2020小升初数学经典应用题分析
- 格式:doc
- 大小:515.01 KB
- 文档页数:30
小升初数学应用题归纳1、果园里桃树的棵数相当于梨树棵数的53,相当于苹果树棵数的73。
如果梨树比苹果树少180棵,这个果园里有桃树、梨树、苹果树多少棵?(用方程思想解题)2、小明在商店买了苹果和梨,苹果的个数是梨的54,小明吃了10个苹果,8个梨,则剩下的苹果个数是剩下的梨的75。
求小明买的苹果核梨各有多少个?(用方程思想解题)3、顺风运输队包运1万只瓷碗,每100只运费1.5元,如果损坏一只碗,不但不给运费,还要赔偿0.2元,完成包运任务后,这个运输队共得运费146.56元。
求运输中损坏了几只碗?(用方程思想解题)4、一件玩具,第一天按原价出售,没人来买,第二天降价20%出售,仍没人来买,第三天再降价20元,仍没人来买,第四天在第三天价格的基础上再降价20%,终于售出,已知售出价格是原价的48%。
问原价是多少?(用方程思想解题)5、王飞到山上图书馆借书,他上山每小时行3千米,从原路返回,每小时行6千米。
求他上、下山的平均速度。
(路程速度时间问题)6、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?(鸡兔同笼问题)7、两列火车从甲、乙两地同时开始相对开出,4小时后在距离中点48千米处相遇。
已知慢车速度是快车的75,快车和慢车的速度各是多少?甲、乙两地相距多少米?(相遇问题)(用方程思想解题)8、A 车和B 车同时从甲、乙两地相向开出,经过5小时相遇。
然后,它们又各自按照原速度方向继续行驶3小时,这时A 车离乙地还有135千米,B 车离甲地还有165千米。
甲、乙两地相距多少千米?(相遇问题)9、A 、B 两地相距1000米,甲、乙两人分别从A 、B 两地同时出发,在A 、B 两地间往返散步。
两人第一次相遇时距离AB 中点100米,那么两人第二次相遇时距离第一次相遇的地点多少米?(相遇问题)10、有一项工程需要完成,甲队单独做需要20天完成,乙队单独做需要30天完成。
【文库独家】小升初数学易错应用题1、一根圆柱形的木料长2米,截成相等的3段,表面积增加24平方厘米,原来的木料的体积是多少立方厘米?解:截成相等的3段,底面增加了:(3-1)×2=4(个)底面积是:24÷4=6(平方厘米)木料长是:2米=200厘米木料体积:200×6=1200(立方厘米)2、一个长方形的长8厘米,宽4.56厘米,与这个长方形周长相等的圆的面积是多少?解:π取3.14时:长方形的周长:C=2x(8+4.56)=25.12(厘米)所以,圆的周长也等于25.12=2πr所以,r=25.12÷2π=4(厘米)所以,圆的面积S=πr²=3.14x4²=3.14x16=50.24(平方厘米)3、一块三角形地的面积是0.8公顷,它的底是400米,它的高是多少米?解:0.8公顷=8000(平方米)h=S×2÷d=8000×2÷400=40(米)4、一块白布是边长2米的正方形,剪成直角边是2分米的等腰直角三角形小三角巾,最多可以剪多少块?解:2米=20分米正方形面积=20×20=400(平方分米)1个三角巾面积=2×2÷2=2(平方分米)最多可以剪:400÷2=200块5、用12.56分米长的铅丝分别围成一个正方形和圆,圆的面积比正方形面积多多少?解:12.56÷4=3.14(分米);12.56÷3.14÷2=4÷2=2(分米);3.14×22-3.14×3.14=3.14×(4-3.14)=3.14×0.86=2.7004(平方分米).答:圆的面积比正方形面积多2.7004平方分米.6、小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?解:设还需要x天,则54:3=(162-54):x54:3=108:x54x=108×3x=6;答:要看完162页的这本书,还需6天.7、加工一批布,甲单独做20天完成,乙独做30天完成。
小升初数学60多道典型应用题型后附答案解析1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?10.一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男、女学生各有多少人?24.甲数和乙数的比是2:3,乙数和丙数的比是4:5,求甲数和丙数的比。
小升初数学典型试题分析第一篇:小升初数学典型试题分析小升初数学做好这些可以让你胜人一筹每年小升初重点中学的面试时间都很短,要在这5分钟之内脱颖而出,需要扎实的数学功底。
即便是在培训班的选拔中,很多孩子也很容易把分数丢在不该丢的地方,导致分数比预想的低了不少。
那么,如何找到最容易失分的点,在小升初之前有充分的准备,才能运筹帷幄,决胜小升初战场。
这几个点主要包括:计算、行程、数论、几何一、计算题1、数学基础薄弱。
计算题也是对考生计算能力的一种考察,并非常所说的马虎、粗心造成的。
而且这种能力对任何一个来说,都是很重要的,甚至终身受益,这就是为什么中小学学习阶段,“逢考必有计算题”的重要原因了!2、心态上的轻视。
很多学生称做计算题为“算数”题,在心理上认为很简单,一来不认真做,二来,把更多的精力放在了应用题等看起来很难的题目上了。
二、行程问题三、数论问题在整个数学领域,数论被当之无愧的誉为“数学皇后”。
翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。
四、几何问题重点中学小升初中,几何问题也是一大亮点。
小升初数学试卷“路程问题”解析一例1 两辆汽车同时从甲、乙两地相对开出,5小时后相遇。
一辆汽车的速度是每小时55千米,另一辆汽车的速度是每小时45千米,甲、乙两地相距多少千米?【分析1】先求两辆汽车各行了多少千米,再求两辆汽车行驶路程的和,即得甲、乙两地相距多少千米。
【解法1】一辆汽车行驶了多少千米?55×5=275(千米)另一辆汽车行驶了多少千米?45×5=225(千米)甲、乙两地相距多少千米?275+225=500(千米)综合算式:55×5+45×5=275+225=500(千米)【分析2】先求出两辆汽车每小时共行驶多少千米,再乘以相遇时间,即得甲、乙两地相距多少千米。
追及--流水行船问题【含义】行船问题也就是与航行有关的问题。
解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例1:小船在两个码头间航行,顺水需4小时,逆水需5小时,若一只木筏顺水漂过这段距离需_____ 小时?解:1、我们可以假设一个路程。
假设两个码头之间的距离是200千米,顺水需4小时,则顺水的速度是每小时200÷4=50(千米),逆水需5小时,则逆水的速度是每小时200÷5=40(千米)。
2、根据“水速=(顺水行驶速度-逆水行驶速度)÷2”得到,水流速度是每小时(50-40)÷2=5(千米)。
3、一只木筏顺水漂过的速度就是水流速度,所以木筏顺水漂过这段距离需要200÷5=40(小时)。
例2:某船在同一条河中顺水船速是每小时20千米,逆水船速是每小时10千米,这条河的水流速度是每小时_____ 千米?解:顺水船速=船速+水流速度,逆水船速=船速-水流速度,可以看出,顺水船速比逆水船速多2个水流速度,因此,水流速度=(20-10)÷2=5(千米/时)。
