水泥分别粉磨工艺的技术经济评价
- 格式:pdf
- 大小:534.89 KB
- 文档页数:7
60万吨水泥粉磨站工程节能评估报告节能评估报告1.引言在当前全球对能源消耗的高度关注下,节能成为了各行各业的必要举措。
水泥粉磨站作为水泥生产中的重要环节,对能源的消耗量非常大。
因此,为了提高节能效果,减少对能源的依赖,本报告对一座60万吨水泥粉磨站工程进行了节能评估。
2.现状分析目前,该水泥粉磨站使用的设备主要包括球磨机、立磨机等。
通过对设备进行能耗测量和数据统计,发现现有设备在工作效率方面存在一定的不足,且能源消耗较大。
同时,由于工艺上的一些改进不足,导致了一定程度的能源浪费。
3.节能改进措施为了提高水泥粉磨站的节能效果,我们提出以下改进措施:3.1设备优化升级:对现有球磨机、立磨机进行升级和改造,采用更高效节能的设备和技术,提高设备的工作效率,减少能耗。
3.2工艺改进:改变部分工艺流程,优化磨矿和磨料的配比,减少研磨时间,提高生产效率,降低能耗。
3.3建设循环系统:建立水泥粉磨站的循环系统,对磨矿设备进行闭环控制,有效利用废热和废气,提高能源利用效率。
3.4完善管理机制:制定科学的能源管理制度,加强能源监测和数据分析,及时发现和解决能源浪费问题,提高能源利用效率。
4.节能效果评估我们通过对改进措施的实施进行全面的能耗测量和数据分析,预计可实现以下节能效果:4.1设备优化升级预计可使能耗下降20%以上。
4.2工艺改进预计可使能耗下降15%以上。
4.3建设循环系统可使能耗下降25%以上。
4.4完善管理机制可使能耗下降10%以上。
5.经济效益评估通过对节能改进措施的实施和节能效果的预测分析,我们可以估算出相应的经济效益:5.1节能改进投资额预计为200万元。
5.2节能效果可使每年节省能源费用300万元以上。
5.3节能项目的回报期预计为2年左右。
6.风险评估在实施节能改进措施的过程中,可能会面临一些风险问题,包括技术风险、市场风险和管理风险等。
为降低风险,我们需要制定相应的风险应对措施,并建立监控机制,及时发现和解决风险问题。
引言立磨作为料床粉磨的代表设备,其在水泥终粉磨系统中具有节能、工艺布置简单、水泥质量稳定、易操作维护、占地面积小和环保等独特优势,在国内外水泥粉磨生产中已经被广泛应用[1]。
目前,立磨终粉磨系统与辊压机+球磨联合粉磨(以下简称联合粉磨)系统已经发展成为水泥粉磨技术的主流。
传统思维认为采用球磨作为粉磨设备时所得的成品颗粒近似为球状或椭球状结构,而采用立磨作为粉磨设备时所得的成品颗粒多为片状和针状结构的混合物,因此立磨不适合粉磨水泥熟料[2]。
但随着立磨技术的升级,立磨水泥的需水性能和净浆流动性能达到甚至超过球磨机[3-5]。
目前,学术界和业界对立磨粉磨水泥的工作性能逐渐改观,其流动性好,在实际施工中逐渐得到了认可。
然而,对立磨水泥制备混凝土的强度和耐久性问题研究较少,需要进一步探究立磨粉磨方式对混凝土强度和耐久性的影响。
本文通过对同一水泥厂家分别采用立磨和联合粉磨生产的水泥进行性能测试,对比两种水泥制备的混凝土粉磨方式对混凝土强度和耐久性及水泥性能的影响张海姣1 李 扬2 赵宇翔2 焦留军3 郑永超21. 北京建筑材料检验研究院股份有限公司 北京 1000412. 北京建筑材料科学研究总院有限公司 固废资源化利用与节能建材国家重点实验室 北京 1000413. 唐山冀东装备工程股份有限公司 河北省水泥装备技术创新中心 河北 唐山 063000摘 要:立磨粉磨方式已逐渐成为制备水泥的主流生产方式之一,但目前尚不清楚立磨粉磨方式是否会对水泥混凝土的强度和耐久性产生影响。
