新北师版初中数学九年级下册3.2圆的对称性1公开课优质课教学设计
- 格式:doc
- 大小:1.01 MB
- 文档页数:4
D 3.2圆的对称性同步教案(1)教学目标经历探索圆的对称性及相关性质;理解圆的对称性及相关性质;进一步体会和理解研究几何图形的各种方法。
教学重点和难点重点:垂径定理及其逆定理难点:垂径定理及其逆定理学习过程一、自主探究看课本了解圆的轴对称性结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线圆的几个概念(阅读课本回答下列问题)圆弧:___________________记作:____________________ 优弧:____________________劣弧:____________________弦: ____________________ 直径:____________________注意直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧(1)如图,在⊙O 中,直径CD ⊥弦AB ,垂足为M ,图中相等的线段有 ,相等的劣弧有 ;若BC 弧的长为=5,则AC 弧的长为 。
二、合作探究例一、如图,两个圆都以点O 为圆心,小圆的弦CD 与大圆的弦AB 在同一条直线上。
你认为AC 与BD 的大小有什么关系?为什么?CD 弧,点O 是CD 弧的圆心),其中CD = 600m ,E 为OE ⊥CD ,垂足为F ,EF = 90m。
求这段弯路的半径。
三、巩固练习1.如图,AB是⊙O的一条弦,OC⊥AB于点C,OA = 5,AB = 8,求OC 的长。
2.如图,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,GB=8cm,AG=1cm,DE=2cm,则EF=_____cm四、自我小结我学会了我不明白的地方五、当堂检测1.判断正误(1)垂直于弦的直线平分这条弦,并且平分弦所对的两条弧。
()(2)平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧。
()(3)经过弦的中点的直径一定垂直于弦。
()(4)圆的垂直平分线一定平分这条弦所对的弧。
2024北师大版数学九年级下册3.2《圆的对称性》教学设计1一. 教材分析《圆的对称性》是北师大版数学九年级下册第3.2节的内容。
本节主要让学生了解圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
教材通过生活中的实例,引导学生探究圆的对称性质,培养学生的观察能力、操作能力和推理能力。
二. 学情分析九年级的学生已经学习了轴对称图形和中心对称图形,对对称性质有一定的了解。
但圆的对称性质较为抽象,需要学生通过实际操作、观察和推理来理解和掌握。
此外,学生可能对圆的直径和半径的概念有所混淆,需要在教学过程中进行澄清。
三. 教学目标1.了解圆的对称性质,知道圆是轴对称图形,有无数条对称轴,对称轴是直径所在的直线。
2.能运用圆的对称性质解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆的对称性质的理解和运用。
2.圆的直径和半径概念的区分。
五. 教学方法采用问题驱动法、实例分析法、合作学习法和引导发现法进行教学。
通过生活中的实例,引导学生观察和操作,发现圆的对称性质。
在教学过程中,注重学生的独立思考和合作交流,培养学生的推理能力和解决问题的能力。
六. 教学准备1.准备相关的实例图片和教学素材。
2.准备教学课件和板书设计。
3.准备练习题和作业题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的圆对称图形,如圆形的饼干、车轮等,引导学生观察和思考:这些图形有什么共同特点?它们有什么特殊性质?2.呈现(10分钟)呈现圆的对称性质,引导学生观察和操作:(1)圆是轴对称图形,有无数条对称轴。
(2)圆的对称轴是直径所在的直线。
通过实际操作和观察,让学生发现圆的对称性质。
3.操练(10分钟)让学生分组进行合作学习,每组选择一个圆,用彩笔标记出它的对称轴。
然后,让学生互相交流和分享,看看哪一组的发现与其他组有所不同。
4.巩固(10分钟)出示一些有关圆的对称性质的练习题,让学生独立完成。
北师大版数学九年级下册3.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是北师大版数学九年级下册第3.2节的内容,本节课的主要内容是让学生理解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。
教材通过生活中的实例引入圆的对称性,让学生感受圆的对称性在实际生活中的应用,培养学生的应用意识。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识,具备了一定的逻辑思维能力和空间想象力。
但是,对于圆的对称性的理解还需要通过具体的实例来引导和深化。
此外,学生可能对圆的对称性在实际生活中的应用还不够了解,需要通过实例演示和练习来提高。
三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆的对称轴的定义和性质。