例3:某条大河水流速度是每小时5千米,一艘静水船速是每小时20千米的货轮逆水航行5小时能到达目的地,这艘货轮原路返回到出发地需要多少小时?解:1、逆水速度=静水船速-水流速度,所以货轮逆水速度是20-5=15(千米/时),行驶5小时共行了15×5=75(千米)。
2019-2020学年通用版数学小升初总复习专题汇编讲练专题08 数的应用—典型应用题(三)(1)盈亏问题:是在等分除法的基础上发展起来的。
他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足,总差额= 大不足-小不足例参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。
求每人分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。
这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支, 2 个人多出 20 支,一个人分得 10 支。
列式为( 25-5 )÷( 12-10 )=10 (支) 10 × 12+5=125 (支)。
(2)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例父亲 48 岁,儿子 21 岁。
问几年前父亲的年龄是儿子的 4 倍?分析:父子的年龄差为 48-21=27 (岁)。
由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。
2020年通用版小升初数学冲A提高集训经典应用题—专题09《平均数问题》一.选择题1.(2019•厦门)最近一次数学测试,甲、乙两个同学的平均成绩为88分,甲、丙两个同学的平均成绩为90分,乙、丙两个同学的平均成绩为92分,他们三人的平均成绩是()分.A.88B.90C.92D.94【解答】解:(882902922)23⨯+⨯+⨯÷÷=÷5406=(分)90答:他们三人的平均成绩是90分.故选:B.2.(2018秋•长安区期末)在期中测试中,小明语文、数学、英语的平均分是91分,语文和数学共考了178分,他的英语考了()分.A.92B.95C.98⨯-【解答】解:913178=-273178=(分)95答:英语得95分.故选:B.3.(2019秋•普陀区期中)小亚测量自己走10步的路程,4次结果分别为4.8米、5米、5.1米、5.2米,小亚从家出发走到学校门口要走928步.小亚家到学校大门口大约是多少米?正确式子是() A.(4.85 5.1 5.2)4928+++÷⨯+++÷⨯B.(4.85 5.1 5.2)10928C.(4.85 5.1 5.2)410928-++÷⨯⨯D.(4.85 5.1 5.2)410928+++÷÷⨯+++÷÷⨯【解答】解:(4.85 5.1 5.2)410928=÷÷⨯20.1410928466.32=(米)答:小亚家到学校门口大约是466.32米.故选:D.4.(2019春•雨花区期末)踢毽子比赛,小红所在的小组平均每人踢36个,小丽所在的小组平均每人踢32个下面说法正确的是()A.小红一定比小丽踢得多B.小红一定比小丽踢得少C.小红和小丽踢的个数一定相同D.无法确定谁踢得多【解答】解:根据平均数的意义可知,虽然知道小红所在的小组平均每人踢36个,比小丽所在的小组平均每人踢32个多,但是平均数只不表示这组数据中某一个具体数据,所以无法确定谁踢得多.故选:D.5.(2018秋•祁东县期中)甲数是乙数的23,乙数是丙数的34,这三个数的平均数是36,乙数是()A.36B.24C.13D.48【解答】解:23 (363)(11)34⨯÷++÷91083=÷36=答:乙数是36.故选:A.6.(2019•益阳模拟)明明数学、英语、语文的平均分是95分,期中英语是91分,语文96分,数学是( )分.A.90B.95C.98【解答】解:953(9691)⨯-+285187=-98=(分)答:数学得了98分.故选:C.7.(2019•深圳)甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分.A.6a+B.4 1.5a+C.46a+D. 1.5a+【解答】解:(293)4a a a +++-÷(46)4a =+÷1.5a =+答:他们四人的平均成绩为( 1.5)a +分.故选:D .二.填空题8.(2019秋•闵行区期末)一箱橙子有47个,小胖任意取出6个,称得它们的质量为1386克,那么这箱橙子大约重 11 千克.(四舍五入到个位)【解答】解:1386647÷⨯23147=⨯10857=(克)10857克10.857=千克10.857千克11≈千克答:这箱橙子大约重 11千克.故答案为:11.9.(2018秋•乐亭县期末)红红参加少年宫组织的讲故事比赛,5位评委给出的分数分别为:96分,95分,94分,89分,96分,去掉一个最高分和一个最低分后,红红最后的平均分数是 95 分.【解答】解:(969594)3++÷2853=÷95=(分)答:红红最后的平均得分是95分.故答案为:95.10.(2018秋•盐山县期末)丫丫期中检测语文和数学的平均分是95分,数学比语文多4分,她语文得了 93 分.【解答】解:语文成绩为:(9524)2⨯-÷1862=÷(分答:她语文得了93分.故答案为:93.11.(2019秋•松江区期中)甲乙丙三个数的平均数是61,其中甲乙两个数和的一半是39,丙数是105.⨯-⨯【解答】解:61339218378=-=105答:丙数是105.故答案为:105.12.(2019秋•普陀区期中)小丁丁期末考试语文、数学、英语三科平均成绩为92分,其中语文86分,英语92分,他的数学成绩是98分.⨯--【解答】解:9238692=--2768692=(分)98答:英语成绩是98分.故答案为:98.13.(2019秋•沛县期中)3个数的平均数为10,如果把其中一个数改为9,这时3个数的平均数是11,这个被改动的数原来是6.⨯-⨯【解答】解:113103=-3330=3-=936答:这个被改动的数原来是6.故答案为:6.14.(2019秋•沛县期中)张军参加演讲比赛,十名评委的评分是:91分、96分、89分、94分、90分、92分、93分、91分、93分、92分.如果去掉一个最高分和一个最低分,张军最后的平均得分是92分.+++++++÷【解答】解:(9194909293919392)8=÷7368(分答:张军最后的平均得分是92分.故答案为:92.15.(2018秋•东台市校级月考)5个数的平均数是30,如果把其中一个数改为40,这5个数的平均数就变成25,那么改动的数原来是65.-⨯+【解答】解:(3025)540=⨯+5540=+2540=65答:改动的数原来是65.故答案为:65.16.(2018•广州模拟)7位评委给一位小歌星评分,如果去掉一个最高分和一个最低分,平均得分是9.64分;如果只去掉一个最低分,平均得分是9.65分,最高分是9.7分.⨯-⨯【解答】解:9.6569.645=-57.948.2=(分)9.7答:最高分是9.7分.故答案为:9.7.17.(2017•长沙)某班统计数学成绩时,平均成绩为80分,复查时,发现学生小华的成绩不是85分,而应该是75分,学生小芳的成绩不是88分,而是73分.重新计算后,该班平均成绩为79.5分,该班有学生50人.