本文通过测试立磨水泥与辊压机+球磨联合粉磨水泥制备的混凝土的强度和耐久性,研究立磨水泥和辊压机+球磨联合粉磨水泥的粒度分布、水化放热及其制备的混凝土的微观形貌。
结果表明:立磨水泥粒度小于3 μm的比例较小,早期水化速率较慢,导致其早期强度略微低于辊压机+球磨联合粉磨水泥;两种水泥制备的混凝土的界面过渡区致密性均较好,耐久性表现良好;立磨水泥与辊压机+球磨联合粉磨水泥的强度和耐久性基本一致。
水泥的最佳颗粒分布及其评价方法水泥的粉体状态一般表达为磨细程度(细度和比表面积)、颗粒分布和颗粒形貌。
水泥产品必须磨制到一定细度状态时,才具有胶凝性。
水泥细度直接影响着水泥的凝结、水化、硬化和强度等一系列物理性能。
细度状态可用以下方式表达:平均粒径法、筛析法、比表面积法、颗粒级配法。
如细度指标(80μm 和45μm 筛筛余),主要反映水泥中粗颗粒含量(%);再如比表面积指标(m2/kg ),主要反映水泥中细颗粒含量;而颗粒级配分析可以全面反映水泥中粗细颗粒分布状态,是当前水泥企业调整、控制水泥性能的先进手段。
在水泥粉磨过程中得到的水泥颗粒不是均匀的单颗粒,而是包含不同粒径的颗粒群体。
水泥颗粒的平均粒径是表现水泥颗粒体系的重要几何参数,但其所能提供的粒度特性信息则非常有限,因为两个平均粒径相同的粒群,完全可能有不一样的粒度组成(颗粒级配)。
我国水泥标准规定,水泥产品的细度0.08mm 方孔筛筛余不得超过10%。
控制细度的方法简单易行,在一定的粉磨工艺条件下,水泥强度与其细度有一定的相关关系。
细度值是指0.08mm 筛的筛余量,即水泥中≥80μm 的颗粒含量(%)。
众所周知,≥64μm 的水泥颗粒的水化活性已经很低了,所以用≥80μm 颗粒含量多少进行水泥质量控制,不能全面反映水泥的真实活性。
现在,水泥普遍磨得很细,所以这条标准规定就失去了控制意义。
国外水泥标准大多规定比表面积指标,采用勃氏比表面积仪测定水泥比表面积。
我国的硅酸盐水泥和熟料的国家标准已与国外标准相一致。
一般情况下,水泥比表面积与水泥性能都保持着较好的关系;但用比表面积控制水泥质量时,却有以下不足:(1)比表面积数值主要反映5μm 以下的颗粒含量,数值比较单一。
在固定的工艺条件下,控制水泥的45μm 筛余量和比表面积在一个合理的水平上,限制3μm以下和45μm 以上的颗粒,能够获得良好的水泥性能和较低的生产成本。
(2)比表面积对水泥中细颗粒含量的多少反应很敏捷。
水泥的最佳颗粒分布及其评价方法水泥的粉体状态一般表达为磨细程度(细度和比表面积)、颗粒分布和颗粒形貌。
水泥产品必须磨制到一定细度状态时,才具有胶凝性。
水泥细度直接影响着水泥的凝结、水化、硬化和强度等一系列物理性能。
细度状态可用以下方式表达:平均粒径法、筛析法、比表面积法、颗粒级配法。
如细度指标(80μm 和45μm 筛筛余),主要反映水泥中粗颗粒含量(%);再如比表面积指标(m2/kg ),主要反映水泥中细颗粒含量;而颗粒级配分析可以全面反映水泥中粗细颗粒分布状态,是当前水泥企业调整、控制水泥性能的先进手段。
