P B ≠,所以A 和B 一定不相互独立,故A 错误;对于选项B :若事件A B ⊆,则()()P A P B ≤,故B 正确;对于选项C :若A 和B 相互独立,则()()()0P AB P A P B =>,所以A 和B 一定不互斥,故C 正确;对于选项D :因为()()()()P A B P A P B P AB =+- ,若A 和B 互斥,则()0P AB =,则()()()P A B P A P B =+ ,故D 错误;故选:BC.10.如图,点,,,,A B C M N 是正方体的顶点或所在棱的中点,则下列各图中满足//MN 平面ABC 的是()A. B.C. D.【答案】ACD 【解析】【分析】结合题目条件,根据线面平行的判断定理,构造线线平行,证明线面平行.【详解】对A :如图:连接EF ,因为,M N 为正方体棱的中点,所以//MN EF ,又//EF AC ,所以//MN AC ,AC ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故A 正确;对B :如图:因为,,,,A B C M N 是正方体棱的中点,所以//MN GH ,//BC EF ,//GH EF ,所以//BC MN ,同理://AB DN ,//AM CD .所以,,,,A B C M N 5点共面,所以//MN 平面ABC 不成立.故B 错误;对C :如图:因为,B C 是正方体棱的中点,所以//BC EF ,//MN EF ,所以//BC MN .⊂BC 平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故C 正确;对D :如图:因为,.B C M 为正方体棱的中点,连接ME 交AC 于F ,连接BF ,则BF 为MNE 的中位线,所以//BF MN ,BF ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故D 正确.故选:ACD11.如图,在平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将△ABD 折起到△PBD 的位置,使得平面PBD ⊥平面BCD ,连接PC ,下列说法正确的是()A.平面PCD ⊥平面PBDB.三棱锥P BCD -外接球的表面积为10πC.PD 与平面PBC 所成角的正弦值为34D.若点M 在线段PD 上(包含端点),则△BCM 面积的最小值为217【答案】ACD 【解析】【分析】结合线线垂直,线面垂直与面面垂直的相互转化关系检验A,根据外接球的球心位置即可结合三角形的边角关系求解半径,可判断B,结合空间直角坐标系及空间角及空间点到直线的距离公式检验CD .【详解】BCD △中,1CD =,2BC =,60A ∠=︒,所以3BD =,故222BD CD BC +=,所以BD CD ⊥,因为平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD CD ⊥,CD ⊂平面BCD 所以CD ⊥平面PBD ,CD ⊂平面PCD ,所以平面PCD ⊥平面BPD ,故A 正确;取BC 的中点为N ,PB 中点为Q ,过N 作12ON //PB,ON PB =,由平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD PB ⊥,PB ⊂平面PBD ,故PB ⊥平面BCD ,因此ON ⊥平面BCD ,由于BCD △为直角三角形,且N 为斜边中点,所以OB OC OD ==,又12ON //PB,ON PB =,所以QB ON ,BQ //ON =,因此OP OB =,因此O 为三棱锥P BCD -外接球的球心,且半径为2OB ==,故球的表面积为54π=5π4´,故B错误,以D为原点,联立如图所示的空间直角坐标系,则B 0,0),(0C ,1,0),P ,0,1),因为(0BP = ,0,1),(BC =,1,0),)01DP ,= ,设平面PBC 的法向量为(),,m x y z =,所以0000z m BP y m BC ⎧=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩,取x =)30m ,=所以cos ,4||||m DP m DP m DP⋅<>==,故PD 与平面PBC所成角的正弦值为4,故C 正确,因为M 在线段PD上,设M ,0,)a,则MB=,0,)a -,所以点M 到BC的距离d ==,当37a =时,d 取得最小值217,此时MBC ∆面积取得最小值12121277BC ⨯=,D 正确.故选:ACD.第Ⅱ卷(选择题)三、填空题12.如果从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率是________.【答案】112【解析】【分析】根据相互独立事件概率乘法公式求解.【详解】从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率1114312P =⨯=.故答案为:112.13.