-=(分)【解答】解:857510-=(分)887315+=(分)101525250.550÷=(人)答:该班有学生50人.故答案为:50.三.判断题18.(2018秋•盐山县期末)小明的身高是1米45厘米,他在一个平均水深为1米35厘米的游泳池中游泳一定不会有危险.⨯(判断对错)【解答】解:平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标;在平均水深1米45厘米的游泳池,并不代表每处的水深都是1米45厘米,可能比1米45厘米深,也可能比1米45厘米浅;所以,他在平均水深1米35厘米的游泳池游泳,可能有危险;所以原题说法错误.故答案为:⨯.19.(2018秋•桑植县期末)一次比赛中一班有12名同学参加,二班有15名同学参加,我们可以用平均成绩来比较两个班参赛选手的整体水平情况.√(判断对错).【解答】解:因为两个班人数不相同,根据平均数的特点,平均数反映了数据的整体情况,所以可以用平均成绩来比较两个班参赛选手的整体水平情况,所以原题说法正确.故答案为:√.20.(2015春•武城县期末)一分钟跳绳,小丽前两次跳的平均数是120下,要使三次跳的平均数是125下,她第三次应跳135下√(判断对错)⨯-⨯【解答】解:12531202=-375240135=(下)答:她第三次应跳135下.故答案为:√.21.四(1)班同学做好事,第一天做了30件,第二天上午做了12件,下午做了24件.四(1)班同学平均每天做好事的件数是:(301224)322++÷=(件).⨯(判断对错)++÷【解答】解:(301224)2=÷662=(件)33所以原题算式错误.故答案为:⨯.22.记不超过10的质数的平均数为M,则与M最接近的整数是4.√(判断对错)【解答】解:10以内的质数有2、3、5、7M=+++÷(2357)4=÷174=4.258≈4即M最接近的整数是4,原题的说法正确.故答案为:√.四.应用题23.(2019秋•闵行区期末)小丁丁和妈妈去餐馆吃饭,点好单后小丁丁算出平均每人餐费80元.正好碰上妈妈的同事张阿姨,3人一起用餐,还加了两个菜,加菜后平均每人餐费增加了6元.新加的两个菜总价是多少元?⨯+【解答】解:6380=+1880=(元)98答:新加的两个菜总价是98元.24.(2018秋•盐都区期末)学校第二季度各月用水量统计如表:学校第二季度平均每天用水多少吨?++÷++【解答】解:(96120148)(303130)=÷364914=(吨)答:学校第二季度平均每天用水4吨.25.(2018秋•高碑店市期末)四年级6个同学参加安全知识竞赛.其中5人的平均成绩是87分,加上王涛的分数后,平均成绩是88分,王涛得了多少分?⨯-⨯【解答】解:886875=-52843593=(分)答:王涛的考试成绩是93分.26.(2019秋•松江区期中)小胖要参加书法等级考试,他规定自己每天都要写25个毛笔字.这个星期,他前三天都按时完成任务,星期四、星期五因为生病每天只写了15个毛笔字,星期六写了30个,那么他星期天要写多少个毛笔字,才能保证这个星期平均每天都写了25个?⨯-⨯-⨯-【解答】解:25725315230=---175753030=(个)40答:他星期天要写40个大字.27.(2019秋•福清市校级期中)国庆期间小丽一家去登山,上山用了4小时,平均每小时走0.75km,下山时原路返回,用了2小时,他们往返的平均速度是多少?⨯⨯÷+【解答】解:40.752(42)=÷66=(千米/小时)1答:他们上、下山的平均速度是每小时1千米.28.(2017•重庆模拟)小方参加了若干次考试,在最后一次考试时他发现:如果这次考试得100分,那么他的平均分是90分:如果这次考试得70分,那么她的平均分是84分,则小方一共参加了多少次考试?-÷-【解答】解:(10070)(9084)306=÷=(次)5答:小方一共参加了5次考试.29.(2014秋•上海期中)现有浓缩果汁280ml,加入2升水后平分给8个小朋友喝,平均每人能喝到多少毫升果汁?=毫升【解答】解:2升2000+÷(2802000)822808=÷=(毫升)285答:平均每人能喝到285毫升.30.一辆汽车从A地开往B地,上坡的速度为每小时60千米,下坡的速度为每小时100千米,现在汽车从A地出发,上坡用了4小时,下坡用了3小时,从原路返回时,下坡速度改为每小时80千米,而上坡速度不变,求这辆汽车往返一次的平均速度?⨯=(千米)【解答】解:604240⨯=(千米)1003300+⨯(240300)2=⨯5402=(千米)1080÷=(小时)240803300605÷=(小时)÷+++1080(4335)=÷108015=(千米/时)72答:这辆汽车往返一次的平均速度是72千米/时.五.解答题31.(2019•保定模拟)在一次国内体操锦标赛中,一名运动员的得分情况为:9分、9.2分、8分、8.7分、9.5分、9.1分.去掉一个最高分,一个最低分,他最后得多少分?+++÷【解答】解:(99.28.79.1)4=÷364=(分)9答:他最后得9分.32.(2018•广州)有一些互不相同的正整数,平均值是100,其中有一个是108,如果去掉108,平均数就变为99.这些数中最大的数是几?【解答】解:设正整数个数有n个,根据题意得-=-10010899(1)n n-=-1001089999n n109910899n n -=-9n =所以剩下的8个数之和为:998792⨯=;这些数中最大的数最大时,其余7个数最小;7个数之和最小123456728=++++++=所以这个最大数最大为79228764-=答:这些数中最大的数最大是764.33.(2018•保定模拟)在抗震救灾的日子里,解放军张叔叔前4天在一线共奋战了74小时,后3天平均每天在一线工作15小时,这一周,张叔叔平均每天在一线工作多少小时?【解答】解:(74153)(43)+⨯÷+,(7445)7=+÷,1197=÷,17=(小时);答:这一周,张叔叔平均每天在一线工作17小时.34.(2016秋•巴中月考)小敏在期末考试中,语文成绩是96分,数学成绩是93分,英语成绩是84分.她三门功课的平均成绩是多少?【解答】解:(969384)3++÷2733=÷91=(分)答:她三门功课的平均成绩是91分.35.(2015秋•烟台校级月考)只需列出综合算式,不必计算解答.(1)某地区去年降水量是427毫米,比前年减少29,这个地区前年降水量是多少毫米? (2)小英在一次测验中,语文、数学、英语三门课的平均成绩是93分,其中语文90分,英语94分.小英的数学得了多少分?【解答】解:(1)2427(1)9÷- 74279=÷549=(毫米)答:这个地区前年降水量是549毫米.(2)(933)(9094)⨯-+279184=-95=(分)答:小英的数学得了95分.36.(2019•郑州模拟)一列火车从甲地开往乙地返回时,速度提高15,结果提前1小时到达甲地.甲、乙两地相距440千米,求这列火车的往返平均速度.【解答】解:往返速度比161:(1)1:5:655=+==因为甲、乙两地的距离一定,时间与速度成反比,所以往返的用时之比为6:5去时用时1(65)6÷-⨯116=÷⨯6=(小时)反回时用时615-=(小时)4402(65)⨯÷+88011=÷80=(千米/小时)答:这列火车的往返平均速度80千米/小时.37.(2018春•辽宁月考)某次射击训练中,某一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是4人.