在水泥粉磨过程中得到的水泥颗粒不是均匀的单颗粒,而是包含不同粒径的颗粒群体。
水泥颗粒的平均粒径是表现水泥颗粒体系的重要几何参数,但其所能提供的粒度特性信息则非常有限,因为两个平均粒径相同的粒群,完全可能有不一样的粒度组成(颗粒级配)。
我国水泥标准规定,水泥产品的细度方孔筛筛余不得超过10%。
控制细度的方法简单易行,在一定的粉磨工艺条件下,水泥强度与其细度有一定的相关关系。
细度值是指筛的筛余量,即水泥中≥80μm 的颗粒含量(%)。
众所周知,≥64μm 的水泥颗粒的水化活性已经很低了,所以用≥80μm 颗粒含量多少进行水泥质量控制,不能全面反映水泥的真实活性。
现在,水泥普遍磨得很细,所以这条标准规定就失去了控制意义。
国外水泥标准大多规定比表面积指标,采用勃氏比表面积仪测定水泥比表面积。
我国的硅酸盐水泥和熟料的国家标准已与国外标准相一致。
一般情况下,水泥比表面积与水泥性能都保持着较好的关系;但用比表面积控制水泥质量时,却有以下不足:(1)比表面积数值主要反映5μm 以下的颗粒含量,数值比较单一。
在固定的工艺条件下,控制水泥的45μm 筛余量和比表面积在一个合理的水平上,限制3μm以下和45μm 以上的颗粒,能够获得良好的水泥性能和较低的生产成本。
(2)比表面积对水泥中细颗粒含量的多少反应很敏捷。
水泥工业粉磨工艺技术随着我国建筑工程的发展,水泥的需求量逐年增加,对于水泥工业粉磨工艺技术也提出了更高的要求。
水泥工业粉磨工艺技术是指通过对水泥原料进行粉磨处理,使其成为适合建筑工程所需要的细粉,从而提高水泥的品质和性能。
水泥工业粉磨工艺技术的核心是对水泥原料的粉磨过程进行控制和优化。
水泥原料主要由石灰石和粘性物质混合而成,经过石灰石的粉碎和研磨处理后,使其成为细粉状的石灰石粉。
然后与粘性物质进行混合,通过研磨的方式使其变成水泥熟料。
最后再通过研磨水泥熟料,使其成为细粉状的水泥。
水泥工业粉磨工艺技术的关键在于磨机的选型和运行控制。
常见的水泥磨机有球磨机、辊压机和立式磨机等。
球磨机适用于生产中等和高强度水泥,辊压机适用于生产高强度和超高强度水泥,立式磨机适用于生产小颗粒尺寸和高反应性的水泥。
选用不同类型的磨机可以根据生产需要来确定。
而磨机的运行控制则是通过调整磨机的转速、出料温度和出料粒度等参数来实现。
正确的运行控制可以使水泥的磨砂效率更高,降低电能消耗,提高水泥的细度和品质。
在水泥工业粉磨工艺技术中,还有一项重要的技术就是辅助磨剂的应用。
辅助磨剂是指通过添加少量的物质来改善水泥的磨砂效果,提高磨机的生产能力和水泥的品质。
常用的辅助磨剂包括石膏、石英砂、氯化钠和甲基纤维素等。
石膏可以调整水泥的硫酸盐含量,改善水泥的性能;石英砂和氯化钠可以增加水泥的细度和硬化时间;甲基纤维素可以提高水泥的流动性和胶凝性。
总之,水泥工业粉磨工艺技术对于提高水泥的品质和性能起着至关重要的作用。
通过选择合适的磨机和运行控制参数,以及合理应用辅助磨剂,可以实现水泥的高效生产和优质产品的制造。
随着科技的发展和技术的创新,相信水泥工业粉磨工艺技术将不断完善和提高,为我国建筑工程的发展做出更大的贡献。
建材发展导向2018年第06期1121 水泥粉磨工艺技术特点1.1 开流粉磨工艺技术特点开流粉磨技术优点在于流程简单、操作便捷、使用设备较少、成本低、设备维护简单。