已知正方体1111ABCD A B C D -的棱长为2,点E 是11A B 的中点,则点A 到直线BE 的距离是__________.【答案】5【解析】【分析】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,利用点到直线的向量公式可得.【详解】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.则()()()2,0,0,2,2,0,2,1,2A B E ,所以()()0,2,0,0,1,2BA BE =-=-,记与BE同向的单位向量为u ,则5250,,55u ⎛=-⎝⎭,所以,点A 到直线BE 的距离455d ===.故答案为:514.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,点,E F 分别为,CD CP 的中点,点T 为PAB 内的一个动点(包括边界),若CT ∥平面AEF ,则点T 的轨迹的长度为__________.【答案】53153【解析】【分析】记AB 的中点为G ,点T 的轨迹与PB 交于点H ,则平面//CHG 平面AEF ,建立空间直角坐标系,利用CH垂直于平面AEF ,的法向量确定点H 的位置,利用向量即可得解.【详解】由题知,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 所在直线分别为,,x y z 轴建立空间直角坐标系,记AB 的中点为G ,连接CG ,因为ABCD 为正方形,E 为CD 中点,所以//AG CE ,且AG CE =,所以AGCE 为平行四边形,所以//CG AE ,又CG ⊄平面AEF ,AE ⊂平面AEF ,所以//CG 平面AEF ,记点T 的轨迹与PB 交于点H ,由题知//CH 平面AEF ,因为,CH CG 是平面CHG 内的相交直线,所以平面//CHG 平面AEF ,所以GH 即为点T 的轨迹,因为()()()()()()0,0,0,1,2,0,1,1,1,2,2,0,0,0,2,2,0,0A E F C P B ,所以()()()()2,0,2,2,2,2,1,2,0,1,1,1PB CP AE AF =-=--== ,设PH PB λ=,则()()()2,2,22,0,222,2,22CH CP PH CP PB λλλλ=+=+=--+-=--- ,设(),,n x y z =为平面AEF 的法向量,则200AE n x y AF n x y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,令1y =得()2,1,1n =- ,因为CH n ⊥ ,所以()2222220λλ---+-=,解得23λ=,则22,2,33CH ⎛⎫=-- ⎪⎝⎭ ,又()1,2,0GC AE == 所以()22121,2,0,2,,0,3333GH GC CH ⎛⎫⎛⎫=+=+--= ⎪ ⎪⎝⎭⎝⎭ ,所以12145,0,33993GH ⎛⎫==+= ⎪⎝⎭.故答案为:53【点睛】关键点睛:本题关键在于利用向量垂直确定点T 的轨迹与PB 的交点位置,然后利用向量运算求解即可.四、解答题15.《中华人民共和国民法典》于2021年1月1日正式施行.某社区为了解居民对民法典的认识程度,随机抽取了一定数量的居民进行问卷测试(满分:100分),并根据测试成绩绘制了如图所示的频率分布直方图.(1)估计该组测试成绩的平均数和第57百分位数;(2)该社区在参加问卷且测试成绩位于区间[)80,90和[]90,100的居民中,采用分层随机抽样,确定了5人.若从这5人中随机抽取2人作为该社区民法典宣讲员,设事件A =“两人的测试成绩分别位于[)80,90和[]90,100”,求()P A .【答案】(1)平均数76.2;第57百分位数79;(2)()35P A =.【解析】【分析】(1)利用频率分布直方图计算平均数及百分位数;(2)根据分层抽样确定测试成绩分别位于[)80,90和[]90,100的人数,按照古典概型计算即可.【小问1详解】由频率分布直方图可知测试成绩的平均数450.04550.06650.2750.3850.24950.1676.2x =⨯+⨯+⨯+⨯+⨯+⨯=.测试成绩落在区间[)40,70的频率为()0.0040.0060.02100.3++⨯=,落在区间[)40,80的频率为()0.0040.0060.020.03100.6+++⨯=,所以设第57百分位数为a ,有()0.3700.030.57a +-⨯=,解得79a =;【小问2详解】由题知,测试分数位于区间[)80,90、[)90,100的人数之比为0.2430.162=,所以采用分层随机抽样确定的5人,在区间[)80,90中3人,用1A ,2A ,3A 表示,在区间[)90,100中2人,用1B ,2B 表示,从这5人中抽取2人的所有可能情况有:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31A B ,()32,A B ,()12,B B ,共10种,其中“分别落在区间[)80,90和[)90,100”有6种,所以()35P A =.16.