2.过程与方法:通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:感受数学与生活的联系,提高学生学习数学的兴趣。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称轴的定义和性质的掌握。
五. 教学方法采用问题驱动法、实例教学法和小组合作法。
通过提出问题,引导学生观察和操作实例,进行小组讨论和推理,从而理解和掌握圆的对称性。
六. 教学准备1.教学实例:准备一些生活中的实例,如圆形桌面、圆形餐具等,用于展示圆的对称性。
2.教学工具:准备多媒体教学设备,用于展示实例和引导学生进行操作。
七. 教学过程1.导入(5分钟)通过提出问题:“你们在生活中见到过哪些圆形的物体?它们有什么特点?”引导学生思考圆的对称性。
2.呈现(10分钟)呈现教学实例,如圆形桌面、圆形餐具等,引导学生观察和描述它们的对称性。
通过实例展示,让学生初步感受圆的对称性。
3.操练(10分钟)让学生分组进行操作,每组选择一个圆形物体,尝试找出它的所有对称轴,并记录下来。
通过操作活动,让学生更深入地理解圆的对称性。
4.巩固(5分钟)让学生汇报各自的操作结果,全班交流,总结圆的对称轴的性质。
北师大版初中数学九年级下册《圆的对称性》教案设计课题:第三章第2节圆的对称性(1)课型:新授课教学目标:1.理解圆的对称性(轴对称)及有关性质.(重点)2.理解垂径定理及推论,并会运用其解决有关问题.(难点)教法与学法指导:这节课主要通过“找圆心”等问题情境激发学生探究的兴趣和热情,经历“操作实践—大胆猜测---综合证明----灵活应用”的课堂模式,在探究垂径定理过程中,让学生领会数学的严谨性,并培养学生的数学应用意识,勇于探索的精神. 课前准备:制作课件,学生预习学案.教学过程:一、情景导入明确目标组织教学:准备,给每一位同学发放圆形纸片(用化学滤纸);并提出问题,(问题1) 通过上节课《车轮为什么是圆形》的学习,认识了圆的基本概念,这是一张圆形纸片,你有什么办法找出它的圆心呢?学生活动:学生凭借经验很容易想到用两次折叠的方法,找到圆心.[师]:同学们上一节课,我们学习了圆的基本概念,知道,半径定圆的大小,圆心定圆的位置.下面,请一位同学到前面演示自己找圆心的过程.学生演示:[师]:(问题2)在折叠的过程中,你从中还知道圆具有什么性质?[生1]:老师,圆是对称图形,既是轴对称图形,又是中心对称图形.[师]:很好,同学们观察的很认真,这节课,我们重点研究圆的轴对称性,那么,圆的对称轴是怎样的直线,有多少条对称轴?[生2]:老师,圆的对称轴是直径,它有无数条对称轴. [师]:同学们,这位同学回答的对吗?[生3]:不正确,对称轴应该是直线,而直径是线段,应该说,对称轴是直径所在的直线,或者是过圆心的直线.教师活动:进行鼓励表扬并板书,3.2 圆的对称性(1)圆的对称性:圆是轴对称图形,对称轴是任意一条过圆心的直线.设计意图:问题可以激发学生学习数学的兴趣,而兴趣又是最好的老师.通过设计一连串的问题情境容易引发学生学习和探究的兴趣,在动手操作中既复习圆的意义,又探索到圆的对称性. 二、自主学习 合作探究:探究活动一:圆的基本概念 (让学生注意观察动画课件)学案(问题3):(1)什么是弦?什么是弧?如何区别?怎么表示? (2)弧与弦分别可以分成几类?它们如何区分? 学情预设:可能出现的情形一:学生看书后能理解弦、弧、优弧、劣弧及半圆的意义,但是难以区别异同,如:弦是线段,弧是曲线段;直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.情形二:学生写出的弧可能重复或遗漏,不能掌握“优弧与劣弧成对出现”的规律. 情形三:优弧的表示方法.以上若学生不能讨论总结得出,则需要老师引导得出结论.学生活动:学生在预习的前提下边观察图形演示边独立思考,再在四人小组间交流讨论. 教师活动:参与学生的讨论,注意收集信息,以便及时补充,然后提问.C[生1]:(1)连接圆上任意两点的线段叫做弦.经过圆心的弦叫直径.圆上任意两点间的部分叫做圆弧,简称弧;直径的两个端点把圆分成两个部分,每一部分叫做半圆.大于半圆弧叫优弧,小于半圆的弧称为劣弧.[生2]:弦是线段,弧是曲线段.弧的表示方法是在两个端点上面添加“︵“符号. [生3]:弦分为过圆心的和不过圆心的弦;弧分为劣弧、半圆、优弧.[师] 同学们总结的很好,下面,结合图形加深认识,并思考,你还可以得出什么性质.教师活动:引导学生,能不能从它们之间的相互关系来比较说明.[生4]:直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.[生5]:直径是圆中最大的弦. 学生活动:整理好笔记.设计意图:让学生带着问题探究,加强自主探究的针对性,激发思考与交流,从而真正掌握它们的本质与异同,学会辨证统一、分类讨论地解决问题,提高课堂效率.探究活动二:垂径定理 (问题4)(1)刚才折出的两条直径是怎样的位置关系?图中能得出哪些等量关系?(2)若把AB 向上平移到任意位置,成了不是直径的弦,折叠后猜想:还有与刚才类似的结论吗?有哪些方法证明你的猜想正确与否?(3)思考:上述探索过程利用了圆的什么性质?还运用了哪些知识?若只证明AM =BM ,还有什么方法?优弧AB 半圆CD劣弧AB C(4)把上述发现归纳成文字语言和几何语言.