中科院遥地所定量遥感_第三讲_光学定量遥感Chapter2_Part2
- 格式:pptx
- 大小:18.12 MB
- 文档页数:102
微波波段微波遥感概述微波遥感的特点(相对于光学遥感)Ø全天候、全天时的强大观测能力Ø对植被有一定程度的穿透性Ø对地表具有一定的穿透性微波辐射对云的透射率微波辐射对雨的透射率微波遥感受气象条件影响很小,具有全天候工作能力微波遥感概述§微波遥感的特点Ø2.微波辐射对植被具有一定的穿透性ü波长较长的微波辐射穿透植被的能力比较强ü观测角越小,穿透能力相对越强ü微波在植被层中的透射能力还与植被类型、含水量、植被空间密度等有关微波遥感概述微波遥感的特点Ø3.微波辐射对地表具有一定的穿透性ü体现在微波对固体的不透明的地表也一定的穿透能力22Wurzburg-Riese 雷达站,法国诺曼底23雷达波发射与回波一个雷达脉冲的传播过程(图中指示着时间点1~17时的波前位置)回波信号机载飞机发射的雷达脉冲树的回波房屋的回波房屋的回波树的回波高能量的输出脉冲时间脉冲能量§雷达与侧视雷达最早事十年代开用感。
28是斜距在地球的大地水准面上的投影重采样等处理真实孔径雷达§斜距与地距雷达图像: 斜距均匀采样方式与地距均匀采样方式的比较真实孔径雷达真实孔径雷达的距离向分辨率α雷达到目标的线(LOS)为雷达视线的达视线的冲宽度,分辨率,Δt = t 人们可能更加关心地距分辨率r GR ,§真实孔径雷达的方位向分辨率LHL H R r a ⋅===θλλθβcos )(cos L 为雷达天线真实孔径雷达§真实孔径雷达的分辨单元面积Ø综合两个方向的分辨率,元面积:Hr λ合成孔径雷达§合成孔径的观点Ø记住一个结果:合成向分辨率ra= l/2,l为Ø合成孔径雷达的方位长成正比,要获得高合成孔径雷达§SLAR与SAR的几何分辨率比较真实孔径雷达斜距分辨率2τCØ顶底位移和图像叠掩SAR 图像中的叠掩效应Ø前向压缩和雷达阴影SAR 图像中的前向压缩SAR 图像中的雷达阴影53合成孔径雷达雷达影像的立体量测同光学遥感一样,雷达影像固相对高差产生的像差可以用来体测量,得出地表高程§雷达的极化(Polarization)合成孔径雷达§雷达的极化(Polarization)HH极化HV极化VV极化这是德国南部某地区C波段不同极化方式的雷达图像。
第一章绪论第一讲1.遥感的概念:广义的遥感:广义的角度来理解遥感,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震)等的探测。
狭义的遥感:狭义的角度来理解遥感,指应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
遥感是一种以物理手段、数学方法和地学分析为基础的综合性应用技术2.遥感技术系统一般由四部分组成:遥感平台、传感器、遥感数据接收与处理系统、遥感资料分析处理系统。
3.遥感的特点:大面积的同步观测遥感平台越高,视角越宽广,可以同步探测到的地面范围越大,从而可观测地物的空间分布规律。
时效性遥感技术可以在短时间内对同一地区进行重复探测。
数据的综合性和可比性遥感技术获取的数据反映地表的综合特性,包括自然、人文等方面。
经济性可节省大量的人力、物力和财力。
局限性波谱的有限性、电磁波段的准确性、空间分辨率低等4.遥感信息源的综合特征1、多源性多平台多波段多视场2、空间宏观性遥感影像覆盖范围大、视野广,具有概括性3、遥感信息的时间性瞬时特征时效性重返周期与多时相4、综合性、复合性多种地理要素的综合反映多分辨率遥感信息的综合5、波谱、辐射量化性地物波谱反射、辐射的定量化记录第一章绪论第二讲1空间分辨率(Spatial resolution)像元大小(pixel size):针对传感器或图像而言,指图像上能够详细区分的最小单元的尺寸或大小地面分辨率(Ground resolution):针对地面而言,指可以识别的最小地面距离或最小目标物的大小2、光谱分辨率传感器记录的电磁光谱中特定波长的范围和数量。