在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)证明:B 1D ⊥平面ABD ;(2)证明:平面EGF ∥平面ABD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)建立空间直角坐标系,利用向量法来证得1B D ⊥平面ABD .(2)利用向量法证得平面//EGF 平面ABD .【小问1详解】以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .【小问2详解】由(1)知,E (0,0,3),G ,1,42a ⎛⎫ ⎪⎝⎭,F (0,1,4),则EG uuu r =,1,12a ⎛⎫ ⎪⎝⎭,EF =(0,1,1),1B D ·EG uuu r =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .17.已知甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立.(1)甲乙两人同时命中目标的概率;(2)甲乙两人中至少有1人命中目标的概率.【答案】(1)0.72(2)0.98【解析】【分析】(1)利用相互独立事件概率乘法公式即可求出答案.(2)利用对立事件概率计算公式和相互独立事件概率乘法公式即可求得答案.【小问1详解】因为甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立,设事件A 表示甲命中,事件B 表示乙命中,则()0.8P A =,()0.9P B =所以甲、乙两人同时命中目标的概率()()()0.80.90.72P AB P A P B ==⨯=,【小问2详解】甲乙两人中至少有1人命中目标的对立事件是甲、乙都没击中目标,甲、乙都没击中目标的概率()()()()()10.810.90.02P AB P A P B ==--=,所以甲乙两人中至少有1人命中目标的概率为:()()110.020.98P A B P AB =-=-= 18.如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,AF DE F ⊥为垂足.(1)求证:AF DB ⊥.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求平面EDC 与平面DCB 夹角的余弦值;②求点B 到平面CDE 的距离.【答案】(1)证明见解析(2)①41919;②25719【解析】【分析】(1)利用线面垂直得到AF ⊥平面BED ,进而证明AF DB ⊥即可.(2)①建立空间直角坐标系,利用二面角的向量求法处理即可.②利用点到平面的距离公式求解即可.【小问1详解】由题意可知DA ⊥底面,ABE BE ⊂平面ABE ,故BE DA ⊥,又,,,BE AE AE DE E AE DE ⊥⋂=⊂平面AED ,故BE ⊥平面AED ,由AF ⊂平面AED ,得AF BE ⊥,又,,,AF DE BE DE E BE DE ⊥⋂=⊂平面BED ,故AF ⊥平面BED ,由DB ⊂平面BED ,可得AF DB ⊥.【小问2详解】①由题意,以A 为原点,分别以AB ,AD 所在直线为y 轴、z 轴建立如图所示空间直角坐标系,并设AD 的长度为2,则(0,0,0),(0,2,0),(0,2,2),(0,0,2)A B C D ,因为DA ⊥平面ABE ,所以DEA ∠就是直线DE 与平面ABE 所成的角,所以tan 2DA DEA AE∠==,所以1AE =,所以31,,022E ⎛⎫ ⎪ ⎪⎝⎭由以上可得1(0,2,0),,,222DC DE ⎛⎫==- ⎪ ⎪⎝⎭ ,设平面EDC 的法向量为(,,)n x y z = ,则0,0,n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩ 即20,3120,22y x y z =⎧+-=⎪⎩取4x =,得n = .又(1,0,0)m = 是平面BCD 的一个法向量,设平面EDC 与平面DCB 夹角的大小为θ,所以cos cos ,19m n m n m n θ⋅==== ,所以平面EDC 与平面DCB 夹角的余弦值为41919.②因为33,,022BE ⎛⎫=- ⎪ ⎪⎝⎭,所以点B 到平面CDE的距离19BE n d n ⋅== .19.图1是直角梯形ABCD ,AB CD ∥,90D Ð=°,四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,以BE 为折痕将BCE 折起,使点C 到达1C的位置,且1AC =,如图2.(1)求证:平面1BC E ⊥平面ABED ;(2)在棱1DC 上是否存在点P ,使得P 到平面1ABC 的距离为2155,若存在,则1DP PC 的值;(3)在(2)的前提下,求出直线EP 与平面1ABC 所成角的正弦值.【答案】(1)证明见详解(2)存在,11DP PC =(3)155【解析】【分析】(1)作出辅助线,得到AF ⊥BE ,1C F ⊥BE ,且123AF C F ==,由勾股定理逆定理求出AF ⊥1C F ,从而证明出线面垂直,面面垂直;(2)建立空间直角坐标系,求平面1ABC 的法向量,利用空间向量求解出点P 的坐标,(3)根据(2)可得31,322EP ⎛= ⎝uu r ,利用空间向量求线面夹角.