学生活动:拿出圆形纸片,将其对折,得到一条折痕CD,在CD 上取一点M ,作CD 的垂线AB,然后再将圆沿CD 对折,观察,得出结论.[生1]:垂直关系;相等的量有,AM =BM , 因为圆沿直线CD 对折后,点A 与B 重合. [生2]: 若只证明AM =BM , 还可以用等腰三角形“三线合一”. 证明:连接OA ,OB 则OA =OB 又 ∵CD ⊥AB∴AM =BM ,CD 是线段AB 的垂直平分线 ∴点A 和点B 关于直线CD 对称 ∴教师活动:引导学生总结并板书 文字语言和几何语言:垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的(两条)弧. 如图,在⊙O 中,即①②→③④⑤① CD 是直径 ③AM =BM ,④ ② CD ⊥AB 于M ⑤ 设计意图:用运动变化的观点体会从特殊到一般研究问题的方法,在折叠中领会定理的证明思路,突出重点、突破难点,培养学生的逻辑思维能力,提高学生的概括、总结的语言表达能力.探究活动三:垂径定理的推论 议一议:(问题5)同学们,如果把“垂径定理”中的条件“垂直于弦”与结论“平分于弦”互换,= ,=MOAB= ,=M OABCAD=BDAC=BC即:①③→②④⑤,结论是否还成立?如果成立,请你说明理由;不成立,请举反例. 学情预设: 大多数学生会模仿定理画图、折叠、推理后认为是成立的,可能有个别学生会持反对意见,引起一番有意义的讨论,老师可以适时地引导.当AB 与CD 是⊙O 的直径时,互相平分,但不一定垂直!只有当弦AB 不是直径时,结论才会成立. [生1]: 成立. ∴OA =OB ,AM =BM , ∴ CD ⊥A B(三线合一) ∴[生2]:不一定成立,如图,当AB 是直径时,CD 平分AB ,但不垂直AB .只有AB 不是直径时,才成立.[师]: 同学们讨论的非常好,做数学就是要求我们思维要严谨,注意,条件与图形的统一及多样性,多画图,多分析,多总结.那么这个推论我们应该怎么说? 在学生的归纳中,板书. 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(问题6)如果我们继续交换条件是否能够②③→①④⑤、①④→②③⑤、④⑤→①②③?学生活动:采取折叠-重合-得出结论成立.师生共同归纳总结:由 “①直径、②垂直于弦、③平分弦、④平分优弧、⑤平分劣弧”,其中两个作条件推出另三个结论.设计意图:对教材知识进行适当的变式和拓展,让学生能举一反三,发散学生的思维,让不同层次的学生得到不同的发展,并体验数学的严谨性和探究的乐趣,感受合作交流的重要性. (问题7)例题分析例1:如右图所示,一条公路的转弯处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),其中CD =600m ,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,EF =90 m .求这M O ABC AC =BC , AD =BDM OABC段弯路的半径.学生活动:观察示意图,分析题目的已知和要求的结果,寻求相互关系,然后尝试独立解答,在与小组其他同学交流,确定解题思路.教师活动:与个别学生交流解题思想方法,让其上黑板板演过程,并说明为什么这样解答.[生]:解:连接OC,设弯路的半径是R,则OF=(R-90))m∵OE⊥CD∴CF=CD/2=300m(垂径定理)由勾股定理得OC2=CF2+OF2即R2=3002+(R-90)2解得R=545所以,弯路的半径是545m.设计意图:让学生在实践中理解垂径定理应用,在四个量半径R、弦CD的长、弦心距OF长、弓形高EF的长中,任已知两个量可以求出另两个量.一题多变,多题归一,探寻规律,构造直角三角形后通过勾股定理求解,从题海中解脱出来,并培养学生的数学应用意识,体会数学与生活的联系.三、归纳总结,拓展提高[师]:同学们,我们本节课学习了垂径定理及推论,理解了与圆有关的应用,你有收获,或者是疑虑问题,交流一下.学生活动:有独立思考,落笔组织语言的,也有相互讨论,交流总结的观点的,气氛相当热烈,各抒己见.[生]:老师,如图,OC⊥AB,可不可以使用垂径定理.[师]:可以,这条线(或线段)过圆心,就可以作为直径使用,同时,过圆心作弦的垂线是今后解答圆的问题的常用辅助线,在以后的学习中,注意体会和总结.设计意图: 用问题形式引导学生回顾总结学习过程,使知识系统化,学会提炼其中蕴含的数学思想方法,且能够灵活应用;学会自我反思,养成良好的数学学习习惯. 课堂检测:1.已知⊙O 的半径为5,弦AB 的长为6 ,则这条弦的中点到弦所对劣弧中点的距离为____.考察知识点:理解垂径定理的意义,会构造符合定理的基本图形,来解决问题. 答案提示:解:过O 点作AB 的垂线,垂足是D ,且与弧AB 交于点C ,连接OA , ∵OC ⊥AB∴D 是AB 的中点,C 是弧AB 的中点,∴OD =52-32=4 ∴DC =5-4=1所以,这条弦的中点到弦所对劣弧中点的距离为12.两个同心圆中,大圆的弦AB 交小圆于C 、D ,若AB =4,CD =2,圆心到AB 的距离为l ,则大圆的与小圆的半径之比为____________.考察知识点:理解垂径定理的使用,加深认识辅助线“弦心距和半径”经常是成对构造的,以便构造直角三角形,解决问题. 答案提示:解:51222=+=OA21122=+=OC则大圆的与小圆的半径之比为21025=3. 