【解答】解:设得到8环的有x人,则:6173892(132)7.7x x ⨯+⨯++⨯=+++⨯84567.77.7x x +=⨯+87.746.245x x -=-0.3 1.2x =4x =答:成绩为8环的人数是 4人.故答案为:4人.38.(2017秋•丰台区期末)暑假期间,小明一家准备开车去草原旅行,有A 、B 两条线路,A 线路全长485千米,平均每小时大约可行驶60千米,B 线路全长620千米,平均每小时可行驶80千米,按这样计算,走哪条路更节省时间? 【解答】解:148560812÷=(小时)36208074÷=(小时) 因为1387124>, 所以走B 线路更节省时间.答:走B 线路更节省时间.39.(2018春•金牛区期末)体操比赛有六位裁判评分,去掉最高分9.8分后,剩下的五个分数的平均分就比原来的平均分少0.05分,再去掉最低分9.42分后,剩下的四个分数的平均分是多少分?【解答】解:[(9.80.055)69.89.42]4-⨯⨯--÷[57.39.89.42]4=--÷38.084=÷9.52=(分)答:剩下四个分数的平均分是9.52分.。
小升初数学解决问题解答应用题练习试题经典题型带答案解析(1)一、人教六年级下册数学应用题1.学校要买一些羽毛球,每个3元,甲商城打九折,乙商城“买八送二”.丙商城满100元返还30元现金。
学校想买200个,算一算:到哪家购买较合算?2.学校要建一个长60m、宽50m的长方形活动场地,请你画出活动场地的平面图。
计算:画图:3.把一个底面半径是2厘米的圆柱体,沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,(如图)已知拼成后长方体表面积比原来圆柱表面积增加了60平方厘米,这个长方体的体积是多少?4.儿童节,爸爸送给高兴一个圆锥形的玩具(如图)。
如果要用一个长方体的盒子包装它,这个盒子的表面积至少多少平方厘米?5.学校要买10个足球,李老师看中了一个单价为45元每个的足球,有三家商场都有这种足球,并且三家商场都在搞促销活动。
A商场每满100元减20元,B商场一律打七五折,C商场买四送一。
请你帮李老师算一算,去哪家商场买最划算?6.在比例尺是1:20000000的地图上量得甲、乙两地间的铁路长6厘米。
两列高速列车分别从甲、乙两地同时相对开出,已知从甲地开出的列车平均每小时行315千米,从乙地开出的列车平均每小时行285千米,几小时后两车能相遇?7.在一个底面积是706.5平方厘米的圆锥容器里盛满酒精,把这些酒精以每分钟157立方厘米的速度向一个底面积为471平方厘米的圆柱形里注入,1小时后,圆锥里的酒精全部流完,圆锥容器高多少厘米?圆柱形里的酒精液面高多少厘米?8.一张设计图纸的比例尺是1:600,图中的一个长方形大厅长4厘米,宽2.5厘米。
这个大厅的实际面积是多少平方米?9.张华家有一只底面直径40厘米、深50厘米的圆柱形无盖水桶,这只水桶盛满了水,把水倒入长40厘米、宽30厘米、高50厘米的长方体玻璃鱼缸内,水会溢出吗?请用喜欢的方式解答,(水桶和鱼缸的厚度都忽略不计)10.有A、B两个商场都在进行促销活动。
2020年小升初数学专题复习训练—拓展与提高典型应用题(4)知识点复习一.代换问题【知识点归纳】1.代换问题内容:“等量代换”是解决数学问题的一种常用方法.即两个相等的量,可以互相代换.等量代换的思想用等式的性质来体现,就是等式的传递性:如果a=b,b=c,那么a=c.这种数学思想方法不仅有着广泛的应用,而且是进一步学习数学的基础.2.代换主要方法:(1)列表消元法(2)等价条件代换.【命题方向】分析:依题意A-3B=51,A+2B=111,然后用第二个算式减去第一个,就变成只含有B的方程,由此解决问题.解:A-3B=51,①A+2B=111,②由②-①可得:5B=60,解得B=12,A=51+12×3=87.故答案为:87,12.点评:这类问题的关键是:把其中的一个未知数消去,变成只含有一个未知数的方程.例2:假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换600只兔子.分析:先用兔子的数量代换出1只羊的数量,再代换出1头猪的数量,从而找出1头牛和兔子数之间的关系,进而求出5头牛的数量.解:20只兔子=2只羊,那么:1只羊=10只兔子,9只羊=3头猪,那么:9×10只兔子=3头猪,90只兔子=3头猪,即30只兔子=1头猪,8头猪=2头牛,那么:8×30只兔子=2头牛,240只兔子=2头牛,即:120只兔子=1头牛,那么5头牛就是:120×5=600(只);故答案为:600.点评:把羊和猪的数量看成中间量,都用兔子的数量代替,找到兔子和牛之间的关系,再求解.二.周期性问题【知识点归纳】1.周期性问题内容:在日常生活中,有一些按照一定的规律不断重复出现.如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等.像这些问题,我们称为“简单周期问题”.2.周期性问题解决方法:这一类问题一般要利用余数的知识来解答.这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.【命题方向】例1:蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白分析:由题意知蜗牛1天爬110-40=70厘米,那么4天就是70×4=280厘米,又因为到第5天的白天,晚上不算在内,要保证第5天白天爬出井口,则第4天一定不能爬出井口.井深至少比第四天能够爬出的高度多1厘米.所以这口井的深度是:(110-40)×3+110+1.解:(110-40)×3+110+1=210+110+1=321(厘米)故答案为:321.点评:此题属于周期性问题,在列式时要特别注意是“第五天的白天爬到井口”.问“至少”,所以第5天白天爬完1厘米就结束了.三.简单统计问题【知识点归纳】【命题方向】四.最优化问题【知识点归纳】最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容.下面我们就最优化问题做出汇总分析.最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处.但解决这类问题需要的基础知识相当广泛,很难做到一一列举.【命题方向】例1:星期日,红红想帮奶奶做下面的事情:用全自动洗衣机洗衣服30分,扫地擦地15分,洗菜8分,经过合理安排,做完这些事情至少要()分.A、45B、38C、30分析:根据题干分析可得,用全自动洗衣机洗衣服需要30分钟,同时可以扫地擦地和洗菜,据此即可解答问题.解:根据题干分析可得,用全自动洗衣机洗衣服需要30分钟,同时可以扫地擦地和洗菜,所以最小需要30分钟即可完成.故选:C.点评:较大此类问题要奔着各项工作不相互冲突,又能节约时间的思想设计工作程序.例2:汽水买5送1,某班30名同学秋游路上想买水喝,只需要买()甁汽水.A、30B、25C、28D、24分析:根据“买5送1”可知买5瓶实际得到6瓶,30名同学可以买(30÷6)5个5瓶,送1×5=5瓶,所以只买:30-5=25瓶,据此解答.解:30-1×[30÷(5+1)],=30-5,=25(瓶);答:只需要买25汽水.故选:B.点评:本题关键是求出买30瓶能送几瓶汽水.同步测试一.选择题(共8小题)1.