【小问1详解】取BE 的中点F ,连接AF ,1C F,因为四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,所以1,ABE BEC 均为等边三角形,故AF ⊥BE ,1C F ⊥BE,且1AF C F ==,因为1AC =,所以22211AF C F AC +=,由勾股定理逆定理得:AF ⊥1C F ,又因为AF BE F ⋂=,,AF BE ⊂平面ABE ,所以1C F ⊥平面ABED ,因为1C F ⊂平面1BEC ,所以平面1BC E ⊥平面ABED ;【小问2详解】以F 为坐标原点,FA 所在直线为x 轴,FB 所在直线为y 轴,1FC 所在直线为z轴,建立空间直角坐标系,则()()()()()10,0,0,,0,2,0,0,0,,3,0,0,2,0F A B C D E --,设(),,P m n t ,1DP DC λ= ,[]0,1λ∈,即()(3,m n t λ+=,解得:,33,m n t λ==-=,故),33,P λ--,设平面1ABC 的法向量为(),,v x y z = ,则()(12,0,AB AC =-=-,则1200v AB y v AC ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1x =,则1y z ==,故()v = ,其中1,33,C P λ=--则15C P v d v⋅=== ,解得:12λ=或32(舍去),所以否存在点P ,使得P 到平面1ABC 的距离为2155,此时11DP PC =.【小问3详解】由(2)可得:()3331,0,2,0,2222EP ⎛⎛=---= ⎝⎝ ,设直线EP 与平面1ABC 所成角为θ,则15sin cos ,5EP v EP v EP v θ⋅===⋅,所以直线EP 与平面1ABC 所成角的正弦值为5.。
承德八中2016年下学期第一次阶段考试高二数学试题
注意事项:
1.试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为90分钟.
2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在机读卡上.
3.请把第Ⅱ卷试题答案写在答题卡上。
考试结束,答题卡收回.
第Ⅰ卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.已知)2,2
3(,1312cos ππαα∈=
,则=+)4(cos π
α ( )
A.
1325 B. 1327 C. 26
217 D. 262
7 2.=+-)12
sin
12
(cos
)12
sin
12
(cos
π
π
π
π
( )
A. 23-
B. 21-
C. 21
D. 2
3
3. 已知1sin cos 3αα+=
,则sin 2α=( ) A .8
9
- B .21- C . 21
D .8
9
4.=-+0
tan50tan703tan50tan70 ( ) A. 3- B.
3
3 C. 33- D. 3
5.在△ABC 中,若B A B A cos cos sin sin <⋅,则△ABC 一定为( ). A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形
6. 在△ABC 中,若B a b sin 2=,则A 等于 ( )
A . 0
6030或 B . 0
6045或 C . 0
60120或 D . 0
15030或 7.已知3
sin(
),45
x π
-=则sin 2x 的值为( ) A.
1925 B.1625 C.1425 D.725
8. 在△ABC 中,若8,3,7===c b a ,则其面积等于 ( )
A .36
B .
2
21
C .28
D .12 9. 在△ABC 中,若)())((c b b c a c a +=-+,则A ∠= ( )
A .0
90 B .0
60 C .0
120 D .0
150 10.
函数sin
22x x
y =的图像的一条对称轴方程是 ( ) A .x =113π B .x =53π C .53x π=- D .3
x π=-
11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3
π
,a =3,b =1,则c =( ) A.1
B.2
C.3—1
D.3
12. 边长为5,7,8的三角形的最大角与最小角的和是 ( ) A .0
90 B .0
120 C .0
135 D .0
150
第Ⅱ卷( 共90分 请把第Ⅱ卷试题答案写在答题卡上)
二、填空题:(本大题共4个小题,每小题5分,共20分) 13.在△ABC 中,AB =1, B C =2, B =60°,则AC = 。
14.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___ __.