储油罐的截面如图所示,装入一些油后,若油面宽AB=600mm , 求油的最大深度.考察知识点:主要是检测垂径定理在生活中的应用,解决此类问题的关键是画出示意图,转化为数学问题解答.答案提示:由垂径定理知,mm oc 12530032522=-= 油最大深度=325-125=200(mm )4.已知:如图,⊙O 中, AB 为 弦,C 为 AB 的中点,OC 交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA . 考察知识点:数学方法的综合应用,主要是方程知识与图形解答的结合. 答案提示:解:设⊙O 的半径为r 在直角三角形AOD 中,222OA OD AD =+所以,222)1(3r r =-+ ∴r =5cm ∴OA =5cm学情预设:部分同学可以当堂完成,教师,当堂批改,及时知道学生的解答情况;部分同学需要老师的引导,才能完成解答.教师活动:通过检查,关键看学生的图形构造,是否能够利用半径和弦心距构造出直角三角形,运用勾股定理解决问题.D OABD OAB设计意图:通过例题的分析学习,让学生体会数学学习要善于构造图形,解决问题;进一步理解,为了应用条件和已有的性质定理,需要添加辅助线来完善图形,从而培养学生良好的学习习惯.板书设计:教学反思:《圆的对称性》是一节操作性较强的课,所以,我在教学中首先创设“找圆心”情境,让学生感到新颖、有趣同时又注重了垂径定理及推论的发生、发展和应用过程的教学;再以连贯的问题串形式步步深入,层层推进学生思考,有效激活学生思维. 让学生真正体验了探索获取新知的成绩感和成功感,同时也达到了培养学生学习主动性和创造性的目的;最后,通过提供有层次的达标检测题让学生应用所学解决实际问题.孩子们在解决问题的同时享受到了成功的喜悦,个性得到了彰显,解决问题的能力也得到了充分的提升,更感受到数学的价值,从而更加热爱数学学习.感到课堂不足的地方是,本节课学生操作和自主学习的时间多,每个环节的衔接要流畅,才能在课堂上完成,所以本节课要提前发放导学案,才能顺利完成课堂教学任务.。
北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
通过学习,使学生能运用圆的对称性解决一些实际问题。
二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。
但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。
三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。
2.难点:理解圆的对称性与轴对称图形的关系。
五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。
2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。
3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。
六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。
2.教学环境:教室布置成有利于学生思考和交流的环境。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。
提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。
2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。
呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。
同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。
3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。
北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。
本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。
但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。
三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:圆的对称性质的理解和应用。
2.难点:圆的对称性质在实际问题中的灵活运用。
五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。
2.学具:学生每人一本教材,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。
同时,引导学生发现圆的对称性质与生活的密切关系。
3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。
通过实践活动,加深学生对圆的对称性质的理解。
