二次根式的乘除(第3课时)》公开
- 格式:ppt
- 大小:543.50 KB
- 文档页数:9
21.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1(2(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________..二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.2==例1.(1)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.B A C解:因为AB2=AC2+BC2所以132====6.5(cm)因此AB的长为6.5cm.三、巩固练习教材P14练习2、3四、应用拓展例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,=从计算结果中找出规律,并利用这一规律计算))的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=……)=))=2002-1=2001五、归纳小结本节课应掌握:最简二次根式的概念及其运用.六、布置作业1.教材P15习题21.2 3、7、10.2.选用课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1(y>0)是二次根式,那么,化为最简二次根式是( ).A (y>0)B y>0)C y>0)D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A .. 3.在下列各式中,化简正确的是( )A B ±12C 2D .4的结果是( )A .B .C .D . 二、填空题1.(x ≥0)2._________. 三、综合提高题1.已知a 若不正确,•请写出正确的解答过程:²1a (a-12.若x 、y 为实数,且 答案:一、1.C 2.D 3.C 4.C二、1. 2.三、1.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,2.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴===。
21.2.3二次根式的乘除(三)学案稿学习目标:1.经历二次根式除法法则的探究过程,进一步理解除法法则..2.能运用法则b a =ba (a ≥0,b >0)进行二次根式的除法运算. 3.理解商的算术平方根的性质b a =ba (a ≥0,b >0),进行化简和计算 重点:二次根式的除法法则及商的算术平方根的性质.难点:二次根式的除法法则及商的算术平方根的性质的理解与运用.学习过程:一.复习回顾:算一算:(1)254=_______ 254=_______ (2)169=_______ 169=______ (3)10049=______10049=______ (4)2252=______ 2252=_______ 二.合作探究:请观察以上式子及其运算结果,看看其中有什么规律? )0__,0________(b a b a = 反过来: )0__,0___________(b a b a = 例1 计算:⑴ 312⑵ 756⑶ 327÷ ⑷ 321÷31 解:(1)312=312 =4=2练习:(1)1560 (2)872 (3)618÷ (4)311322÷例2 化简:(1)2516 (2)971 (3)163 (4)2294a b (a >0,b ≥0) 解:(1)2516 =2516 =54 练习三.拓展应用:阅读下列运算过程:1333333==⨯,225255555==⨯ 数学上将这种把分母的根号去掉的过程称作“分母有理化”。
利用上述方法化简:(1) 26=_________ (2)132=_________(3) 112=_____ ___ (4) 1025=___ ___。
3.2 二次根式的乘除(3) [ 教案]备课时间: 主备人:【学习目标】:1、经历二次根式除法法则的探究过程,进一步理解除法法则2、能运用法则b a =ba (a ≥0,b >0)进行二次根式的除法运算 3、理解商的算术平方根的性质b a =b a (a ≥0,b >0),并能运用于二次根式的化简和计算【重点难点】:1、二次根式的除法法则及商的算术平方根的性质2、二次根式的除法法则及商的算术平方根的性质的理解与运用【预习指导】填空:(1(2(3【新知概括】二次根式的除法法则:【典型例题】例1、计算: ⑴312 ⑵756 ⑶27÷3 ⑷321÷31想一想:你还有其它的方法来解决上面的问题吗?思考:由b a =b a (a ≥0,b >0)反过来可得: ba = ( ) 利用这个等式可以化简一些二次根式.例2:化简: ⑴2516 ⑵971 ⑶163 ⑷2294a b (a >0,b ≥0) 【知识梳理】1、二次根式的除法法则: 。
2、 把这个法则反过来,得到商的算术平方根性质 。
【课堂练习】1、计算:(1)1560; (2)872; (3)18÷6; (4)322÷311;2、化简: (1)94; (2)953; (3)493; (4)222c16b a 9(a ≥0,b ≥0,c >0);点拨:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。