某品牌的饮料促销方式如下:甲店打七五折,乙店“满三送一”,丙店“每满100元减30元”.李老师要买30瓶标价9元的这种品牌的饮料,在()店购买更省钱.A.甲B.乙C.丙D.无法确定2.公园门口的售票牌上写着:门票4元一张,每20人的团体票享受8折优惠,小明一行去了28人,怎样购票省钱()A.买4元一张的票B.买团体票C.买20人团体票8人4元一张的票D.买25人团体票3人买4元票3.已知买3本本子、2支钢笔、4支圆珠笔需要33.4元,买2本本子、3支钢笔、1支圆珠笔需要40.6元,问买1本本子、1支钢笔、1支圆珠笔需要()元.A.12.8B.13.8C.14.8D.15.84.爸爸去家电商城购买电风扇.A、B两家家电商城都有优惠,且标价都是250元,A商城打八折,B商城满100元减20元,在哪个商城购买更省钱?()A.A商城B.B商城C.一样省钱D.无法确定5.小时候我们用手指练习数数,一个小朋友按如图所示的规则练习数数,数到2006时对应的指头是(各指头的名称依次为大拇指、食指、中指、无名指、小指)()A.食指B.中指C.无名指D.小指6.甲、乙、丙共有100本.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1.那么乙有()本书.A.3B.4C.5D.67.一个数值转换器原理如图所示,若输入x的值是13,则第一次输出的结果是16为奇数,第二次输出的结果是8,……则第2015次输出的结果是()A.1B.2C.4D.88.一个循环小数本来有两个循环点,聪聪不小心擦掉了其中一个循环点,变成了0.98765432,原来循环小数的小数点后第21位上的数字是5,那么这个循环小数的另一个循环点在数字()上.A.5B.6C.7D.8二.填空题(共8小题)9.我爱学数学我爱学数学……第32个字是.10.每次最多能烙2张饼,两面都要烙,每面4分钟,如果要烙5张饼,最少需要分钟.11.已知:〇=△+△+△,〇+△=24.那么:〇=,△=.12.有黑棋子和白棋子,按照下面的顺序排列……第2019个棋子是色的.13.如果2双袜子和5双手套一共68元,5双袜子和5双手套80元.那么一双手套元,一双袜子元.14.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12…第2009次输出的结果为.15.下图是五名学生一分钟跳绳成绩统计表:姓名李军王涛赵娜李可王迪成绩152********(1)这组数据的平均数是.(2)这组数据的中位数是.(3)用代表这五名学生跳绳的一般水平更合适.16.某超市一种品牌的香油共有三种规格.小瓶200g售价8.5元、中瓶400g售价16元、大瓶600g售价24.9元.请你算一算,要在这家超市买800g这种品牌的香油最少要花元钱.三.判断题(共5小题)17.下面有一排字母:A、T、E、N、A、T、E、N…照此规律,第25个字母是A.(判断对错)18.三种主食,5种蔬菜,选一种主食和一种蔬菜搭配,共有8种不同的搭配方法.(判断对错)19.妈妈买了一件原价为540元的衣服,这件衣服在G商场打六折优惠,在M商场买则是满100元送40元购物券,由此可见,在M商场买更划算.(判断对错)20.今年六一儿童节是周一,7月4日放暑假是周日..(判断对错)21.甲、乙、丙三人用相同的钱数去买体育用品,甲买了3个足球,乙买了4个篮球,丙买了1个足球、1个篮球、2个排球.如果足球每个是4x元,那么排球每个是2.5x元.(判断对错)四.应用题(共6小题)22.小明的妈妈买了6个杯子和6个盘子,一共花了180元,已知一个盘子的价格是一个杯子的2倍,一个杯子和一个盘子的价格各是多少元?23.用3辆大货车和5辆小货车共运货33吨,小货车的载重量是大货车的,两种货车的载重量各是多少吨?24.同学们在公园划船,如果每条船都坐满,可以怎样租船?25.学校要购买一些办公用品,其中需要单价3元的彩色粉笔30盒.去哪家文具店购买合算?26.12个同学围成一圈做传手绢的游戏,如图.(1)从1号同学开始,顺时针传100次,手绢应在谁手中?(2)从1号同学开始,逆时针传100次,手绢又在谁手中?(3)从1号同学开始,先顺时针传156次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?27.(黑白珠子按前面规律排列)(1)第4006个珠子是什么颜色?(列式计算)(2)如果共有3700个珠子,那么这3700个珠子中共有多少颗黑珠子?(列式计算)五.解答题(共2小题)28.下表是二(1)班同学喜欢吃的蔬菜情况统计表,根据统计表回答问题.萝卜西红柿茄子青椒人数(人)10155(1)喜欢吃青椒的人数是喜欢吃茄子的5倍,喜欢吃青椒的有多少人?(2)填一填、涂一涂,完成统计图.(3)你还能提出什么数学问题,请列式计算.29.下面是某电器商场2006年上半年每月销售电视机台数的折线图.①根据折线统计图,完成下面的统计表.某电器商场2006年上半年每月销售电视机台数统计表月份一二三四五六销售量(台)②月的销售量最多,月的销售量最少.③2006年上半年平均每月销售电视机多少台?参考答案与试题解析一.选择题(共8小题)1.【分析】甲店打七五折:是指现价是原价的75%,把原价看成单位“1”,用原价9元乘75%求出每瓶的现价,再乘30瓶,即可求出在甲店需要的钱数;乙店“满三送一”:是指买4瓶饮料只需要付3瓶的钱,先用30瓶除以4,求出里面最多有几个4瓶,还余几瓶,从而求出需要付钱的瓶数,再乘9元,即可求出在乙店需要的钱数;丙店“每满100元减30元”:是指每100元可以减免30元,先用30瓶乘9元,求出原价一共是多少钱,再除以100,求出总钱数里面有多少个100元,就是可以减免多少个30元,再用乘法求出可以减免的钱数,然后用原总价减去可以减免的钱数,从而求出丙店需要的钱数,再比较即可求解.【解答】解:甲店:9×75%×30=6.75×30=202.5(元)乙店:30÷(3+1)=30÷4=7 (2)(7×3+2)×9=23×9=207(元)丙店:30×9=270(元)270÷100=2 (70)270﹣2×30=270﹣60=210(元)202.5<207<210答:在甲店购买更省钱.故选:A.【点评】解决本题关键是理解三家商店不同的优惠政策,分别找出求现价的方法,求出现价,再比较.2.【分析】方法一:单独购买28张门票,没有优惠,用28元乘上4人就是全部的钱数;方法二:购买20张门票,可以按照8折优惠,先求出20张门票的原价,然后再乘上80%,然后再加上剩下的8人需要按照原价购买,需要:4×8=32元,再相加就是需要的钱数;比较两种方法需要的钱数即可求解.【解答】解:28×4=112(元)(28﹣8)×4×80%+4×8=64+32=96(元)112>96所以买20人团体票8人4元一张的票最省钱;故选:C.【点评】此题主要考查了最优化问题的应用,解答此题的关键是求出每种情况的优惠价是多少.3.【分析】已知买3本本子、2支钢笔、4支圆珠笔需要33.4元,买2本本子、3支钢笔、1支圆珠笔需要40.6元,则可列出两个等式,两个等式的左边加左边当然等于右边加右边,左边加起来刚好是5个本子、5支钢笔、5支圆珠笔等于右边33.4加40.6,两边同时除以5,即可得解.【解答】解:3本本子+2支钢笔+4支圆珠笔=33.4元,2本本子+3支钢笔+1支圆珠笔=40.6元,所以5本本子+5支钢笔+5支圆珠笔=33.4元+40.6元=74元,1本本子+1支钢笔+1支圆珠笔=74元÷5=14.8元;答:买1本本子、1支钢笔、1支圆珠笔需要14.8元;故选:C.