15.在△ABC 中,已知A tan ,B tan 是方程01832
=-+x x 的两个根,则C tan 等于_________
16.已知1sin cos ,(0,)2αααπ+=
∈,则1tan 1tan αα
-=+ ____________ 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知7
1
tan ,21)tan(),,0(),4
,
0(-==
-∈∈ββαπβπ
α且, 求)2tan(βα-的值及角βα-2.
18. (本题满分12分)在△ABC 中,A=60
,b=1,ABC S ∆=,求
sin sin sin a b c
A B C
++++的值.
19.(本题满分12分)在ABC △中,5cos 13A =-
,3
cos 5
B =. (Ⅰ)求sin
C 的值; (Ⅱ)设5BC =,求ABC △的面积.
20. (本题满分12分)已知α为第二象限角,且415sin =α,求sin()4sin 2cos21
αααπ
+++的值.
21.(本题满分12分)在45,5
ABC B AC C ∆∠=︒==
中,求(1
)?BC = (2)若点D AB 是的中点,求中线CD 的长度。
22.(本题满分12分)已知函数2()cos cos 1f x x x x =+,x R ∈. (1)求证)(x f 的小正周期和最值; (2)求这个函数的单调递增区间.
(2016年下学期第一次阶段考试高二数学试题第Ⅱ卷答题卡) (本大题共4小题,每小题5分,共20分)
(共70分.要求写出必要的文字说明、重要演算步骤,有数值计算的要明确写出数值
和单位,只有最终结果的不得分.) 17(本题满分10分)
18(本题满分12分)
19(本题满分12分)20(本题满分12分)21(本题满分12分)22(本题满分12分)
承德八中2016年下学期第一次阶段考试高二数学试题参考答案
13 3 14. 60
O
15. 2_ 16.
43217
13417134tan )22tan(1tan )22tan(])22tan[()2tan(0
24
0271tan :.71πβαββαββαββαβαβαππ
απ
βπ
β-=-∴=⨯+-
=
--+-=+-=-∴<-<-∴<
<<<∴-= 解
18解
ABC S ∆=1
sin 2bc A ∴260b ∴=+2
a 13=13603=
19解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5
B =. 所以16
sin sin()sin cos cos sin 65
C A B A B A B =+=+=.
(Ⅱ)由正弦定理得45sin 13512sin 313
BC B AC A ⨯
⨯==
=. 所以ABC △的面积1
sin 2
S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯
83=.
20
.解:2sin()cos )
42sin 2cos212sin cos 2cos ααααααααπ++=+++)
cos (sin cos 4)cos (sin 2ααααα++=
, 当α为第二象限角,且4
15
sin =
α时,0cos sin ≠+αα,41cos -=α,
所以sin()4sin 2cos21αααπ
+++2cos 42-==α
. 21解:(1
)由cos sin C C =
=
sin sin(18045)sin )2A C C C =--=+=
由正弦定理知
sin sin AC BC A B =
⋅==(2
)
sin 2sin AC AB C B =
⋅==, 1
12
BD AB == 由余弦定理知132
2
2312181cos 222=⋅
⨯⨯-+=⋅-+=B BC BD BC BD CD 22.解:(1
)2cos cos 1y x x x =+
cos 212122x x +=
+
+11
cos 221222
x x =+++
3
sin
cos 2cos
sin 26
6
2
x x π
π
=++
3sin(2)62x π=++
π=T ,最大值
25,最小值2
1
(2)因为函数sin y x =的单调递增区间为2,2()22k k k Z ππππ⎡⎤
-
++∈⎢⎥⎣⎦
,
由(1)知3sin(2)62y x π
=+
+,故 222()262
k x k k Z πππ
ππ-+≤+≤+∈ ()3
6
k x k k Z π
π
ππ∴-
+≤≤
+∈
故函数3sin(2)62y x π
=++的单调递增区间为[,]()36
k k k Z ππ
ππ-++∈。