3、判断下列各式是否正确,为什么?(1)43=23;(2)37=37;(3)a 4b =a 2b (a >0,b ≥0) 【课外练习】1、下列计算中正确的是( )3218D 231322C 5122514B 3595=、 =、 =、 =、÷÷A2如果一个三角形的面积为( ),那么这边上的高为 ,一边长为31222D 2C 2B 4A 、 、 、 、、 、 、 、 )的取值范围是 ( 那么-、如果2D 2C 21B 21A ,21213≥><≤≤≤--=-x x x x x x x x x 4、计算: 313÷(31252)×(4521)5、计算过程:520--=545-⨯-=545-⨯-=4=2正确吗?为什么?6、计算或化简(题中字母均表示正数):)0(1165)3(34531023412214222460)1(22453>>--÷÷÷a b ba a cb a a ) () ()() () (。
3.2 二次根式的乘除(3)学习案姓名 班级 学习目标:1、经历二次根式除法法则的探究过程,进一步理解除法法则2、能运用法则ba =ba (a ≥0,b >0)进行二次根式的除法运算3、理解商的算术平方根的性质ba =ba (a ≥0,b >0),并能运用于二次根式的化简和计算学习重、难点1、二次根式的除法法则及商的算术平方根的性质2、二次根式的除法法则及商的算术平方根的性质的理解与运用 学习过程: 一、知识准备1、想一想: b a ab ∙==b a ab ∙= (0,0)a b≥≥是用什么样的方法引出的?2、12311821⨯⨯⨯= ;二、学习内容★规律探究你能写出下面式子的计算结果吗?开动脑筋,你一定能填正确! (1=,= (2=,=(3=,= (4=,=比较上面的式子,你能得到什么样的的结论呢?有什么要注意的?为什么?用字母把规律表示出来:★性质应用、例题学习。
1、尝试练习:计算:⑴312 ⑵756⑶27÷3 ⑷321÷31想一想:你还有其它的方法来解决上面的问题吗?巩固:测试一下,看看同学们掌握的怎么样!P65练习1 思考:由ba =ba (a ≥0,b >0)反过来可得:ba = ( )利用这个等式可以化简一些二次根式. 2、学习例题 例1:化简: ⑴2516 ⑵971⑶163 ⑷2294ab (a >0,b ≥0)巩固:测试一下,相信你们一定能够做的很好!65P 练习2,3三、小结思考1、二次根式除法运算如何进行?(用公式表示)2、对于简单的二次根式如何逆用二次根式除法运算法则进行化简?(用公式表示)四、作业:书P67 5、7五、家作:1、下列计算中正确的是( )3218D 231322C 5122514B 3595=、 =、 =、 =、÷÷A2如果一个三角形的面积为( ),那么这边上的高为 ,一边长为31222D 2C 2B 4A 、 、 、 、、 、 、 、 )的取值范围是 ( 那么-、如果2D 2C 21B 21A ,21213≥><≤≤≤--=-x x x x x x x x x4、怎样计算: 313÷(31252)×(4521)?5、计算过程:520--=545-⨯-=545-⨯-=4=2正确吗?为什么?6、计算或化简(题中字母均表示正数):)0(1165)3(34531023412214222460)1(22453>>--÷÷÷a b baac b a a ) () ()() () (。
1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。
同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。
根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。
2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。
同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。
八年级数学上册2.7二次根式第3课时二次根式的混合运算说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册第2.7节二次根式的混合运算。
这一节内容是在学生已经掌握了二次根式的性质和运算法则的基础上进行学习的,是进一步培养学生解决实际问题能力的重要环节。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于二次根式的概念和性质有一定的了解。
但是,学生在进行混合运算时,可能会对运算顺序和运算法则掌握不牢固,导致运算错误。
因此,在教学过程中,需要引导学生理清运算思路,巩固运算法则。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式的混合运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例分析,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:二次根式的混合运算方法。
2.教学难点:运算顺序和运算法则的掌握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题,引入二次根式的混合运算。
2.知识讲解:讲解二次根式的混合运算方法,引导学生掌握运算顺序和运算法则。
3.实例分析:分析几个典型的二次根式混合运算题目,让学生明白如何运用所学知识解决实际问题。
4.课堂练习:布置一些练习题,让学生独立完成,巩固所学知识。
5.小组讨论:让学生分组讨论,分享解题心得,培养团队合作意识。
6.总结提升:对本节课的内容进行总结,强调运算顺序和运算法则的重要性。
七. 说板书设计板书设计要简洁明了,突出重点。
主要包括以下内容:1.二次根式的混合运算方法2.运算顺序和运算法则3.典型题目分析八. 说教学评价教学评价主要包括两个方面:1.学生课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。