【点评】此题考差了代换问题,关键是看出左边相加刚好是要求量的5倍,不必逐个量求解,直接除以5即可得解.4.【分析】A商场:打八折,是指现价是原价的80%,把原价看成单位“1”,用原价乘上80%就是现价;B商场:“满100减20元”,250元可以减去2个20元,用250元减去20×2元就是B商场应付的钱数,最后比较即可求出哪个商场更省钱即可.【解答】解:250×80%=200(元)250﹣2×20=210(元)200<210,A商城便宜.答:在A个商城购买更省钱.故选:A.【点评】本题关键是理解打折以及“满100减20元”的含义,分别求出现价,从而得解.5.【分析】从左手拇指开始数,拇指为1,9,17,…,可以发现,从左数到右,回来时数到食指,这就算一个周期了,因为下个又是拇指,一共数了8下.8就是周期,所以,左手拇指为8n+1,食指为8n+2和8n,中指为8n+3和8n+7,无名指为8n+4和8n+6,小指为8n+5.用2006除以8求出余数,即可求解.【解答】解:2006÷8=250 (6)答:数到2006时对应的指头是无名指.故选:C.【点评】解决本题关键是根据先找出每个指头上数字变化的规律,然后再利用这个变化规律再回到问题中去解决问题.6.【分析】由题可知:甲=5乙+1,丙=5甲+1=5(5乙+1)+1=25乙+6,所以100=甲+乙+丙=(5乙+1)+乙+(25乙+6)=31乙+7=100,得乙=3;据此解答.【解答】解:甲=5乙+1,丙=5甲+1=5(5乙+1)+1=25乙+6,所以100=甲+乙+丙=(5乙+1)+乙+(25乙+6)=31乙+7=100,所以乙=3;故选:A.【点评】此题也可以利用数字特性法解答:甲+乙+丙=100,那么(甲﹣1)+(丙﹣1)+=98﹣乙,由题意知道两左边是5的倍数,且是100内最大的只有95,可以知道乙是等于3,所以甲为16,丙为81.7.【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化,找出规律,然后利用规律进行求解.【解答】解:第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是×8=4,第4次输出的结果是×4=2,第5次输出的结果是×2=1,第6次输出的结果是3×1=4,第7次输出的结果是×4=2,第8次输出的结果是×2=1,……所以,从第3次开始,每3次输出为一个循环组依次循环,(2015﹣2)÷3=671,所以,第2015次输出的结果是1.故选:A.【点评】本题考查了代数式求值,根据数值转换器求出从第3次开始,每3次输出为一个循环组依次循环是解题的关键.8.【分析】由于0.987654321现有9个小数,5处于倒数第五个数,又小数点后的第21位上的数字是5,设循环节内共有x位小数,根据循环小数的意义可知,9≥x≥5,21位上是5,则第25位上是1,由此可得9+nx=25,即nx=16,所以x只能为8.【解答】解:设循环节内小数共有x位,由题意可知,9≥x≥5,21位上是5,则第25位上是1,由此可得9+nx=25,即nx=16,n是正整数,16=1×16=2×8=4×4,由于循环节最小是5位,所以不能是4×4,所以只能是2×8=16所以x只能为8.即这个循环小数是0.9765432.答:这个循环小数的另一个循环点在数字8上.故选:D.【点评】根据小数点后的第21位上的数字是5明确循环节内的小数位数最少不少于5位是完成本题的关键.二.填空题(共8小题)9.【分析】(北京市第一实验小学学业考)观察题干可知,这组汉字的排列规律是:5个汉字一个循环周期,分别按照“我爱学数学”的顺序依次循环排列,据此求出第32个汉字是第几个循环周期的第几个即可.【解答】解:“我爱学数学”为5个字32÷5=6…2,余数是2所以第32个字“爱”.故答案为:爱.【点评】根据题干得出这组汉字的排列规律是解决本题的关键.10.【分析】烙5张饼:先同时烙两张,正反面共需2×4=8分钟;再烙后三张,先烙第一张与第二张的正面需4分钟,然后烙第一张的反面与第三张的正面需要4分钟,最后烙第二张的反面与第三张的反面需4分钟,烙完3张共需3×4=12分钟,5张共需8+12=20分钟.【解答】解:先同时烙两张,正反面共需2×4=8(分钟)再交替烙3张共需3×4=12(分钟)5张共需8+12=20(分钟)答:如果要烙5张饼,最少需要20分钟.故答案为:20.【点评】此题考查了学生的利用统筹思想进行合理安排事情的能力,抓住锅内始终有2张饼在烙是本题的关键.11.【分析】把〇=△+△+△代入〇+△=24求出△的值,再进一步求出〇的值即可.【解答】解:把〇=△+△+△代入〇+△=24可得:△+△+△+△=244×□=24△=6〇=6×3=18故答案为:18;6.【点评】此题考查简单的等量代换,解决此题的关键是用△替代〇.12.【分析】根据题干分析可得,这组棋子的排列规律是:12个图形一个循环周期,分别按照〇●●〇〇〇●〇〇●●●的顺序依次循环排列,据此计算出第2019个棋子是第几个循环周期的第几个棋子即可解答.【解答】解:2019÷12=168 (3)所以第2019个棋子是第169周期的第3个棋子,是●,即是黑的.答:第2019个棋子是黑色的.故答案为:黑.【点评】根据题干得出棋子的循环周期是解决此类问题的关键.13.(北京市第一实验小学学业考)把条件“2双袜子和5双手套一共68元”与条件“5双袜子和5双手套80元”相比可得:手套的数量不变,那么5﹣2=3双袜子需要80﹣68=12元,由此用12除以3求出每双袜子的单价;然后再根据“2双袜子和5双手套一共68元”,用5双手套的总价除以5即可求出每双手套的单价.【解答】解:(80﹣68)÷(5﹣2)=12÷3=4(元)(68﹣4×2)÷5=60÷5=12(元)答:一双手套12元,一双袜子4元.故答案为:12;4.【点评】本题考查了等量代换问题,关键是把其中一个未知量作为中间量消去,再进一步解答.14.【分析】由图示知,当输入的数x为偶数时,输x;当输入的数x是奇数时,输出x+3.按此规律计算即可求解.【解答】解:由设计的程序,知依次输出的结果是24,12,6,3,6,3…,发现从6开始循环.则2009﹣3=2006,2006是2的倍数,故第2009次输出的结果是6.故答案为:6.【点评】此类题主要是能够正确发现循环的规律,根据循环的规律进行推广.该题中除前三次不循环外,后边是2个一循环.15.【分析】(1)根据“总成绩÷人数=平均成绩”进行计算即可;(2)中位数是将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数;(3)根据本组数据的个别数据偏大,用中位数来描述该组数据的集中趋势就比较合;【解答】解:(1)(152+70+78+89+76)÷5,=465÷5,=93;(2)152,89,78,76,70;中位数为78;(3)根据本组数据的个别数据偏大,用中位数来描述该组数据的集中趋势就比较合;故答案为:93,78,中位数.【点评】解答此题应结合题意,根据平均数、中位数的异同进行解答即可.16.【分析】小瓶200g售价8.5元,用8.5元除以200克,求出小瓶每克需要的钱数,同理求出中瓶和大瓶每克需要的钱数,然后比较得出哪种最便宜,那么买800克首先选择这一种包装的,再进一步根据总价=单价×数量求解.