传感器所选用的波段数量的多少、各波段的波长位置、及波长间隔的大小(带宽)光谱分辨率在遥感中的意义v1.0 可编辑可修改–开拓遥感应用领域–专题研究中波段选择针对性–图像处理中多波段的应用提高判识效果3、时间分辨率对同一地区遥感影像进行重复探测,相邻两次探测的时间间隔时间分辨率的意义–动态监测与预报;–自然历史变迁和动力学分析;–利用时间差提高遥感的成像率和解像率;–更新数据库4、辐射分辨率(Radiant resolution)辐射分辨率指传感器对光谱信号(电磁辐射)强弱的敏感程度、区分能力。
遥感科学与定量遥感作者:李小文来源:《地理教育》2010年第07期遥感科学是在地球科学与传统物理学、现代高科技基础上发展起来的一门新兴交叉学科。
遥感科学的发展由技术驱动、需求牵引,提出定量遥感基础研究的科学问题。
20世纪80年代初美国NASA发起了遥感科学计划,随着地球系统科学的提出,遥感科学的重心转向了以促进地球系统科学发展为目标,以定量遥感为主要标志,注重多学科交叉综合,从整体上观测研究地球。
目前在国际上,越来越多的学者们认识到遥感科学在地学从传统定点观测数据到不同空间范围多尺度空间转换和地球系统科学研究中的不可替代作用。
而遥感科学能够在多源数据综合集成及地学应用方面对地球系统科学研究发挥决定性作用。
定量遥感或称遥感定量化研究主要指从对地观测电磁波信号中定量提取地表参数的技术和方法研究,区别于仅依靠地图判读经验的人工解译定性识别地物的方法。
定量遥感基础研究,强调在遥感像元的观测尺度上,建立对遥感面状信息的地学理解,对局地尺度上定义的概念,总结、推导出的定律、定理的适用性进行检验和纠正,发展遥感模型与地表参数的提取方法,形成地球表面时空多变要素的遥感数据产品,为大气、海洋、生态环境、农业、林业、矿产等研究领域和相关行业提供可用的遥感数据。
2002年发表在Remote Sensing of Environment上的论文“First operational BRDF,albedo nadir reflectance products from modis”汇集了多国科学家20多年来在建立地表二向性反射(BRDF)模型和地表反照率参数提取方面的研究成果,论述了采用搭载美国对地观测系统卫星的MODIS传感器数据生成地表二向性反射、反照率等系列数据产品的基本算法和模型,并对产品质量进行了评价,举例说明了数据产品在全球和区域尺度上的应用。
其中,由中国科学家为主发展的Li-Stralher几何光学模型和核驱动模型是该数据产品算法采用的主要模型。
定量遥感的定义定量遥感的定义定量遥感随着经济和科技的发展,国家的宏观决策、资源调查、环境及灾害监测等影响国民经济发展的关键领域急需数据支持,要求数据具有空间上的宏观性,时间上的连续性和可获取数据的全面性。
而遥感技术正具备这一能力,它能够以不同的时空尺度不断地提供多种地表特征信息。
但是与遥感卫星获取数据的能力相比,遥感数据的自动、定量化处理乃至对遥感数据信息的理解能力与对遥感数据的有效利用却远远不足,这也是目前制约遥感发挥作用的瓶颈问题。
因此,定量遥感逐渐成为遥感发展的主要方向。
定义定量遥感或称遥感量化遥感研究,主要指从对地观测电磁波信号中定量提取地表参数的技术和方法研究,区别于仅依靠经验判读的定性识别地物的方法。
它有两重含义:遥感信息在电磁波的不同波段内给出的地表物质的定量的物理量和准确的空间位置;从这些定量的遥感信息中,通过实验的或物理的模型将遥感信息与地学参量联系起来,定量的反演或推算某些地学或生物学信息。
建模装置在星体上的传感器,它的可测参数一般为电磁波的属性参数,也就是电磁辐射强度、偏振度、相位差等,而我们的目的是要从这些可测参数中获得有关目标的物理的、地理的、化学的、甚至生物学的状态参数,所以在可测参数与目标状态参数间建立某种函数关系是实现目标参数反演的关键一步,我们称它为建模。
遥感模型一般分为三种:1.统计模型(即经验模型):基于陆地表面变量和遥感数据的相关关系,对一系列的观测数据做经验性的统计描述或者进行相关性分析,构建遥感参数与地面观测数据之间的线性回归方程。
优点:参数少;容易建立且可以有效概括从局部区域获取的数据,简便,适用性强;缺点:有地域局限性,所以可移植性差;理论基础不完备,缺乏对物理机理的足够理解和认识,参数之间缺乏逻辑关系。
2.物理模型:其模型参数具有明确物理意义,并试图对作用机理进行数学描述。