第三章圆3.2圆的对称性一、教学目标1.经历探究圆的轴对称性和中心对称性及其相关性质的过程.2.认识圆的轴对称性和中心对称性及相关性质.3.进一步体会和理解研究几何图形的各种方法.二、教学重点及难点重点:圆的旋转不变性,圆心角、弧、弦之间等量关系的定理.难点:圆的旋转不变性,圆心角、弧、弦之间等量关系的定理的应用.三、教学用具多媒体课件,圆规.四、相关资源《折叠圆形纸片、旋转圆形纸片》动画,动画五、教学过程【情境导入】通过动画展示,你发现圆有什么样特殊的对称性质吗?让我们这节课来共同探究. 设计意图:通过有针对性的动画展示,为本节课的学习给出直观展示.【探究新知】议一议(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(2)你是用什么方法解决上述问题的?与同伴进行交流.师生活动:教师出示问题,学生小组讨论,教师引导学生得出结果.答:(1)圆是轴对称图形;过圆心的任意一条直线都是它的对称轴;圆的对称轴有无数条.(2)采用折叠的方法可以解决上述问题.结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线.设计意图:让学生在互相交流中,认识到圆的对称轴有无数条,在探究的过程中发现规律.想一想一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?师生活动:教师出示问题,学生思考、讨论,教师引导学生得出结果.答:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.结论:圆是中心对称图形,对称中心为圆心.设计意图:让学生了解圆的旋转不变性,让学生明白圆的中心对称性是其旋转不变性的特例.做一做在等圆⊙O和⊙O'中,分别作相等的圆心角∠AOB和∠A'O'B'(如图),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,使得OA与O'A'重合.你能发现哪些等量关系?说一说你的理由.师生活动:教师出示问题,学生小组讨论,教师引导学生得出结果.答:发现:AB=A'B',AB=A'B'.理由:∵半径OA与O′A′重合,由于∠AOB=∠A′O′B′,∴半径OB与O′B′重合.∵点A 与点A ′重合,点B 和点B ′重合,∴AB 与A'B'重合,弦AB 与弦A ′B ′重合.∴AB =A'B',AB =A'B'.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.想一想 在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?在同圆或等圆中,如果两条弦相等,你能得出什么结论?师生活动:教师出示问题,学生小组讨论,教师引导学生得出结果.答:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等,这两个圆心角也相等;在同圆或等圆中,如果两条弦相等,那么它们所对的两条弧相等,所对的两个圆心角也相等.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.设计意图:让学生思考上述命题的逆命题是否成立,从而得到圆心角、弧、弦之间相等关系的定理,鼓励学生亲自动手,进行实验、用多种方法进行探究、得出结论,激发学生的求知欲望,进而培养学生的实践能力.【典例精析】例 如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD CE =.BE 与CE 的大小有什么关系?为什么?师生活动:教师出示例题并分析、引导,学生尝试完成,最后教师给出规范的解题过程. 解:BE =CE .理由是:∵∠AOD =∠BOE ,∴AD BE =.又∵AD CE =,∴BE CE =.∴BE =CE .设计意图:培养学生正确应用所学知识的能力,增强应用意识.【课堂练习】1.下列说法中正确的是().A.直径是圆的对称轴B.经过圆心的直线是圆的对称轴C.与圆相交的直线是圆的对称轴D.与半径垂直的直线是圆的对称轴2.下列说法中正确的是().A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等3.如图,已知AB是⊙O的直径,BC CD DE==,∠BOC=40°,那么∠AOE=().A.40°B.60°C.80°D.120°4.如图,D,E分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC与CB的大小关系是____________.5.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.6.已知A,B是⊙O上的两点,∠AOB=120°,C是AB的中点.试确定四边形OACB的形状,并说明理由.师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案COB A1.B .2.B .3.B .4.AC =CB .5.证明:∵AD =BC ,∴AD BC =.∴AD BD BC BD +=+.即AB CD =.∴AB =CD .6.解:四边形OACB 是菱形;理由:连接OC .∵AC BC =,∴∠AOC =∠BOC .又∵∠AOB =120°,∴∠AOC =∠BOC =60°.∵OB =OC ,OA =OC ,∴△BOC 和△AOC 都是等边三角形.∴OB =BC =CA =AO .