【解答】解:8.5÷200=0.0425(元)16÷400=0.04(元)24.9÷600=0.0415(元)0.04<0.0415<0.0425买中瓶的最便宜800÷400=2(瓶)16×2=32(元)答:要在这家超市买800g这种品牌的香油最少要花32元钱.故答案为:32.【点评】解决本题先根据单价=总价÷数量求出每种的单价,再比较得出哪种的最便宜,然后得出需要购买的瓶数,进而根据总价=单价×数量求解.三.判断题(共5小题)17.【分析】由字母按照A、T、E、N的顺序依次排列,可知每4个字母一循环,25÷4=6…1,由此可知第25个字母为A,据此解答即可.【解答】解:每4个字母一循环,因为25÷4=6…1,所以第25个字母与第一个字母相同为A,所以原题说法正确.故答案为:√.【点评】解此类题关键是看看是怎么循环的,循环周期是什么,求第几个字母,就用这个数除以周期,余几就是一周期中的第几个字母.18.【分析】从三种主食中选一种有三种选法、从5种蔬菜中选一种有5种选法,根据乘法原理,共有3×5=15种不同的搭配方法.据此判断.【解答】解:3×5=15(种)答:共有15不同的搭配方法.原说法错误.故答案为:×.【点评】本题需要用乘法原理去考虑问题即做一件事情,完成它需要分成n个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,…,做第n步有M n种不同的方法,那么完成这件事就有M1×M2×…×M n种不同的方法.19.【分析】根据题意,这件衣服在G商场打六折优惠即540×60%=324(元),在M商场买则是满100元送40元购物券即优惠5×40=200(元),现价540﹣200=340(元),比较现价进而作出判断.【解答】解:在G商场现价为:540×60%=324(元),在M商场优惠5×40=200(元),现价为:540﹣200=340(元),324<340,故在在G商场买更划算.故答案为:×.【点评】解决此题的关键是求出该商品在两家商场的现价是多少,比较现价即可解决问题.20.【分析】先求6月1日到7月4日经过了多少天,再求这些天里有几周,还余几天,再根据余数判断即可.【解答】解:30﹣1+4=33(天)33÷7=4(周)…5(天)1+5=6即,7月4日放暑假是周六,所以原题说法错误.故答案为:×.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.21.【分析】由甲、丙可知:3个足球(3个足球的价钱,简称3个足球,下同)=1个足球+1个篮球+2个排球,因此,2个足球=1个篮球+2个排球,由此得到2个排球=2个足球﹣1个篮球①;由乙、丙可知:4个篮球=1个足球+1个篮球+2个排球,因此,3个篮球=1个足球+2个排球,由此得到2个排球=3个篮球﹣1个足球②.由①、②可知,2个足球﹣1个篮球=3个篮球﹣1个足球,又知足球每个是4x元,由此可求出1个篮球的钱数,再由①或②即可求出每个排球的钱数.【解答】解:由甲、丙可知:3个足球=1个足球+1个篮球+2个排球(为了便于叙述,3个足球的钱数,叙述为3个足球,下同)所以2个足球=1个篮球+2个排球由此得到2个排球=2个足球﹣1个篮球……①由乙、丙可知:4个篮球=1个足球+1个篮球+2个排球所以3个篮球=1个足球+2个排球由此得到2个排球=3个篮球﹣1个足球……②由①、②可知:2个足球﹣1个篮球=3个篮球﹣1个足球已知每个足球为4x元所以8x﹣1个篮球=3个篮球﹣4x8x+4x﹣1个篮球=3个篮球﹣4x+4x12x﹣1个篮球=3个篮球12x﹣1个篮球+1个篮球=3个篮球+1个篮球12x=4个篮球12x÷4=4个篮球÷43x=1个篮球即1个篮球=3x把一个篮球=3x,一个足球=4x代入①2个排球=2×4x﹣3x2个排球=5x2个排球÷2=5x÷21个排球=2.5x答:排球每个是2.5x元.故答案为:√.【点评】此题较麻烦,关键是根据等量代换,通过解方程的方法先求出每个篮球的钱数,进而求出每个排球的钱数.四.应用题(共6小题)22.【分析】根据题意利用等量代换法,用杯子的价格代替盘子的价格,则相当于180元买了6+6×2=18(个)杯子,然后求一个杯子的价格,再求盘子价格即可.【解答】解:180÷(6+6×2)=180÷(6+12)=180÷18=10(元)10×2=20(元)答:一个杯子10元,一个盘子20元.【点评】本题主要考查和倍问题,关键利用等量代换法计算.23.【分析】小货车的载重量是大货车的,那么每辆大货车的载质量就是小货车的2倍,3辆大货车就可以转化成3×2=6辆小货车,这样3辆大货车和5辆小货可以看成6+5=11辆小货车一共运货33吨,用33除以11,即可求出每辆小货车运货的吨数,进而求出每辆大货车运货的吨数.【解答】解:1÷=233÷(3×2+5)=33÷11=3(吨)3×2=6(吨)答:小货车的载重量是3吨,大货车的载重量是6吨.【点评】解决本题先根据大货车和小货车载重量之间的关系,用其中的一种车代换另一种车,再根据一共运货的质量求解.24.【分析】根据图文中信息可知一共24人,小船限坐4人,大船限坐6人,要想每条船都坐满,租船方案有三种,分别写出方案,进行计算即可.【解答】解:因为一共24人,小船限坐4人,大船限坐6人,所以每条船都坐满,可以有三种方案:方案一:租用6条小船,6×4=24(人);方案二:租用4条大船,4×6=24(人);方案三:两条大船,三条小船,6×2+3×4=12+12=24(人);答:可以租用6条小船,或者租用4条大船,或者两条大船,三条小船.【点评】此题考查图文应用题,明确题意,从图文中获取解答问题的信息是解答本题的关键,注意方案要写全.25.【分析】根据各家商店的优惠政策,分别计算所需钱数,A店:买5赠一,就是每六个中有一个不用花钱,所以只需买:30÷(5+1)=5(组),(30﹣5×1)×3=75(元);B店:把原价看作单位“1”,则有关系式:售价=原价×,把数代入求所需钱数:3×30×=81(元);C店:先计算总钱数中有几个50元,然后去掉优惠的钱数:3×30=90(元),90>50,90×(1﹣)=72(元).然后进行比较,即可得出结论.【解答】解:A店:30÷(5+1)=30÷6=5(组)(30﹣5×1)×3=25×3=75(元)B店:3×30×=81(元)C店:3×30=90(元)90>5090×(1﹣)=90×=72(元)72<75<81答:去C文具店购买合算.【点评】本题主要考查最优化问题,关键计算各商店所需钱数.26.【分析】(1)从1号同学开始,顺时针传一次到2号,传两次到3号…以此类推,传十二次到1号,然后又从1号开始传递,所以一个周期为12次,100÷12=8……4,那么传8圈之后,再传4次,手绢在5号手中.(2)从1号同学开始,逆时针传一次到12号,传两次到11号…以此类推,传十二次回到1号,然后又从1号开始传递,所以一个周期为12次,100÷12=8……4,那么传8圈之后,再传4次,手绢在9号手中.(3)根据第(1)(2)小题的分析,顺时针传156次,156÷12=13,没有余数,刚好13圈,在1号手中;逆时针传143次,143÷12=11……11,传11圈之后再传11次,传到2号手中;再顺时针传107次,107÷12=8……11,传8圈之后再传11次,注意是从2号顺时针传11次,最后在1号手中【解答】(1)100÷12=8……4,在5号手中(2)100÷12=8……4,在9号手中(3)156÷12=13,在1号手中;143÷12=11……11,在2号手中;107÷12=8……11,最后在1号手中【点评】本题运用周期解决问题,总数÷周期数=周期个数……余数,余几就从周期开始的数,往后数几个27.