优点:精度高,可移植性强;缺点:此模型通常为非线性的,所以方程复杂,实用性较差;并且在复杂问题考虑中会产生大量参数,其中有些参数无法获取,从而采取近似,会产生误差,而对非主要因素有过多忽略或假定也会产生误差。
第二章光学遥感与热红外遥感模型2.3 植被冠层反射模型2.3.5 光学图像的大气影响订正(大气纠正)遥感模型描述地表参量和地表反射率之间的关系,从遥感传感器接收的大气层顶的辐射亮度(表观反射率)中得到地表反射率,需要对大气影响的订正。
大气纠正包括:大气参数估计,地表反射率的反演。
假定地表像元为朗伯体表面,已知大气参数,可以从星下点成像的光学遥感数据反演地表反射率。
大气效应包括分子和气溶胶的散射和气体的吸收。
对分子散射和气体吸收的纠正比较容易,因其浓度在时间和空间上都比较稳定。
困难的是从图像上直接估算气溶胶和水汽的空间分布。
大气对太阳入射的衰减(据(Vermote, 2000)2.3 植被冠层反射模型2.3.5 光学图像的大气影响订正(大气纠正)光学图像的大气纠正方法:-大气参数估计-分子和气溶胶散射-水汽、气溶胶、臭氧、氧气等气体吸收-地表反射率反演-查找表法-从图像本身估计大气参数2.3 植被冠层反射模型2.3.5 光学图像的大气影响订正(大气纠正)1. 单视角(天顶观测)图像的纠正方法-基于辐射传输模型模拟方法-基于“不变地物”的方法-直方图匹配法-暗目标法-对比度降低法-类型匹配法2.3.5 光学影像的大气纠正1. 单视角图像的纠正方法基于“不变地物”的方法:假设一幅图像中有些像元的地面反射率在时间序列上是很稳定的,其遥感的表观反射率的差异主要反映大气条件的变化。
基于这些“不变”像元表观反射率,建立起不同时间图像像元与地表反射率的线性关系,可用来消除由于大气干扰所造成的差异,估算同幅不同时相图像的地表反射率。
要求:有与遥感成像同步的地表反射率测量,获得不同亮度(黑-灰-白)的像元反射率波谱。
2.3.5 光学影像的大气纠正1. 单视角图像的纠正方法直方图匹配法:假设清晰和模糊区域的地表反射率直方图是相同的。
先在一幅图像上辨认出清晰和模糊的区域,然后匹配模糊小区域和清晰区域的反射率直方图,以此确定模糊小区域的大气能见度。
传感器定标我们常用影像的像元值大多是经过量化的、无量纲的DN值,而进行遥感定量化分析时,常用到辐射亮度值、反射率值、温度值等物理量。
传感器定标就是要获得这些物理量的过程。
本专题叙述的主要是卫星传感器的定标,航空传感器有很多相似地方。
本专题包括以下内容:∙ ∙●传感器定标概念∙ ∙●传感器定标类型∙ ∙●ENVI下的传感器定标1 传感器定标概念传感器定标很多地方又名为辐射定标,严格意义上讲,辐射定标是传感器定标的一部分内容。
以下是国内的定义,如赵英时等《遥感应用分析原理与方法》上描述:定标是将遥感器所得的测量值变换为绝对亮度或变换为与地表反射率、表面温度等物理量有关的相对值的处理过程。
或者说,遥感器定标就是建立遥感器每个探测器输出值与该探测器对应的实际地物辐射亮度之间的定量关系;建立遥感传感器的数字量化输出值DN与其所对应视场中辐射亮度值之间的定量关系(陈述彭)。
辐射亮度的典型的单位为:W/cm2.μm.sr(瓦特/平方厘米.微米.球面度)我们总结以上的定义,通俗的说法:传感器定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面温度等物理量的处理过程。
其中反射率又分为大气外层表观反射率和地表实际反射率,后者又属于大气校正的范畴,有的时候也会将大气校正纳入传感器定标的一种途径。
2 传感器定标类型传感器定标可分为绝对定标和相对定标。
绝对定标是获取图像上目标物的绝对辐射值等物理量;相对定标是将图像目标物辐射量归一化某个值范围内,比如以其他数据作为基准。
传感器定标可分为三个阶段或者说三个方面内容:①发射前的实验室定标;②基于星载定标器的星上定标;③发射后的定标(场地定标)。
一、实验室定标在遥感器发射之前对其进行的波长位置、辐射精度、光谱特性等进行精确测量,也就是实验室定标。
它一般包含两部分内容:∙ ∙●光谱定标确定遥感传感器每个波段的中心波长和带宽,以及光谱响应函数。
∙ ∙●辐射定标在模拟太空环境的实验室中,建立传感器输出的量化值(DN)与传感器入瞳处的辐射亮度之间的模型,一般用线性模型表示。