不过该种技术效率和产量不高,如若对产品粒度要求较严格时,被磨细的物料会在磨内形成冲层,进而形成粉磨,且还有部分数量颗粒会夹杂到成品当中,甚至还会出现粘结、包球等现象。
1.2 圈流粉磨工艺技术特点该种技术常常使用的是长管磨作为磨机,所以导致在磨内物料出现长时间停留,使得过粉磨大幅减少,从而达到提高了磨机的产量,具有效率高、能耗低、循环负荷小的特点。
而且可以采取不同级别的选粉技术来把控成品粒度,实际磨出物料较细。
不过该种技术流程较为复杂、操作难度较大,需要投入大量资金。
1.3 混合粉磨工艺技术特点混合粉末技术能够有效助磨熟料的粉磨,减少熟磨使用数量,降低能源消耗。
并且该项技术可以有效降低煅烧生料中石灰石所产生的二氧化碳,降低对环境的污染。
2 水泥粉磨工艺改进措施2.1 粉磨研磨体工艺改进措施用于水泥粉磨加工的原材料要求能够把小块物料变为颗粒,所以要用到巨大冲力把大块物料打碎,并且还要选用相应设备来控制物料大小间的空隙,尽可能将原材料和粉磨机接触面积加大,以便于能够将水泥粉磨效率提升。
要想改进粉磨研磨体工艺可从如下几方面着手:第一,在确保粉磨细度条件得到满足的基础上,合理加大物料接触面或增加设备循环次数,将研磨设备直径减小,以便于提升设备工作效率。
第二,如若要采取等级不同的两种等级钢锻,则应当选用平均组合钢锻。
如若是采取三段钢锻,就应当要结合具体情况来组合。
第三,磨设备如果是相邻的两个仓都是钢球,就需要确保后面最大,前面最小的原则,并根据特定比例来选用2-3级或3-5级钢锻,进而确定最佳研磨设备。
第四,如若所采用原材料硬度较大、颗粒较大,出料细度要求不高的情况下,可以选用较大直径的研磨设备,反之就选用直径较小的设备,即结合具体研磨要求来选择相应直径设备。
水泥分别粉磨工艺优势总结
水泥生产中的粉磨工艺是生产过程中的关键环节之一。
下面将就水泥分别粉磨工艺的优势进行总结。
1. 球磨机粉磨工艺:
球磨机粉磨工艺是水泥生产中最常用的一种粉磨工艺。
其优势主要在于:
- 适用性广:球磨机可以处理各种水泥原材料,具有很强的适应性。
- 磨煤机配套:球磨机可以与磨煤机配套使用,提高煤粉的磨细度,保证水泥生产中的煤粉燃烧效率和稳定性。
- 粉磨效率高:球磨机的粉磨效率高,可以在短时间内将水泥原材料磨成所需的细度。
2. 立式磨粉磨工艺:
立式磨粉磨工艺是一种新型的水泥粉磨工艺,其优势主要在于:
- 能耗低:立式磨粉磨工艺可以通过磨辊的压缩力将水泥原材料磨成细粉,相对于球磨机粉磨工艺,其能耗要低很多。
- 适用范围广:立式磨粉磨工艺适用于各种水泥原材料,可以更好地适应水泥生
产中的不同原材料性质。
- 粉磨效率高:立式磨粉磨工艺的粉磨效率也较高,可以在较短时间内将水泥原材料磨成所需的细度。
3. 辊压机粉磨工艺:
辊压机粉磨工艺是一种较为新颖的水泥粉磨工艺,其优势主要在于:
- 粉磨能力强:辊压机粉磨工艺通过辊轮的压缩磨矿,能够将水泥原材料磨成更细的粉末,相对于其它粉磨工艺,其粉磨能力更强。
- 能耗低:辊压机粉磨工艺的能耗也较低,能够节约能源,降低水泥生产的成本。
- 粉磨效率高:辊压机粉磨工艺的粉磨效率也较高,可以在短时间内将水泥原材料磨成所需的细度。
综上所述,不同的水泥粉磨工艺各有优势,在实际应用中需要根据具体的生产工艺和原材料性质进行选择,并结合生产实际情况进行优化和改进。