∴四边形OACB 是菱形.设计意图:通过本环节的学习,让学生巩固所学知识. 六、课堂小结1.圆是轴对称图形,其对称轴是任意一条过圆心的直线.2.圆是中心对称图形,对称中心为圆心.3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.4.在同圆或等圆中,如果两条弦相等,那么它们所对的两条弧相等,所对的两个圆心角也相等.5.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.师生活动:教师引导学生归纳总结本节课所学内容.设计意图:通过总结使学生梳理本节课所学内容,掌握本节课的核心内容.COB A七、板书设计3.2圆的对称性1.圆是轴对称图形,其对称轴是任意一条过圆心的直线.2.圆是中心对称图形,对称中心为圆心.3.圆心角相等⇔弧相等,弦相等.4.弦相等⇔弧相等,圆心角相等.5.弧相等⇔弦相等,圆心角相等.。
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。
教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。
本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。
二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。
但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。
同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。
三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。
2.能够运用圆的对称性解决实际问题。
3.培养学生的观察能力、动手操作能力和推理能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称轴的定义及性质的掌握。
五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。
六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。
2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。
3.准备一些实际问题,用于巩固学生对圆对称性的运用。
七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。
然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。
2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。
同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。
3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。
32 圆的对称性
1.理解圆的旋转不变性;(重点)
2.掌握圆心角、弧、弦之间相等关系的定理;(重点)
3.能应用圆心角、弧、弦之间的关系解决问题.(难点)
一、情境导入
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?
二、合作探究
探究点:圆心角、弧、弦之间的关系
【类型一】利用圆心角、弧、弦之间
的关系证明线段相等
如图,M为⊙O上一点,(MA
︵
)=(MB
︵
),MD⊥OA于D,ME⊥OB于E,求证:
MD=ME
解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME
证明:连接MO,∵ (MA
︵
)=(MB
︵
),∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME
方法总结:圆心角、弧、弦之间相等关系的定理可以用证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
【类型二】利用圆心角、弧、弦之间
的关系证明弧相等
如图,在⊙O中,AB、D是直径,E∥AB且交圆于E,求证:(BD
︵
)=(BE
︵
)
解析:首先连接OE ,由E ∥AB ,可证得∠DOB =∠,∠BOE =∠E ,然后由O =OE ,可得∠=∠E ,继而证得∠DOB =∠BOE ,则可证得(BD
︵)=(BE
︵)
证明:连接OE ,∵E ∥AB ,∴∠DOB =∠,∠BOE =∠E ∵O =OE ,∴∠=∠E ,∴∠DOB =∠BOE ,∴(BD
︵)=(BE
︵)
方法总结:此类题主要运用了圆心角与弧的关系以及平行线的性质.注意掌握辅助线的作法及数形结合思想的应用.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
【类型三】 综合运用圆心角、弧、弦
之间的关系进行计算
如图,在△AB 中,∠AB =90°,
∠B =36°,以为圆心,A 为半径的圆交AB 于点D ,交B 于点E 求(AD ︵) 、(DE
︵
)的
度数.