【分析】(1)把“”这样的4个图形看成一组,求出4006里面有几个4,还余几,再根据余数进行推算;(2)求出3700里面有几个4,还余几,再根据余数进行推算共有多少颗黑珠子即可.【解答】解:(1)4006÷4=1001 (2)第4006个图形是第1002组的第2个是黑珠子;答:第4006个珠子是黑珠子.(2)3700÷4=9252×925=1850(颗)答:这3700个珠子中共有1850颗黑珠子.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.五.解答题(共2小题)28.【分析】喜欢吃青椒的人数是:5×5=25(人),根据实际情况确定每个横格代表5人,然后根据各项具体数画条形统计图,最后根据图中数据提出相应的问题并解决.【解答】解:(1)5×5=25(人),(2)完成统计图如下图:萝卜西红柿茄子青椒人数(人)1015525。
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2.3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)解题思路:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
答题:解:下午2点是14时。
往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。
6. 学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?解题思路:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
答题:解:第一组追赶第二组的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?解题思路:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。
若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
答题:解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。
8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?解题思路:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
答题:解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。
9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?解题思路:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
答题:解:每把椅子的价钱:(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)每张桌子的价钱:25+30=55(元)答:每张桌子55元,每把椅子25元。
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?解题思路:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
答题:解:(7+65)×[40÷(75—65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距560千米。
小升初数学20类必考应用题汇总解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13 7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13 7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
解题思路:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)两地间路程:(40 45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。
解题思路:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
解题思路:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。
若把乙仓存粮吨数看作1倍,总存粮吨数就是(4 1)倍,由此便可求出甲、乙两仓存粮吨数。
解:乙仓存粮:(32.5×2 5)÷(4 1)=(65 5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。
解题思路:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4 5)天修的。
由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:(400-10×4)÷(4 5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2 10=80 10=90(米)答:两队每天修90米。
解题思路:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6 5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
解:每把椅子的价钱:(455-30×6)÷(6 5)=(455-180)÷11=275÷11=25(元)每张桌子的价钱:25 30=55(元)答:每张桌子55元,每把椅子25元。
解题思路:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
解:(7 65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距560千米。
解题思路:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。
根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100 20)元,就是损坏几箱。
解:(20×250-4400)÷(10 20)=600÷120=5(箱)答:损坏了5箱。
解题思路:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。
解:2、3、4、5的最小公倍数是60 60-1=59(支)答:这盒铅笔最少有59支。
解题思路:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。