解析:连接D ,由直角三角形的性质求出∠A 的度数,再根据等腰三角形及三
角形内角和定理分别求出∠AD 及∠DE 的度数,由圆心角、弧、弦的关系即可得出
(AD ︵)、(DE
︵
)的度数.
解:连接D ,∵△AB 是直角三角形,∠B =36°,∴∠A =90°-36°=54°∵A =D ,∴∠AD =∠A =54°,∴∠AD =180°-∠A -∠AD =180°-54°-54°=72°,∴∠BD =∠AB -∠AD =90°-72°=18°∵∠AD 、∠BD 分别是(AD ︵),(DE
︵)
所对的圆心角,∴(AD ︵
)的度数为72°,
(DE ︵
)的度数为18°
方法总结:解决本题的关键是根据题意作出辅助线,构造出等腰三角形.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型四】 有关圆心角、弧、弦之间
关系的探究性问题
如图,直线l 经过⊙O 的圆心O ,
且与⊙O 交于A 、B 两点,点在⊙O 上,且∠AO =30°,点P 是直线l 上的一个动点(与圆心O
不重合),
直线P 与⊙O 相交于点Q 是否存在点
P,使得QP=QO?若存在,求出相应的∠OP 的大小;若不存在,请简要说明理由.解析:点P是直线l上的一个动点,因而点P与线段OA有三种位置关系:点P 在线段OA上,点P在OA的延长线上,点P在OA的反向延长线上.分这三种情况进行讨论即可.
解:当点P在线段OA上(如图①),在△QO中,O=OQ,∴∠OQ=∠OP在△OPQ 中,QP=QO,∴∠QOP=∠QPO又∵∠AO=30°∴∠QPO=∠OP+∠AO=∠OP+30°在△OPQ中,∠QOP+∠QPO+∠OQ=180°,即(∠OP+30°)+(∠OP+30°)+∠OP=180°,整理得3∠OP=120°,∴∠OP=40°;
当P在线段OA的延长线上(如图②),∵O=OQ,∴∠OQP=(180°-∠QO)×错误!=90°-错误!∠QO∵OQ=PQ,∴∠OPQ=(180°-∠OQP)×错误!=45°+错误!∠QO在△OQP中,30°+∠QO+∠OQP+∠OPQ=180°,∴30°+∠QO+90°-错误!∠QO+45°+错误!∠QO=180°,∴∠QO=20°,则∠OQP=80°,∴∠OP=100°;
当P在线段OA的反向延长线上(如图③),∵O=OQ,∴∠OP=∠OQ=(180°-∠OQ)×错误!=90°-错误!∠OQ∵OQ=PQ,∴∠OPQ=∠POQ=错误!∠OQ=45°-错误!∠OQ∵∠AO=30°,∴∠OQ+∠POQ =150°,∴∠OQ+45°-错误!∠OQ=150°,∴∠OQ=140°,∴∠OP=(180°-140°)×错误!=20°
方法总结:本题通过同圆的半径相等,将圆的问题转化为等腰三角形的问题,是一种常见的解题方法,还要注意分类讨论思想的运用.
三、板书设计
圆的对称性
1.圆心角、弧、弦之间的关系
2.应用圆心角、弧、弦之间的关系解决问题
本节课的教学策略是通过学生自己动手画图叠合、观察思考等操作活动,让学生亲身经历知识的发生、发展及其探求过程,
再通过教师演示动态教具引导,让学生感受圆的旋转不变性,并得出圆心角、弧、弦三者之间的关系,能用这一关系定理,解决圆的计算证明问题,同时注重培养学生的探索能力和逻辑推理能力,力求体验数学的生活性、趣味性。